• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 27
  • 10
  • 9
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 192
  • 81
  • 78
  • 76
  • 56
  • 53
  • 48
  • 39
  • 30
  • 30
  • 30
  • 30
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Thermal ALD of Cu via Reduction of CuxO films for the Advanced Metallization in Spintronic and ULSI Interconnect Systems

Mueller, Steve, Waechtler, Thomas, Hofmann, Lutz, Tuchscherer, Andre, Mothes, Robert, Gordan, Ovidiu, Lehmann, Daniel, Haidu, Francisc, Ogiewa, Marcel, Gerlich, Lukas, Ding, Shao-Feng, Schulz, Stefan E., Gessner, Thomas, Lang, Heinrich, Zahn, Dietrich R.T., Qu, Xin-Ping January 2011 (has links)
In this work, an approach for copper atomic layer deposition (ALD) via reduction of CuxO films was investigated regarding applications in ULSI interconnects, like Cu seed layers directly grown on diffusion barriers (e. g. TaN) or possible liner materials (e. g. Ru or Ni) as well as non-ferromagnetic spacer layers between ferromagnetic films in GMR sensor elements, like Ni or Co. The thermal CuxO ALD process is based on the Cu (I) β-diketonate precursor [(nBu3P)2Cu(acac)] and a mixture of water vapor and oxygen ("wet O2") as co-reactant at temperatures between 100 and 130 °C. Highly efficient conversions of the CuxO to metallic Cu films are realized by a vapor phase treatment with formic acid (HCOOH), especially on Ru substrates. Electrochemical deposition (ECD) experiments on Cu ALD seed / Ru liner stacks in typical interconnect patterns are showing nearly perfectly filling behavior. For improving the HCOOH reduction on arbitrary substrates, a catalytic amount of Ru was successful introduced into the CuxO films during the ALD with a precursor mixture of the Cu (I) β-diketonate and an organometallic Ru precursor. Furthermore, molecular and atomic hydrogen were studied as promising alternative reducing agents.
152

Atomic Layer Deposition and Microanalysis of Ultrathin Layers

Melzer, Marcel 17 October 2012 (has links)
Carbon nanotubes (CNTs) are a highly promising material for future interconnects. It is expected that the decoration of CNTs with Cu particles or also the filling of the interspaces between the CNTs with Cu instead of the currently used SiO2 can enhance the performance of CNT-based interconnects. Due to the high aspect ratio of CNTs an appropriate deposition technique has to be applied which is able to coat such structures uniformly. The current work is therefore considered with thermal atomic layer deposition (ALD) of CuxO from the liquid Cu (I) β-diketonate precursor [(nBu3P)2Cu(acac)] and wet oxygen at 135°C on variously pretreated multi-walled CNTs. The different in-situ pre-treatments of the CNTs with oxygen, water vapor and wet oxygen in a temperature range from 100 to 300°C at a pressure of 1.33 mbar have been carried out prior to the ALD to enable uniform nucleation on the otherwise chemical inert CNT surface. The reduction of the CuxO as well as the filling of the space between the CNTs is not part of this work. Variations of the oxidation temperature as well as the oxidation agents resulted in different growth modes of the CuxO. An oxidation with wet oxygen at 300°C yielded in a partially layer like growth of the CuxO. It is expected that this growth mode is connected to a partial destruction of the outer CNT shell due to the oxidation. However, the damage introduced to the CNTs was not high enough to be detected by Raman spectroscopy. For all other investigated pretreatments, the formation of nanoparticles (NPs) was observed by electron microscopy. This formation of CuxO NPs can be explained by the metal-tube-interaction. Furthermore, the NPs probably decorate defect sites of the CNTs due to their higher reactivity. Additionally, analysis of energy-dispersive X-ray spectroscopy and spectroscopic ellipsometry measurements suggests that the used precursor [(nBu3P)2Cu(acac)] requires reactive oxygen surface groups for initiating the ALD growth. The observation of layer-like growth of CuxO on CNTs pretreated with wet oxygen at 300°C appears promising for deposition processes of Cu seed layers on CNTs. However, more aggressive pretreatments at higher temperatures or with more aggressive oxidation agents could be required to enable layer like growth on the entire CNTs.
153

