• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 22
  • 16
  • 8
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 225
  • 225
  • 200
  • 59
  • 56
  • 54
  • 39
  • 35
  • 33
  • 31
  • 30
  • 25
  • 23
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Unmanned Aerial Vehicles Modelling and Control Design. A Multi-Objective Optimization Approach

Velasco Carrau, Jesús 27 November 2020 (has links)
[ES] Aquesta tesi presenta els resultats de la feina de recerca dut a terme sobre el modelatge i el disseny de controladors per a micro-aeronaus no tripulades mitjançant tècniques d'optimització multi-objectiu. Dos principals camps d'estudi estan presents al llarg d'ella. D'una banda, l'estudi de com modelar i controlar plataformes aèries de petita envergadura. I, de l'altra, l'estudi sobre l'ús de tècniques heurístiques d'optimització multi-objectiu per aplicar en el procés de parametrització de models i controladors en micro-aeronaus no tripulades. S'obtenen com a resultat principal una sèrie d'eines que permeten prescindir d'experiments en túnels de vent o de sensòrica d'alt cost, passant directament a la utilització de dades de vol experimental a la identificació paramètrica de models dinàmics. A més, es demostra com la utilització d'eines d'optimització multi-objectiu en diferents fases de desenvolupament de controladors ajuda a augmentar el coneixement sobre la plataforma a controlar i augmenta la fiabilitat i robustesa dels controladors desenvolupats, disminuint el risc de passar de les fases prèvies de el disseny a la validació en vol real. / [CA] Esta tesis presenta los resultados del trabajo de investigación llevado a cabo sobre el modelado y el diseño de controladores para micro-aeronaves no tripuladas mediante técnicas de optimización multi-objetivo. Dos principales campos de estudio están presentes a lo largo de ella. Por un lado, el estudio de cómo modelar y controlar plataformas aéreas de pequeña envergadura. Y, por otro, el estudio sobre el empleo de técnicas heurísticas de optimización multi-objetivo para aplicar en el proceso de parametrización de modelos y controladores en micro-aeronaves no tripuladas. Se obtienen como resultado principal una serie de herramientas que permiten prescindir de experimentos en túneles de viento o de sensórica de alto coste, pasando directamente a la utilización de datos de vuelo experimental en la identificación paramétrica de modelos dinámicos. Además, se demuestra como la utilización de herramientas de optimización multi-objetivo en diferentes fases del desarrollo de controladores ayuda a aumentar el conocimiento sobre la plataforma a controlar y aumenta la fiabilidad y robustez de los controladores desarrollados, disminuyendo el riesgo de pasar de las fases previas del diseño a la validación en vuelo real. / [EN] This thesis presents the results of the research work carried out on the modelling and design of controllers for micro-unmanned aerial vehicles by means of multi-objective optimization techniques. Two main fields of study are present throughout it. On one hand, the study of how to model and control small aerial platforms. And, on the other, the study on the use of heuristic multi-objective optimization techniques to apply in the process of models and controllers parameterization in micro-unmanned aerial vehicles. The main result is a series of tools that make it possible manage without wind tunnel experiments or high-cost air-data sensors, going directly to the use of experimental flight data in the parametric identification of dynamic models. In addition, a demonstration is given on how the use of multi-objective optimization tools in different phases of controller development helps to increase knowledge about the platform to be controlled and increases the reliability and robustness of the controllers developed, reducing the risk of hoping from the initial design phases to validation in real flight. / Velasco Carrau, J. (2020). Unmanned Aerial Vehicles Modelling and Control Design. A Multi-Objective Optimization Approach [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/156034
192

Modelling and Real Deployment of C-ITS by Integrating Ground Vehicles and Unmanned Aerial Vehicles

