• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 27
  • 10
  • 9
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 191
  • 81
  • 78
  • 76
  • 56
  • 53
  • 48
  • 39
  • 30
  • 30
  • 30
  • 30
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Thin Film Deposition on Powder Substrates using ALD and its Characterization using XPS, TEM, and SE

Shah, Dhruv 28 April 2020 (has links)
The major part of my dissertation consists of thin films deposited using atomic layer deposition on flat and powder substrates. It details the various optimization experiments for process parameters like dose time, purge time, temperature, and pressure on silicon shards and powder substrates. Spectroscopic ellipsometry (SE) was used to characterize these films over a wide wavelength range (191-1688 nm). An optical model with a BEMA (Bruggeman effective medium approximation) layer was used to fit the ellipsometric data to investigate the optical properties of the alumina surface. The optimized process parameters on the flat surfaces were used for coating powder substrates. I propose a set of experiments to optimize the conditions for coating of powders and high aspect ratio structures by atomic layer deposition (ALD). The coated powders were analyzed by surface analytical techniques like X-ray photoelectron spectroscopy, spectroscopic ellipsometry, transmission electron microscopy, energy X-ray dispersive spectroscopy (EDAX), and BET. The first chapter introduces the technique of atomic layer deposition, and details its advantages and limitations over conventional thin film deposition techniques like chemical vapor deposition and physical vapor deposition. The second chapter details the initial deposition experiments performed on flat surfaces and characterization of thin films using surface analytical tools. I conducted multi-sample analysis on eleven different thin films for calculation of optical constants of alumina. The third chapter introduces thin film deposition experiments performed on powder substrates, several challenges associated with achieving conformal thin films and characterization. The fourth chapter details the experiments to achieve unilateral ALD achieved on one side of the substrates. The fifth chapter details various unconventional materials including liquid water, Coca-Cola, a coffee bean, nitrogen gas, human tooth, and printed office paper, which were analyzed by near ambient pressure XPS (NAP-XPS). This dissertation contains appendices of other tutorial articles I wrote on obtaining optical constants liquid samples using spectroscopic ellipsometry, and good experimental techniques for maintenance of vacuum equipment.
112

Thin Film Deposition on Powder Substrates using ALD and its Characterization using XPS, TEM, and SE

Shah, Dhruv 28 April 2020 (has links)
The major part of my dissertation consists of thin films deposited using atomic layer deposition on flat and powder substrates. It details the various optimization experiments for process parameters like dose time, purge time, temperature, and pressure on silicon shards and powder substrates. Spectroscopic ellipsometry (SE) was used to characterize these films over a wide wavelength range (191-1688 nm). An optical model with a BEMA (Bruggeman effective medium approximation) layer was used to fit the ellipsometric data to investigate the optical properties of the alumina surface. The optimized process parameters on the flat surfaces were used for coating powder substrates. I propose a set of experiments to optimize the conditions for coating of powders and high aspect ratio structures by atomic layer deposition (ALD). The coated powders were analyzed by surface analytical techniques like X-ray photoelectron spectroscopy, spectroscopic ellipsometry, transmission electron microscopy, energy X-ray dispersive spectroscopy (EDAX), and BET. The first chapter introduces the technique of atomic layer deposition, and details its advantages and limitations over conventional thin film deposition techniques like chemical vapor deposition and physical vapor deposition. The second chapter details the initial deposition experiments performed on flat surfaces and characterization of thin films using surface analytical tools. I conducted multi-sample analysis on eleven different thin films for calculation of optical constants of alumina. The third chapter introduces thin film deposition experiments performed on powder substrates, several challenges associated with achieving conformal thin films and characterization. The fourth chapter details the experiments to achieve unilateral ALD achieved on one side of the substrates. The fifth chapter details various unconventional materials including liquid water, Coca-Cola, a coffee bean, nitrogen gas, human tooth, and printed office paper, which were analyzed by near ambient pressure XPS (NAP-XPS). This dissertation contains appendices of other tutorial articles I wrote on obtaining optical constants liquid samples using spectroscopic ellipsometry, and good experimental techniques for maintenance of vacuum equipment.
113