Growth Monitoring of Ultrathin Copper and Copper Oxide Films Deposited by Atomic Layer Deposition

Dhakal, Dileep 16 December 2016 (has links)
Atomic layer deposition (ALD) of copper films is getting enormous interest. Ultrathin Cu films are applied as the seed layer for electrochemical deposition (ECD) of copper in interconnect circuits and as the non-magnetic material for the realization of giant magnetoresistance (GMR) sensors. Particularly, Co/Cu multi-layered structures require sub 4.0 nm copper film thickness for obtaining strong GMR effects. The physical vapor deposition process for the deposition of the copper seed layers are prone to non-conformal coating and poor step coverage on side-walls and bottoms of trenches and vias, and presence of overhanging structures. This may cause failure of interconnections due to formation of voids after copper ECD. ALD is the most suitable technology for the deposition of conformal seed layers for the subsequent ECD in very high aspect ratio structures, also for the technology nodes below 20 nm. Surface chemistry during the ALD of oxides is quite well studied. However, surface chemistry during the ALD of pure metal is rather immature. This knowledge is necessary to optimize the process parameters, synthesize better precursors systems, and enhance the knowledge of existing metal ALD processes. The major goal of this work is to understand the surface chemistry of the used precursor and study the growth of ultrathin copper films using in-situ X-ray photoelectron spectroscopy (XPS). Copper films are deposited by ALD using the precursor mixture consisting of 99 mol% [(nBu3P)2Cu(acac)], as copper precursor and 1 mol% of Ru(η5 C7H11)(η5 C5H4SiMe3), as ruthenium precursor. The purpose in having catalytic amount of ruthenium precursor is to obtain the Ru doped Cu2O layers for subsequent reduction with formic acid at temperatures below 150 °C on arbitrary substrates. Two different approaches for the growth of ultrathin copper films have been studied in this dissertation. In the first approach, direct thermal ALD of copper has been studied by using H2 as co-reactant on Co as catalytic substrate. In the second approach, Ru-doped Cu2O is deposited by ALD using wet-O2 as co-reactant on SiO2 as non-catalytic substrate. The Ru-doped Cu2O is successfully reduced by using either formic acid or carbon-monoxide on SiO2. / Atomlagenabscheidung (ALD) von Kupfer steht im Fokus der ALD Gemeinschaft. Ultradünne Kupferschichten können als Keimschicht für die elektrochemische Abscheidung (ECD) von Kupfer in der Verbindungstechnologie eingesetzt werden. Sie können ebenfalls für Sensoren, welche auf den Effekt des Riesenmagnetowiderstandes (GMR) basieren, als nicht-ferromagnetische Zwischenschicht verwendet werden. Insbesondere Multischichtstrukturen aus ferromagnetische Kobalt und Kupfer erfordern Schichtdicken von weniger als 4,0 nm, um einen starken GMR-Effekt zu gewährleisten. Das derzeit verwendete physikalische Dampfabscheidungsverfahren für ultradünne Kupferschichten, ist besonders anfällig für eine nicht-konforme Abscheidung an den Seitenwänden und Böden von Strukturen mit hohem Aspektverhältnis. Des Weiteren kann es zur Bildung von Löchern und überhängenden Strukturen kommen, welche bei der anschließenden Kupfer ECD zu Kontaktlücken (Voids) führen können. Für die Abscheidung einer Kupfer-Keimschicht ist die ALD besonders gut geeignet, da sie es ermöglicht, ultradünne konforme Schichten auf strukturierten Oberflächen mit hohem Aspektverhältnis abzuscheiden. Dies macht sie zu einer der Schlüsseltechnologien für Struckturgrößen unter 20 nm. Im Gegensatz zur Oberflächenchemie rein metallischer ALD sind die Oberflächenreaktionen für oxidische ALD Schichten sehr gut untersucht. Die Kenntnis der Oberflächenchemie während eines ALD Prozesses ist essenziel für die Bestimmung von wichtigen Prozessparametern als auch für die Verbesserung der Präkursorsynthese ansich. Diese Arbeit beschäftigt sich mit der Untersuchung der Oberflächenchemie und Charakterisierung des Wachstums von ultradünnen Metall-Cu-Schichten mittels In-situ XPS, welche eines indirekten (Oxid) bzw. direkten Metall-ALD Prozesses abgeschieden werden, wobei die Kupfer-Oxidschichten im Anschluss einem Reduktionsprozess unterworfen werden. Hierfür wird eine Präkursormischung bestehend aus 99 mol% [(nBu3P)2Cu(acac)] und 1 mol% [Ru(η5 C7H11)(η5-C5H4SiMe3)] verwendet. Die katalytische Menge an Ru, welche in der entstehenden Cu2O Schicht verbleibt, erhöht den Effekt der Reduktion der Cu2O Schicht auf beliebigen Substraten mit Ameinsäure bei Wafertemperaturen unter 150 °C. In einem ersten Schritt wird ein direkter thermisches Kupfer ALD-Prozess, unter Verwendung von molekularem Wasserstoff als Coreaktant, auf einem Kobalt-Substrat untersucht. In einem zweiten Schritt wird ein indirekter thermischer Cu2O-ALD-Prozess, unter gleichzeitiger Verwendung von Sauerstoff und Wasserdampf als Coreaktant, mit anschließender Reduktion durch Ameinsäure oder Kohlenstoffmonoxid zu Kupfer auf den gleichen Substraten betrachtet. Die vorliegende Arbeit beschreibt das Wachstum von ultradünnen und kontinuierlichen Kupfer-Schichten mittels thermischer ALD auf inerten- SiO2 und reaktiven Kobalt-Substraten.
154