Hadiwardoyo, Seilendria Ardityarama 27 March 2019 (has links)
[ES] Para proporcionar un entorno de tráfico vial más seguro y eficiente, los sistemas ITS o Sistemas Inteligentes de Transporte representan como una solución dotada de avances tecnológicos de vanguardia. La integración de elementos de transporte como automóviles junto con elementos de infraestructura como RoadSide Units (RSUs) ubicados a lo largo de la vía de comunicación permiten ofrecer un entorno de red conectado con múltiples servicios, incluida conectividad a Internet. Esta integración se conoce con el término C-ITS o Sistemas Inteligentes de Transporte Cooperativos. La conexión de automóviles con dispositivos de infraestructura permite crear redes vehiculares conectadas (V2X) vehículo a dispositivos, que ofrecen la posibilidad de nuevos despliegues en aplicaciones C-ITS como las relacionadas con la seguridad. Hoy en día, con el uso masivo de teléfonos inteligentes y debido a su flexibilidad y movilidad, existen varios esfuerzos para integrarlos con los automóviles. De hecho, con el soporte adecuado de unidad a bordo (OBU), los teléfonos inteligentes se pueden integrar perfectamente con las redes vehiculares, permitiendo a los conductores usar sus teléfonos inteligentes como dispositivos de bordo a que participan en los servicios C-ITS, con el objeto de mejorar la seguridad al volante entre otros. Tópico este, que hoy día representa un tema relevante de investigación. Un problema a solucionar surge cuando las comunicaciones vehiculares sufren inferencias y bloqueos de la señal debidos al escenario. De hecho, el impacto de la vegetación y los edificios, ya sea en áreas urbanas y rurales, puede afectar a la calidad de la señal. Algunas estrategias para mejorar la comunicación vehicular en este tipo de entorno consiste en desplegar UAVs o vehículo aéreo no tripulado (drones), los cuales actúan como enlaces de comunicación entre vehículos. De hecho, UAV ofrece importantes ventajas de implementación, ya que tienen una gran flexibilidad en términos de movilidad, además de un rango de comunicaciones mejorado. Para evaluar la calidad de las comunicaciones, debe realizarse un conjunto de mediciones. Sin embargo, debido al costo de las implementaciones reales de UAV y automóviles, los experimentos reales podrían no ser factibles para actividades de investigación con recursos limitados. Por lo tanto, los experimentos de simulación se convierten en la opción preferida para evaluar las comunicaciones entre UAV y vehículos terrestres. Lograr modelos de propagación de señal correctos y representativos que puedan importarse a los entornos de simulación se vuelve crucial para obtener un mayor grado de realismo, especialmente para simulaciones que involucran el movimiento de UAVs en cualquier lugar del espacio 3D. En particular, la información de elevación del terreno debe tenerse en cuenta al intentar caracterizar los efectos de propagación de la señal. En esta tesis doctoral, proponemos nuevos enfoques tanto teóricos como empíricos para estudiar la integración de redes vehiculares que combinan automóviles y UAVs, así mismo el impacto del entorno en la calidad de las comunicaciones. Esta tesis presenta una aplicación, una metodología de medición en escenarios reales y un nuevo modelo de simulación, los cuales contribuyen a modelar, desarrollar e implementar servicios C-ITS. Más específicamente, proponemos un modelo de simulación que tiene en cuenta las características del terreno en 3D, para lograr resultados confiables de comunicación entre UAV y vehículos terrestres. / [CA] Per a proporcionar un entorn de trànsit viari més segur i eficient, els sistemes ITS o Sistemes Intel·ligents de Transport representen una solució dotada d'avanços tecnològics d'avantguarda. La integració d'elements de transport com auto móvils juntament amb elements d'infraestructura com Road Side Units (RSUs) situats al llarg de lav via de comunicació permeten oferir un entorn de xarxa connectat amb multiples serveis, inclusa connectivitat a Internet. Aquesta integració es connex amb el terme C-ITS o Sistemes Intel·ligents de Transport Cooperatius , com ara els automòbils, amb elements d'infraestructura, com ara les road side units (RSU) o pals situats al llarg de la carretera, per a aconseguir un entorn de xarxa que oferisca nous serveis a més de connectivitat a Internet. Aquesta integració s'expressa amb el terme C-ITS, o sistemes intel·ligents de transport cooperatius. La connexió d'automòbils amb dispositius d'infraestructura permet crear xarxes vehiculars connectades (V2X) vehicle a dispositiu, que ofreixen la possibilitat de nous desplegaments en aplicacions C-ITS, com ara les relacionades amb la seguretat. Avui dia, amb l'ús massiu dels telèfons intel·ligents, i a causa de la flexibilitat i mobilitat que presenten, es fan esforços per integrar-los amb els automòbils. De fet, amb el suport adequat d'unitat a bord (OBU), els telèfons intel·ligents es poden integrar perfectament amb les xarxes vehiculars, permetent als conductors usar els seus telèfons intel·ligents com a dispositius per a participar en els serveis de C-ITS, a fi de millorar la seguretat al volant entre altres. Tòpic est, que hui dia representa un tema rellevant d'investigació. Un problema a solucionar sorgeix quan les comunicacions vehiculars ateixen inferències i bloquejos del senyal deguts a l'escenari. De fet, l'impacte de la vegetació i els edificis, tant en àrees urbanes com rurals, pot afectar la qualitat