New Method for Coating Nickel with Ultrathin Platinum Films

Hoover, Robert R., Jr 21 June 2010 (has links)
No description available.
114

Atomic Layer Deposition onto Fibers / Atomlagenabscheidung auf Fasern

Roy, Amit Kumar 19 March 2012 (has links) (PDF)
The main goal of this dissertation was to show that the principle of atomic layer deposition (ALD) can be applied to “endless” fibers. A reactor of atomic layer deposition has been designed, especially for coating depositions onto meter long bundles of fibers. Aluminum oxide (alumina), titanium oxide (titania), double layers of alumina and titania, as well as aluminium phosphate have been deposited onto bundles of carbon fibers using the home-built reactor. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images indicate that the coatings were uniform and conformal onto fiber surface. There was a good adhesion of the coatings to the fibers. Alumina has been deposited using two separate aluminum sources (aluminum trichloride and trimethylaluminum), and water as a source of oxygen. In case of alumina deposition using aluminum trichloride and water, initial deposition temperature was 500 °C. In these conditions, a part of the fiber bundle has been damaged. Thus, the deposition temperature was decreased to 300 °C and the fibers were unaffected. In addition, during this process hydrochloric acid is formed as a byproduct which is a corrosive substance and affects the reactor and there was a chloride impurity in the coatings. Thus, aluminum trichloride precursor was replaced by trimethylalumium. Alumina deposition onto carbon fibers using trimethylaluminum and water was carried out at a temperature of 77 °C. SEM images revealed that the fibers were unaffected and the coatings were uniform and conformal. Oxidation resistance of the carbon fibers was improved slightly after alumina deposition. Oxidation onset temperature of the uncoated fibers was about 630 °C. The resistance was linearly increased with the coating thickness (up to 660 °C) and getting saturated over a thickness of 120 nm. Titania coatings have been deposited using titanium tetrachloride and water. The physical appearances of the titania coatings were similar to the alumina coatings. The oxidation onset temperature of the titania coated carbon fibers was similar to the uncoated fibers but the rate of oxidation was decreased than the uncoated fibers. Two double layer coatings were deposited, alumina followed by titania (alumina/titania), and titania followed by alumina (titania/alumina). If the fibers were coated with the double layer of alumina/titania, they had almost same oxidation onset as alumina coated fibers but the rate of oxidation was decreased significantly compared to alumina coated fibers. This feature is independent of the thickness of the titania layers, at least in the regime investigated (50 nm alumina followed by 13 nm and 40 nm titania). On the other hand, the oxidation onset temperature of fibers coated with titania/alumina (20 nm titania /30 nm alumina) was approximately 750 °C. The fibers were burned completely when temperature was further increased to 900 °C and held another 60 minutes at 900 °C. This is significantly better than any other coating used in this dissertation. ALD of titania and alumina in principle was known beforehand, this dissertation here applies this knowledge for the first time to endless fibers. Furthermore, this dissertation shows for the first time that one can deposit aluminum phosphate via ALD (planar surface as well as fibers). Aluminum phosphate might be special interest in the fiber coating because it is a rather soft material and thus might be used to obtain a weak coupling between fiber and matrix in composites. Aluminum phosphate was deposited using trimethylaluminum and triethylphosphate as precursors. Energy dispersive X-ray spectroscopy and solid state nuclear magnetic resonance spectra confirmed that the coating comprises aluminum phosphate (orthophosphate as well as other stoichiometries). Scanning electron microscopic images revealed that coatings are uniform and conformal. In cases of alumina and titania, it was observed that the coatings were delaminated from the ends of cut fibers and thus formed of clear steps. On the other hand, for aluminum phosphate coating it was observed that the border between coating and underlying fiber often being smeared out and thus formed an irregular line. It seems in case aluminum phosphate cohesion is weaker than adhesion, thus it might be act a weak interface between fiber and matrix. Alumina, titania, and double layer microtubes have been obtained after selective removal of the underlying carbon fibers. The carbon fibers were selectively removed via thermal oxidation in air at temperatures exceeding 550 °C. SEM and TEM images indicate that the inner side of the tube wall has the same morphology like the fibers. In addition, it was observed that the individual microtubes were separated from their neighbors and they had almost uniform wall thicknesses. The longest tubes had a length of 30 cm. / Das Hauptziel dieser Dissertation bestand darin nachzuweisen, dass die Atomlagenabscheidung (engl. atomic layer deposition (ALD)) auf „endlose“ Fasern angewendet werden kann. Es wurde ein Reaktor zur Atomlagenabscheidung gestaltet, der speziell für die Beschichtung meterlanger Faserbündel geeignet ist. Aluminiumoxid, Titanoxid, Doppelschichten aus Aluminiumoxid und Titanoxid sowie Aluminiumphosphat wurden mit Hilfe des selbstgebauten Reaktors auf Kohlefaserbündel abgeschieden. Rasterelektronenmikroskopische (REM) und transmissionselektronenmikroskopische (TEM) Aufnahmen zeigten, dass die Beschichtung auf den Fasern einheitlich und oberflächentreu war. Des Weiteren wurde eine gute Adhäsion zwischen Beschichtung und Fasern beobachtet. Das Prinzip der Beschichtung mit Titanoxid und Aluminiumoxid mit Hilfe der ALD war bereits vorher bekannt und im Rahmen dieser Dissertation jedoch erstmals auf "endlose" Fasern angewendet. Des Weiteren wird in dieser Dissertation erstmals gezeigt, dass es möglich ist, Aluminiumphosphat mittels ALD abzuscheiden (sowohl auf planaren Oberflächen als auch auf Fasern). Aluminiumphosphat könnte von besonderem Interesse in der Faserbeschichtung sein, da es ein relativ weiches Material ist und könnte daher als eine Art „schwacher“ Verbindung zwischen Faser und Matrix in Kompositen dienen. Die Oxidationsbeständigkeit von beschichten Kohlefasern wurde im Vergleich zu unbeschichteten Fasern bis zu einem gewissen Grad erhöht. Monoschichten von Aluminiumoxid und Titanoxid waren dafür wenig effektiv. Aluminiumphosphatbeschichtete Fasern waren deutlich besser geeignet als die beiden anderen. Eine Doppelschicht aus Titanoxid gefolgt von Aluminiumoxid verbesserte die Oxidationsbeständigkeit nochmals deutlich gegenüber allen anderen Beschichtungen, die in dieser Dissertation verwendet wurden. Mikroröhren aus Aluminiumoxid, Titanoxid und Doppelschichten wurden durch die selektive Entfernung der zugrunde liegenden Kohlefasern erhalten. Einzelne Mikroröhren waren von benachbarten Röhren getrennt und sie weisen eine nahezu einheitliche Wanddicke auf.
115