Ab-initio studies of reactions to functionalize carbon nanotubes

Förster, Anja 06 September 2012 (has links)
Since the rediscovery of carbon nanotubes (CNTs) due to the publication of Sumio Iijima's article Helical microtubules of graphitic carbon in the magazine Nature in 1991 the interest in carbon nanotubes has rapidly increased. This bachelor thesis also deals with this popular material with the aim to functionalize CNTs for further uses in the microelectronic industry. A promising approach is the functionalization of the CNTs with metal nanoparticles or metal films. To achieve this, one can perform an atomic layer deposition (ALD) on CNTs. In the present work the Trimethylaluminum (TMA) ALD is the chosen process for the functionalization of the CNTs, which will be studied here. Since the available knowledge on the CNT-functionalization by gas phase reactions is very limited, a theoretical study of possible reaction pathways is necessary. Those studies are carried out with two modern quantumchemical programs, Turbomole and DMol³, which are described together with an introduction into Density Functional Theory, as well as an introduction of CNTs and the ALD process. A basic model of a CNT with a Single Vacancy defect, which had been selected according to the demands of the studies, is introduced. Because the TMA ALD process requires hydroxyl groups as its starting point, not only is the performance of a TMA ALD cycle on a CNT studied, but also reactions which result in the CNTs owning of hydroxyl groups. Consequently, this bachelor thesis will focus on two di erent aspects: The performance of one TMA ALD cycle and the study of possible educts for the TMA ALD process. This study of the educts includes possible structures which can be formed when a CNT comes into contact with air.:Abstract 1. Introduction 2. Carbon Nanotubes and the Atomic Layer Deposition 2.1. Carbon Nanotubes 2.1.1. Graphene and Its Relation to Carbon Nanotubes 2.1.2. Classi cations 2.1.3. Defects 2.2. Atomic Layer Deposition 2.2.1. Introduction to Atomic Layer Deposition 2.2.2. Trimethylaluminum Atomic Layer Deposition 3. Theoretical Background 3.1. The Schrödinger Equation and the Variational Principle 3.2. Electron Density 3.2.1. The Wave Function 3.2.2. The Electron Density 3.3. The Hohenberg-Kohn Theorems 3.3.1. The First Hohenberg-Kohn Theorem 3.3.2. The Second Hohenberg-Kohn Theorem 3.4. The Kohn-Sham Approach 4. Computational Details and the Model System 4.1. Model System 4.1.1. The Basic (5; 5)-CNT 4.1.2. Further Adjustments to the Basic (5; 5)-CNT 4.2. Computational Details 4.2.1. Materials Studio/Dmol³ 4.2.2. Turbomole 5. Results and Discussion 5.1. Educt Formation Reactions 5.1.1. Educts with Two Oxygen Atoms 5.1.2. Educts with Two Hydroxyl Groups and One Oxygen Atom 5.1.3. Educts with Two Hydroxyl Groups and Two Hydrogen Atoms 5.1.4. Educts with Four Hydroxyl Groups 5.1.5. Educts with Peroxy Groups 5.1.6. Summary - Educts 5.2. Performance of the First Trimethylaluminum Atomic Layer Deposition Cycle 5.2.1. The First Trimethylaluminum Atomic Layer Deposition Half Cycle 5.2.2. The Second Trimethylaluminum Atomic Layer Deposition Half Cycle 6. Summary and Outlook A. Appendix A.1. Note on the Multiplicity A.2. Note on the Computation Time A.3. Comparison between Dmol³ and Turbomole A.4. Tables of Energies for the Studied Educts in 5.1 A.5. Tables of Energies for the Study of the Trimethylaluminum Atomic Layer Deposition Cycle in 5.2 Bibliography Acknowledgment
155

Entwicklung und Charakterisierung eines Prozesses zur thermischen Atomlagenabscheidung von Ruthenium mit in-situ Messtechnik