del senyal. Algunes estratègies de millorar la comunicació vehicular en aquest tipus d'entorn consisteix a desplegar UAVs o vehicles aeris no tripulats (drones), els quals actuen com a enllaços de comunicació entre vehicles. De fet, l'ús d'UAVs ofereix importants avantatges d'implementació, ja que tenen una gran flexibilitat en termes de mobilitat, a més d'un rang de comunicacions millorat. Per a avaluar la qualitat de les comunicacions, s'han de realitzar mesures en escenaris reals. No obstant això, a causa del cost de les implementacions i desplegaments reals d'UAV i el seu ús combinat amb vehicles, aquests experiments reals podrien no ser factibles per a activitats d'investigació amb recursos limitats. Per tant, la metodologia basada en simulació es converteixen en l'opció preferida entre els investigadors per a avaluar les comunicacions entre UAV i vehicles terrestres. Aconseguir models de propagació de senyal correctes i representatius que puguen importar-se als entorns de simulació resulta crucial per a obtenir un major grau de realisme, especialment per a simulacions que involucren el moviment d'UAV en qualsevol lloc de l'espai 3D. En particular, cal tenir en compte la informació d'elevació del terreny per a intentar caracteritzar els efectes de propagació del senyal. En aquesta tesi doctoral proposem enfocaments tant teòrics com empírics per a estudiar la integració de xarxes vehiculars que combinen automòbils i UAV, així com l'impacte de l'entorn en la qualitat de les comunicacions. Aquesta tesi presenta una aplicació, una metodología de mesurament en escenaris reals i un nou model de simulació, els quals contribueixen a modelar, desenvolupar i implementar serveis C-ITS. Més específicament, proposem un model de simulació que té en compte les característiques del terreny en 3D, per a aconseguir resultats fiables de comunicació entre UAV i vehicles terrestres. / [EN] To provide a safer road traffic environment and make it more convenient, Intelligent Transport Systems (ITSs) are proposed as a solution endowed with cutting-edge technological advances. The integration of transportation elements like cars together with infrastructure elements like Road Side Units to achieve a networking environment offers new services in addition to Internet connectivity. This integration comes under the term Cooperative Intelligent Transport System (C-ITS). Connecting cars with surrounding devices forming vehicular networks in Vehicle-to-Everything (V2X) open new deployments in C-ITS applications like safety-related ones. With the massive use of smartphones nowadays, and due to their flexibility and mobility, several efforts exist to integrate them with cars. In fact, with the right support from the vehicle's On-Board Unit (OBU), smartphones can be seamlessly integrated with vehicular networks. Hence, drivers can use their smartphones as a device to participate in C-ITS services for safety purposes, among others, which is a quite interesting research topic. A significant problem arises when vehicular communications face signal obstructions caused by the environment. In fact, the impact of vegetation and buildings, whether in urban and rural areas, can result in a lower signal quality. One way to enhance vehicular communication networks is to deploy Unmanned Aerial Vehicles (UAVs) to act as relays for communication between cars, or ground vehicles. In fact, UAVs offer important deployment advantages, as they offer great flexibility in terms of mobility, in addition to an enhanced communications range. To assess the quality of the communications, a set of measurements must take place. However, due to the cost of real deployments of UAVs and cars, real experiments might not be feasible for research activities with limited resources. Hence, simulation experiments become the preferred option to assess UAV-to- car communications. Achieving correct and representative signal propagation models that can be imported to the simulation environments becomes crucial to obtain a higher degree of realism, especially for simulations involving UAVs moving anywhere throughout the 3D space. In particular, terrain elevation information must be taken into account when attempting to characterize signal propagation effects. In this research work, we propose both theoretical and empirical approaches to study the integration of vehicular networks combining cars and UAVs, and we study the impact of the surrounding environment on the communications quality. An application, a measurement framework, and a simulation model are presented in this thesis in an effort to model, develop, and deploy C-ITS services. More specifically, we propose a simulation model that takes into account 3D terrain features to achieve reliable UAV-to-car communication results. / I want to thank the Spanish government through the Ministry of Economy and Competitiveness (MINECO) and the European Union Commission through the European Social Fund (ESF) for co-financing and granting me the fellowship to fund my studies in Spain and my research stay in Russia. In addition, I would to thank the National Institute of Informatics for granting me the internship fund and the Japanese government through the Japan Society for the Promotion of Science (JSPS) for supporting my research work in Japan. / Hadiwardoyo, SA. (2019). Modelling and Real Deployment of C-ITS by Integrating Ground Vehicles and Unmanned Aerial Vehicles [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118796
193