Junige, Marcel 27 January 2011 (has links)
Ruthenium und sein elektrisch leitfähiges Rutheniumdioxid sind viel versprechende Kandidaten als Elektrodenmaterial in MIM (Metall-Isolator-Metall-)Kondensatoren mit Dielektrika hoher Permittivität der nächsten Generation von DRAM-Speichern, als Metall-Gate-Elektroden in p-Kanal-MOS-Transistoren mit Dielektrika hoher Permittivität, oder als Keimschicht für das direkte elektrochemische Abscheiden von Kupfer-Verbindungsleitungen. Die ALD (Atomic Layer Deposition) wächst Materiallagen mit weniger als einem Zehntel Nanometer Dicke, indem sie gasförmige Reaktanden abwechselnd, getrennt durch spülende Pulse, in die Reaktionskammer einleitet. Dadurch wird mit jeder zyklischen Wiederholung idealerweise selbstbeendender Gas-Festkörper-Reaktionen stets die gleiche Materialmenge abgeschieden, bis eine gewünschte Schichtdicke erreicht ist. Wie sich die Oberfläche aufgrund der Materialabscheidung während der ALD verändert, kann mit der in-situ SE (Spektroskopische Ellipsometrie) beobachtet werden. Die Ellipsometrie misst die Änderung eines Polarisationszustands bzgl. Amplitude und Phase, nachdem ein einfallender Lichtstrahl von einer (schichtbedeckten) Oberfläche reflektiert und/ oder durch diese transmittiert wurde. Die ellipsometrischen Daten stehen im direkten Zusammenhang mit optischen Materialparametern und sind somit physikalisch interpretierbar – oder sie werden in eindimensionale strukturelle Größen, wie die Schichtdicke übersetzt. In dieser Arbeit wurden Schichten aus Ruthenium und Rutheniumdioxid aus dem Präkursor ECPR, [(Ethylcyclopentadienyl)(Pyrrolyl)Ruthenium(II)], und molekularem Sauerstoff per ALD gewachsen. Die chemischen Teilreaktionen wurden während der ALD von Ruthenium und Rutheniumoxid auf frisch abgeschiedenen Schichtoberflächen per in-situ SE, on-site QMS (Quadrupol-Massenspektrometrie) und XPS (Röntgen-Photoelektronenspektroskopie) ohne Vakuumunterbrechung untersucht. Weiterhin wurden Experimente zum Schichtwachstum auf frisch abgeschiedenen Schichten sowie einer Ausgangssubstratoberfläche per in-situ und Echtzeit SE durchgeführt, wobei die folgenden Prozessparameter variiert wurden: die jeweilige Reaktanden Dosis, die Spülpulsdauern, die Substrattemperatur und der Prozessdruck.:1 Einleitung I Theoretischer Teil 2 Ruthenium in der Mikroelektronik 2.1 Eigenschaften 2.2 Verwendung 3 Atomlagenabscheidung 3.1 Definition 3.2 Ablauf 3.3 Hauptmerkmale 3.4 Weit verbreitete Irrtümer 3.5 Vorteile und Grenzen 4 Massenspektrometrie 4.1 Definition 4.2 Verwendung 4.3 Aufbau und Funktionsweise von Massenspektrometern 4.4 Massenspektrometrische Methodik 5 Ellipsometrie 5.1 Definition 5.2 Vorteile und Grenzen 5.3 Physikalische Grundlagen 5.4 Messprinzip 5.4.1 Bestimmen ellipsometrischer Rohdaten 5.4.2 Interpretieren ellipsometrischer Spektren 5.4.3 Optisches Modellieren