Guidance Laws for Engagement Time Control

Abdul Saleem, P K January 2016 (has links) (PDF)
Autonomous aerial vehicles like missiles and unmanned aerial vehicles (UAVs) have attracted various military and civilian applications. The primary guidance objective of any autonomous vehicle is to reach the desired destination point (target or waypoint). However, many practical engagements impose additional constraints like minimum control effort, a desired final velocity direction or a predefined engagement time. This thesis addresses engagement time constrained guidance problems pertaining to missiles and UAVs. The first part of the thesis discusses a nonlinear guidance law for impact time control of missiles against stationary target. The guidance law is designed with a particular choice of missile heading error variation as a function of ran to-target. The proposed heading error variation leads to an exact closed-form expression for the impact time. controlling the impact time, a closed-form relation is derived relating the control parameter to the desired impact time. A new Lyapunov based guidance law with a monotonically decreasing lateral acceleration is proposed in the next part of the thesis. An exact expression for impact time with minimum and maximum achievable impact times is derived. A control parameter is proposed with a closed-form relationship to the desired impact time. Using the concept of predicted interception point, the two guidance laws are extended for impact time control against non-maneuvering and moving targets. The proposed guidance models are extended to three-dimensional engagements by deducing yaw and pitch lateral accelerations satisfying the desired heading error profile. Extensive simulation studies are carried out for single missile and salvo attack scenarios. The last part of the thesis presents a guidance methodology governing the arrival time of a UAV at a waypoint. A specific arrival angle is considered as an additional constraint. The arrival constraints are satisfied by varying the navigation gain of the proportional navigation guidance law. The methodology is applied for simultaneous and sequential arrival of UAVs at a waypoint.
194

A novel approach to the control of quad-rotor helicopters using fuzzy-neural networks

Poyi, Gwangtim Timothy January 2014 (has links)
Quad-rotor helicopters are agile aircraft which are lifted and propelled by four rotors. Unlike traditional helicopters, they do not require a tail-rotor to control yaw, but can use four smaller fixed-pitch rotors. However, without an intelligent control system it is very difficult for a human to successfully fly and manoeuvre such a vehicle. Thus, most of recent research has focused on small unmanned aerial vehicles, such that advanced embedded control systems could be developed to control these aircrafts. Vehicles of this nature are very useful when it comes to situations that require unmanned operations, for instance performing tasks in dangerous and/or inaccessible environments that could put human lives at risk. This research demonstrates a consistent way of developing a robust adaptive controller for quad-rotor helicopters, using fuzzy-neural networks; creating an intelligent system that is able to monitor and control the non-linear multi-variable flying states of the quad-rotor, enabling it to adapt to the changing environmental situations and learn from past missions. Firstly, an analytical dynamic model of the quad-rotor helicopter was developed and simulated using Matlab/Simulink software, where the behaviour of the quad-rotor helicopter was assessed due to voltage excitation. Secondly, a 3-D model with the same parameter values as that of the analytical dynamic model was developed using Solidworks software. Computational Fluid Dynamics (CFD) was then used to simulate and analyse the effects of the external disturbance on the control and performance of the quad-rotor helicopter. Verification and validation of the two models were carried out by comparing the simulation results with real flight experiment results. The need for more reliable and accurate simulation data led to the development of a neural network error compensation system, which was embedded in the simulation system to correct the minor discrepancies found between the simulation and experiment results. Data obtained from the simulations were then used to train a fuzzy-neural system, made up of a hierarchy of controllers to control the attitude and position of the quad-rotor helicopter. The success of the project was measured against the quad-rotor’s ability to adapt to wind speeds of different magnitudes and directions by re-arranging the speeds of the rotors to compensate for any disturbance. From the simulation results, the fuzzy-neural controller is sufficient to achieve attitude and position control of the quad-rotor helicopter in different weather conditions, paving way for future real time applications.
195

The effective use of multiple unmanned aerial vehicles in surface search and control

Berner, Robert Andrew 12 1900 (has links)
Approved for public release; distribution in unlimited. / This study analyzes the effective use of multiple unmanned aerial vehicles (UAVs) for the Navy's Surface Search and Control mission. In the future, the Navy hopes to leverage the capabilities of a family of UAVs to provide increased situational awareness in the maritime environment. This family of UAVs includes a Broad Area Maritime Surveillance (BAMS) UAV and Vertical Take-Off UAVs (VTUAVs). The concepts of operations for how these UAVs work together have yet to be determined. Questions exist about the best number of UAVs, types of UAVs, and tactics that will provide increased capabilities. Through modeling and agent-based simulation, this study explores the validity of future UAV requirements and provides insights into the effectiveness of different UAV combinations. For the scenarios modeled, the best UAV combination is BAMS plus two or three VTUAVs. However, analysis shows that small numbers of VTUAVs can perform as well without BAMS as they do with BAMS. For combinations with multiple UAVs, BAMS proves to be a valuable asset that not only reduces the number of missed classifications, but greatly improves the amount of coverage on all contacts in the maritime environment. BAMS tactics have less effect than the mere presence of BAMS itself. / Lieutenant, United States Navy
196

Autonomous landing system for a UAV / Autonomous landing system for a Unmanned Aerial Vehicle

Lizarraga, Mariano I. 03 1900 (has links)
Approved for public release, distribution is unlimited / This thesis is part of an ongoing research conducted at the Naval Postgraduate School to achieve the autonomous shipboard landing of Unmanned Aerial Vehicles (UAV). Two main problems are addressed in this thesis. The first is to establish communication between the UAV's ground station and the Autonomous Landing Flight Control Computer effectively. The second addresses the design and implementation of an autonomous landing controller using classical control techniques. Device drivers for the sensors and the communications protocol were developed in ANSI C. The overall system was implemented in a PC104 computer running a real-time operating system developed by The Mathworks, Inc. Computer and hardware in the loop (HIL) simulation, as well as ground test results show the feasibility of the algorithm proposed here. Flight tests are scheduled to be performed in the near future. / Lieutenant Junior Grade, Mexican Navy
197

Tactical decision aid for unmanned vehicles in maritime missions

Duhan, Daniel P. 03 1900 (has links)
Approved for public release; distribution is unlimited / An increasing number of unmanned vehicles (UV) are being incorporated into maritime operations as organic elements of Expeditionary and Carrier Strike Groups for development of the recognized maritime picture. This thesis develops an analytically-based planning aid for allocating UVs to missions. Inputs include the inventory of UVs, sensors, their performance parameters, and operational scenarios. Operations are broken into mission critical functions: detection, identification, and collection. The model output assigns aggregated packages of UVs and sensors to one of the three functions within named areas of interest. A spreadsheet model uses conservative time-speed-distance calculations, and simplified mathematical models from search theory and queuing theory, to calculate measures of performance for possible assignments of UVs to missions. The spreadsheet model generates a matrix as input to a linear integer program assignment model which finds the best assignment of UVs to missions based on the user inputs and simplified models. The results provide the mission planner with quantitatively-based recommendations for unmanned vehicle mission tasking in challenging scenarios. / Lieutenant, United States Navy
198

Simulations of diversity techniques for urban UAV data links

Poh, Seng Cheong Telly 12 1900 (has links)
Approved for public release, distribution is unlimited / In urbanized terrain, radiowave propagation is subjected to fading on large-scales and smallscales that would impede on the quality and reliability of data link transmission. This would have implications in many military applications. One example is the performance of unmanned aerial vehicle (UAV) data and communications links in complex urban environments. The purpose of this research is to study the effectiveness of diversity techniques on the performance of urban UAV data and communications links. The techniques investigated were spatial, polarization, and angle diversities. The ray tracing software, Urbana Wireless Toolset, was used in the modeling and simulation process. The various combinations of diversity techniques were simulated using a realistic urban city model. For the few transmit-receive geometries examined, it was found that angle diversity with a directive antenna provided the greatest increase in signal strength relative to the no diversity case. / Civilian, Singapore DOD
199