II Praktischer Teil 6 Chemische Reaktionen bei der thermischen Atomlagenabscheidung von Ruthenium und Rutheniumoxid 6.1 Vorbemerkungen 6.2 Untersuchungsmethoden 6.3 Beobachtungen mit Auswertung 6.3.1 Prozessgasanalyse per Quadrupol-Massenspektrometrie 6.3.2 In-situ und Echtzeit Spektroskopische Ellipsometrie 6.3.3 Röntgen-Photoelektronenspektroskopie ohne Vakuumunterbrechung 6.4 Formulieren vermuteter Teilreaktionen für das Ru Schicht-auf-Schicht Wachstum 6.4.1 Sauerstoff-Puls 6.4.2 Präkursor (ECPR)-Puls 6.4.3 ALD-Zyklus 6.5 Schlussfolgerungen für die ALD von Rutheniumoxid 6.6 Zwischenfazit und Ausblick 7 Spektroskopische Ellipsometrie in-situ und in Echtzeit während der thermischen Atomlagenabscheidung 7.1 Vorbemerkungen 7.2 Datenaufnahme 7.2.1 Messtechnische Eckdaten 7.2.2 Echtzeit-Begriff bei der Atomlagenabscheidung 7.2.3 Nasschemisches Vorbehandeln zum Zwecke definierter Ausgangssubstrate 7.2.4 Temperieren der Substrate 7.3 Interpretieren ellipsometrischer Spektren 7.4 Optisches Modellieren zur Datenauswertung 7.5 Fehlerabschätzung 8 Prozessentwicklung der thermischen Atomlagenabscheidung von Ruthenium 8.1 Vorbemerkungen 8.2 Untersuchungsmethoden 8.2.1 Schichtherstellung 8.2.2 Schichtcharakterisierung 8.3 Kennlinien der thermischen Ru-ALD 8.3.1 Zyklenanzahl 8.3.2 ECPR-Puls 8.3.3 Sauerstoff-Puls 8.3.4 Spülpulse 8.3.5 Substrattemperatur 8.3.6 Prozessdruck 8.4 Formulieren einer optimierten ALD-Prozesssequenz 8.5 Schichteigenschaften 9 Zusammenfassung und Ausblick III Anhang A Theoretische Grundlagen verwendeter Messtechnik B Parametereinflüsse im monomolekularen Wachstumsmodell C Weitere Abbildungen / Ruthenium and its conductive dioxide are promising candidates as electrodes in MIM (metal-insulator-metal) capacitors with high-k dielectrics of next generation DRAM (dynamic random access memory) devices, as metal-gate electrodes in pMOS-Transistors with high-k dielectrics, and as seed layer for direct electrochemical plating of copper interconnects. ALD (atomic layer deposition) grows material layers with less than a tenth of a nanometer thickness, pulsing gaseous reactants alternately into the reaction chamber, separated by purging pulses. Hence, every cyclic recurrence of ideally self-limiting gas-solid reactions deposits a fixed material amount, until the desired film thickness is achieved. So, the surface’s chemical composition changes through material deposition during ALD, observable by in-situ SE (spectroscopic ellipsometry). Ellipsometry measures the polarization state’s change in amplitude and phase, reflecting an incident light beam from and/ or transmitting it through a (film covered) surface. The ellipsometric data can be directly related to optical material parameters and are thus physically interpretable – or they are translated into one-dimensional structural values, like film thickness. In this work, ruthenium and ruthenium dioxide films were grown from ECPR, [(ethylcyclopentadienyl)(pyrrolyl)ruthenium(II)], and molecular oxygen. Reaction mechanisms during the ALD of ruthenium and ruthenium dioxide were studied on the as-deposited film surface by in-situ SE, on-site QMS (quadrupole mass spectrometry), as well as XPS (x-ray photoelectron spectroscopy) without vacuum break. Additionally, film growth experiments were performed on the as-deposited film and the initial substrate surface by in-situ and real-time SE, varying the process parameters: reactant doses, purging times, substrate temperature and total pressure.:1 Einleitung I Theoretischer Teil 2 Ruthenium in der Mikroelektronik 2.1 Eigenschaften 2.2 Verwendung 3 Atomlagenabscheidung 3.1 Definition 3.2 Ablauf 3.3 Hauptmerkmale 3.4 Weit verbreitete Irrtümer 3.5 Vorteile und Grenzen 4 Massenspektrometrie 4.1 Definition 4.2 Verwendung 4.3 Aufbau und Funktionsweise von Massenspektrometern 4.4 Massenspektrometrische Methodik 5 Ellipsometrie 5.1 Definition 5.2 Vorteile und Grenzen 5.3 Physikalische Grundlagen 5.4 Messprinzip 5.4.1 Bestimmen ellipsometrischer Rohdaten 5.4.2 Interpretieren ellipsometrischer Spektren 5.4.3 Optisches Modellieren II Praktischer Teil 6 Chemische Reaktionen bei der thermischen Atomlagenabscheidung von Ruthenium und Rutheniumoxid 6.1 Vorbemerkungen 6.2 Untersuchungsmethoden 6.3 Beobachtungen mit Auswertung 6.3.1 Prozessgasanalyse per Quadrupol-Massenspektrometrie 6.3.2 In-situ und Echtzeit Spektroskopische Ellipsometrie 6.3.3 Röntgen-Photoelektronenspektroskopie ohne Vakuumunterbrechung 6.4 Formulieren vermuteter Teilreaktionen für das Ru Schicht-auf-Schicht Wachstum 6.4.1 Sauerstoff-Puls 6.4.2 Präkursor (ECPR)-Puls 6.4.3 ALD-Zyklus 6.5 Schlussfolgerungen für die ALD von Rutheniumoxid 6.6 Zwischenfazit und Ausblick 7 Spektroskopische Ellipsometrie in-situ und in Echtzeit während der thermischen Atomlagenabscheidung 7.1 Vorbemerkungen 7.2 Datenaufnahme 7.2.1 Messtechnische Eckdaten 7.2.2 Echtzeit-Begriff bei der Atomlagenabscheidung 7.2.3 Nasschemisches Vorbehandeln zum Zwecke definierter Ausgangssubstrate 7.2.4 Temperieren der Substrate 7.3 Interpretieren ellipsometrischer Spektren 7.4 Optisches Modellieren zur Datenauswertung 7.5 Fehlerabschätzung 8 Prozessentwicklung der thermischen Atomlagenabscheidung von Ruthenium 8.1 Vorbemerkungen 8.2 Untersuchungsmethoden 8.2.1 Schichtherstellung 8.2.2 Schichtcharakterisierung 8.3 Kennlinien der thermischen Ru-ALD 8.3.1 Zyklenanzahl 8.3.2 ECPR-Puls 8.3.3 Sauerstoff-Puls 8.3.4 Spülpulse 8.3.5 Substrattemperatur 8.3.6 Prozessdruck 8.4 Formulieren einer optimierten ALD-Prozesssequenz 8.5 Schichteigenschaften 9 Zusammenfassung und Ausblick III Anhang A Theoretische Grundlagen verwendeter Messtechnik B Parametereinflüsse im monomolekularen Wachstumsmodell C Weitere Abbildungen
156