Theory and Applications for Control and Motion Planning of Aerial Robots in Physical Interaction with particular focus on Tethered Aerial Vehicles / Commande et Planification de Mouvement pour des Robots Aériens en Interaction Physique avec leur Environnement : Théorie et Applications

Tognon, Marco 13 July 2018 (has links)
Cette thèse se concentre sur les robots aériens autonomes qui interagissent avec l’environnement et en particulier sur la conception de nouvelles méthodes de commande et de planification de mouvement pour tels systèmes. De nos jours, les véhicules aériens autonomes sont de plus en plus utilisés dans des nombreux domaines d’application, mais ils viennent utilisés surtout comme des simples capteurs. Au vu de ça, les défis majeurs dans le domaine de l’interaction physique aérienne, est aujourd’hui d’aller au-delà de cette application limitée, et d’exploiter entièrement les capacités des robots aériens afin d’interagir avec l’environnement. Dans le but de réaliser cet objectif, cette thèse considère l’analyse d’une classe spécifique de systèmes aériens interagissant avec l’environnement : les véhicules aériens attachés avec des câbles ou des bars. Ce travail se concentre sur l’analyse formelle et minutieuse de véhicules aériens attachés, en allant du contrôle et l’évaluation d’état à la planification du mouvement. Nous avons examiné notamment la platitude différentielle du système, trouvant deux sorties plate possibles qui révèlent des nouvelles capacités de tel système pour l’interaction physiques. En plus, poussé par l’intérêt pour l’interaction physique aérienne d’A à Z, nous avons abordés des problèmes supplémentaires liés à la conception, au contrôle et à la planification du mouvement pour des manipulateurs aériens. / This thesis focuses on the study of autonomous aerial robots interacting with the surrounding environment, and in particular on the design of new control and motion planning methods for such systems. Nowadays, autonomous aerial vehicles are extensively employed in many fields of application but mostly as autonomously moving sensors. On the other hand, in the recent field of aerial physical interaction, the goal is to go beyond sensing-only applications and fully exploit the aerial robots capabilities in order to interact with the environment. With the aim of achieving this goal, this thesis considers the analysis of a particular class of aerial robots interacting with the environment: tethered aerial vehicles. This work focuses on the thorough formal analysis of tethered aerial vehicles ranging from control and state estimation to motion planning. In particular, the differential flatness property of the system is investigated, finding two possible flat outputs that reveal new capabilities of such system for the physical interaction. The theoretical results were finally employed to solve the challenging problem of landing and takeoff on/from a sloped surface. In addition, moved by the interest on aerial physical interaction from A to Z, we addressed supplementary problems related to the design, control and motion planning for aerial manipulators.
200

Análise da disseminação de dados em redes FANET / Analysis of data dissemination in FANET networks