Atomic layer deposition of Al²O³ on NF³-pre-treated graphene

Junige, Marcel, Oddoy, Tim, Yakimovab, Rositsa, Darakchievab, Vanya, Wenger, Christian, Lupinac, Grzegorz, Kitzmann, Julia, Albert, Matthias, Bartha, Johann W. 06 September 2019 (has links)
Graphene has been considered for a variety of applications including novel nanoelectronic device concepts. However, the deposition of ultra-thin high-k dielectrics on top of graphene has still been challenging due to graphene's lack of dangling bonds. The formation of large islands and leaky films has been observed resulting from a much delayed growth initiation. In order to address this issue, we tested a pre-treatment with NF³ instead of XeF² on CVD graphene as well as epitaxial graphene monolayers prior to the Atomic Layer Deposition (ALD) of Al²O³. All experiments were conducted in vacuo; i. e. the pristine graphene samples were exposed to NF³ in the same reactor immediately before applying 30 (TMA - H²O) ALD cycles and the samples were transferred between the ALD reactor and a surface analysis unit under high vacuum conditions. The ALD growth initiation was observed by in-situ real-time Spectroscopic Ellipsometry (irtSE) with a sampling rate above 1 Hz. The total amount of Al²O³ material deposited by the applied 30 ALD cycles was cross-checked by in-vacuo X-ray Photoelectron Spectroscopy (XPS). The Al²O³ morphology was determined by Atomic Force Microscopy (AFM). The presence of graphene and its defect status was examined by in-vacuo XPS and Raman Spectroscopy before and after the coating procedure, respectively.
157

Etude thermodynamique et élaboration de dépôts métalliques (W-N-C, Ti-N-C) par PEALD (Plasma Enhanced Atomic Layer Deposition) pour la réalisation d'électrodes de capacités Métal/Isolant/Métal dans les circuits intégrés.

Benaboud, R. 18 June 2009 (has links) (PDF)
Les capacités MIM (Métal/Isolant/Métal), au coeur de cette étude, sont des composants intégrés entre les niveaux d'interconnections. Le développement de nouvelle architecture en trois dimensions impose de déposer les films ultraminces constituant la capacité MIM de manière très conforme. Ce qui conduit à utiliser un nouveau procédé de dépôt : la méthode ALD assistée par plasma ou PEALD. De plus l'augmentation des performances électriques des MIM passe par une maîtrise des propriétés des électrodes et des interfaces créées entre le diélectrique et les électrodes métalliques. Les matériaux développés dans cette étude sont Ti- N-C and W-N- C, déposés par PEALD à partir de précurseurs organométalliques TDMAT et BTBMW. Une étude sur les propriétés physico-chimiques et électriques des films est effectuée ainsi que l'intégration de ces films dans les capacités MIM.
158