Pires, Rayner de Melo 22 March 2019 (has links)
Os veículos aéreos não tripulados (VANTs) vêm apresentando destaque crescente no setor aeronáutico mundial, tanto no desenvolvimento dos mesmos quanto nas diferentes aplicações desses veículos, devido ao seu grande potencial de utilização. Em muitas aplicações, a utilização de múltiplos VANTs apresenta várias vantagens sobre um VANT sozinho. No entanto, o agrupamento pode experimentar problemas inerentes à comunicação sem fio, podendo originar novos problemas como inviabilizar a coordenação e a execução cooperativa de uma missão, por exemplo. Em um cenário não colaborativo, VANTs com algum nível de autonomia e que partilhem do mesmo espaço aéreo também deverão ser capazes de trocar informações entre si, principalmente informações sobre posicionamento e rota de voo, e também estarão suscetíveis aos distúrbios da comunicação sem fio. Para balancear as vantagens e as desvantagens, esses robôs precisarão se comunicar cientes das restrições e utilizando a rede de modo otimizado, por meio da aplicação de algoritmos que equilibrem adequadamente técnicas de difusão de informações e técnicas de mitigação de retransmissões. Neste projeto de doutorado foi feita a investigação sobre o método de disseminação de dados, por meio de broadcasting, em uma rede móvel ad hoc entre VANTs, denominada Flying Ad hoc Networks (FANETs). FANETs são um novo paradigma que pode superar as restrições de missões de um único VANT. As FANETs são compostas por vários VANTs que cooperam para realizar alguma missão crítica (por exemplo, uma missão de busca e resgate). Para manter a coordenação, todos os VANTs devem continuamente enviar ou retransmitir mensagens através do canal sem fio para garantir que todos os membros da rede saibam o estado da rede. Geralmente, a troca de dados necessários para manter a sincronização da missão exige o uso de broadcast para que todos os membros da rede possam recebê-los. No entanto, quando essa troca de mensagens é feita arbitrariamente, isso pode causar o problema da tempestade de broadcast (BSP), levando o meio sem fio a um estado inoperante. Apesar de alguns esforços relatados na literatura para o provimento de técnicas gerais de mitigação do problema BSP, o desafio de agregar novas informações ou conhecimento a receptores que estejam voando, ao invés de apenas espalhar os dados na rede, tem recebido menos atenção. Nesta tese, além de demonstrar que o problema BSP intensifica a contenção de rede à medida que o número de VANTs aumenta, também foi criado um método que se prova mais eficiente que os existentes até então. Tal técnica, denominada de Algoritmo Baseado em Vizinhança Dinâmica para o Problema da Tempestade de Broadcast (DNA-BSP), foi desenvolvida e validada com base em experimentos de mundo real e em simulações computacionais. Ele pode mitigar o problema BSP, que é um desafio real nas FANETs, reduzindo a redundância de mensagens em mais de 98% e tornando a entrega de mensagens 99,5% mais rápida do que no cenário de flooding, superando as técnicas gerais de mitigação do BSP quando aplicado em FANETs. Os resultados detalhados neste texto também poderão orientar trabalhos futuros ao fornecer informações úteis para o planejamento e otimização de redes ad hoc móveis para VANTs. / Unmanned aerial vehicles (UAVs) have been showing increasing notoriety in the global aviation scene, both on their development and on the different applications for these vehicles, due to their high potential of use. In many applications, using multiple UAVs has several advantages over a single UAV. However, a cluster of UAVs may experience issues inherent to wireless communication, which may lead to new complications such as making mission coordination and cooperative execution impractible. In a non-collaborative scenario, UAVs with some level of autonomy which share the same airspace should also be able to exchange information among themselves, especially positioning and flight path information, and may also be susceptible to wireless communication disturbances. These robots have to use the network fairly and should communicate under restrictions, appropriately adjusting techniques that disseminate information and that mitigate broadcasts, in order to balance the advantages and disadvantages of being a group. This Ph.D. research investigates how broadcasting is used to disseminate data throughout ad hoc mobile networks between UAVs called Flying Ad hoc Networks (FANETs). FANETs are a new paradigm that can overcome the mission constraints of single UAVs. FANETs are composed of several UAVs that cooperate to accomplish a critical mission (e.g., hazardous area monitoring). Aiming to maintain UAVs coordination, all aircraft must continuously retransmit or relay messages through the wireless channel to assure that every member knows the FANET status. However, when this message exchange is done blindly, it may cause the broadcast storm problem (BSP), leading the wireless medium to a dysfunctional state. Despite some efforts reported in the literature for providing general techniques to mitigate the broadcast storm problem, the challenge of aggregating new information or knowledge to receivers, instead of just spreading the information in the network, has received less attention. In this research, it has been proved that the broadcast storm problem causes network contention as the number of UAVs increases, and the innovative Dynamic Neighborhood-based Algorithm for the Broadcast Storm Problem (DNA-BSP) has been provided as a countermeasure, which was developed and validated based on computer simulations and outdoor experiments. It can mitigate the broadcast storm problem, which is a real challenge in FANETs, reducing message redundancy in more than 98%, and making message delivery 99,5% faster than in flooding scenario, outperforming classical broadcast storm mitigation techniques when applied in FANETs. Our detailed results can also guide future researches and provide useful insights for engineers planning and optimizing mission-critical mobile ad hoc network with support of UAVs.

Page generated in 0.0522 seconds