Etude des dépôts par plasma ALD de diélectriques à forte permittivité diélectrique (dits « High-K ») pour les applications capacités MIM

Monnier, D. 09 April 2010 (has links) (PDF)
La miniaturisation des composants dans la micorélectronique touche maintenant les composants passifs comme les capacités MIM (Métal/Isolant/Métal). Pour augmenter la densité de capacité des capacités MIM, les diélectriques conventionnels (SiO2, ε = 3.9) sont remplacés par des diélectriques à haute permittivité diélectrique dits « high-k » comme ZrO2. Sa permittivité ε est égale à 47 lorsqu'il se trouve sous la phase tétragonale. Le procédé de dépôt de ZrO2 est la méthode PEALD. Nous avons étudié le procédé de dépôt de ZrO2 avec les précurseurs TEMAZ et ZyALD. Les propriétés thermodynamiques du TEMAZ ont été analysées par spectrométrie de masse. L'influence des paramètres du procédé PEALD et de post-traitements sur les mécanismes de formation de la zircone tétragonale a été étudiée. De nombreuses méthodes de caractérisation (XRD, Raman, TEM, SIMS, XPS, caractérisations électriques...) ont été employées afin d'établir un optimum propriétés des films de ZrO2 / performance du procédé de dépôt.
159

Detection of annual rings in wood

Jonsson, Christian January 2008 (has links)
<p>This report describes an annual line detection algorithm for the WoodEye quality control system. The goal with the algorithm is to find the positions of annual lines on the four surfaces of a board. The purpose is to use this result to find the inner annual ring structure of the board. The work was done using image processing techniques to analyze images collected with WoodEye. The report gives the reader an insight in the requirements of quality control systems in the woodworking industry and the benefits of automated quality control versus manual inspection. The appearance and formation of annual lines are explained on a detailed level to provide insight on how the problem should be approached. A comparison between annual rings and fingerprints are made to see if ideas from this area of pattern recognition can be adapted to annual line detection. This comparison together with a study of existing methods led to the implementation of a fingerprint enhancement method. This method became a central part of the annual line detection algorithm. The annual line detection algorithm consists of two main steps; enhancing the edges of the annual rings, and tracking along the edges to form lines. Different solutions for components of the algorithm were tested to compare performance. The final algorithm was tested with different input images to find if the annual line detection algorithm works best with images from a grayscale or an RGB camera.</p>
160

Atomic Layer Deposition of Copper, Copper(I) Oxide and Copper(I) Nitride on Oxide Substrates

Törndahl, Tobias January 2004 (has links)
<p>Thin films play an important role in science and technology today. By combining different materials, properties for specific applications can be optimised. In this thesis growth of copper, copper(I) oxide and copper(I) nitride on two different substrates, amorphous SiO<sub>2</sub> and single crystalline α-Al<sub>2</sub>O<sub>3</sub> by the so called Atomic Layer Deposition (ALD) techniques has been studied. This technique allows precise control of the growth process at monolayer level on solid substrates. Other characteristic features of ALD are that it produces films with excellent step coverage and good uniformity even as extremely thin films on complicated shaped substrates.</p><p>Alternative deposition schemes were developed for the materials of interest. It was demonstrated that use of intermediate water pulses affected the deposition pathways considerably. By adding water, the films are thought to grow via formation of an oxide over-layer instead of through a direct reaction between the precursors as in the case without water.</p><p>For growth of copper(I) nitride from Cu(hfac)<sub>2</sub> and ammonia no film growth occurred without adding water to the growth process. The Cu<sub>3</sub>N films could be transformed into conducting copper films by post annealing. In copper growth from CuCl and H<sub>2</sub> the water affected film growth on the alumina substrates considerably more than on the fused silica substrates. The existence of surface -OH and/or -NH<sub>x</sub> groups was often found to play an important role, according to both theoretical calculations and experimental results.</p>

Page generated in 0.2844 seconds