Atomic Layer Deposition onto Fibers

Roy, Amit Kumar 14 March 2012 (has links)
The main goal of this dissertation was to show that the principle of atomic layer deposition (ALD) can be applied to “endless” fibers. A reactor of atomic layer deposition has been designed, especially for coating depositions onto meter long bundles of fibers. Aluminum oxide (alumina), titanium oxide (titania), double layers of alumina and titania, as well as aluminium phosphate have been deposited onto bundles of carbon fibers using the home-built reactor. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images indicate that the coatings were uniform and conformal onto fiber surface. There was a good adhesion of the coatings to the fibers. Alumina has been deposited using two separate aluminum sources (aluminum trichloride and trimethylaluminum), and water as a source of oxygen. In case of alumina deposition using aluminum trichloride and water, initial deposition temperature was 500 °C. In these conditions, a part of the fiber bundle has been damaged. Thus, the deposition temperature was decreased to 300 °C and the fibers were unaffected. In addition, during this process hydrochloric acid is formed as a byproduct which is a corrosive substance and affects the reactor and there was a chloride impurity in the coatings. Thus, aluminum trichloride precursor was replaced by trimethylalumium. Alumina deposition onto carbon fibers using trimethylaluminum and water was carried out at a temperature of 77 °C. SEM images revealed that the fibers were unaffected and the coatings were uniform and conformal. Oxidation resistance of the carbon fibers was improved slightly after alumina deposition. Oxidation onset temperature of the uncoated fibers was about 630 °C. The resistance was linearly increased with the coating thickness (up to 660 °C) and getting saturated over a thickness of 120 nm. Titania coatings have been deposited using titanium tetrachloride and water. The physical appearances of the titania coatings were similar to the alumina coatings. The oxidation onset temperature of the titania coated carbon fibers was similar to the uncoated fibers but the rate of oxidation was decreased than the uncoated fibers. Two double layer coatings were deposited, alumina followed by titania (alumina/titania), and titania followed by alumina (titania/alumina). If the fibers were coated with the double layer of alumina/titania, they had almost same oxidation onset as alumina coated fibers but the rate of oxidation was decreased significantly compared to alumina coated fibers. This feature is independent of the thickness of the titania layers, at least in the regime investigated (50 nm alumina followed by 13 nm and 40 nm titania). On the other hand, the oxidation onset temperature of fibers coated with titania/alumina (20 nm titania /30 nm alumina) was approximately 750 °C. The fibers were burned completely when temperature was further increased to 900 °C and held another 60 minutes at 900 °C. This is significantly better than any other coating used in this dissertation. ALD of titania and alumina in principle was known beforehand, this dissertation here applies this knowledge for the first time to endless fibers. Furthermore, this dissertation shows for the first time that one can deposit aluminum phosphate via ALD (planar surface as well as fibers). Aluminum phosphate might be special interest in the fiber coating because it is a rather soft material and thus might be used to obtain a weak coupling between fiber and matrix in composites. Aluminum phosphate was deposited using trimethylaluminum and triethylphosphate as precursors. Energy dispersive X-ray spectroscopy and solid state nuclear magnetic resonance spectra confirmed that the coating comprises aluminum phosphate (orthophosphate as well as other stoichiometries). Scanning electron microscopic images revealed that coatings are uniform and conformal. In cases of alumina and titania, it was observed that the coatings were delaminated from the ends of cut fibers and thus formed of clear steps. On the other hand, for aluminum phosphate coating it was observed that the border between coating and underlying fiber often being smeared out and thus formed an irregular line. It seems in case aluminum phosphate cohesion is weaker than adhesion, thus it might be act a weak interface between fiber and matrix. Alumina, titania, and double layer microtubes have been obtained after selective removal of the underlying carbon fibers. The carbon fibers were selectively removed via thermal oxidation in air at temperatures exceeding 550 °C. SEM and TEM images indicate that the inner side of the tube wall has the same morphology like the fibers. In addition, it was observed that the individual microtubes were separated from their neighbors and they had almost uniform wall thicknesses. The longest tubes had a length of 30 cm.:Bibliographische Beschreibung und Referat 2 Abstract 4 List of abbreviations 10 1. General introduction and outline of this dissertation 12 1.1 References 20 2. Atomic layer deposition: Process and reactor 25 2.1 Introduction 25 2.2 Principle of atomic layer deposition 26 2.3 Materials and methods 29 2.3.1 Precursors 29 2.3.2 Precursors transportation 31 2.3.3 Carrier and purge gas 32 2.3.4 ALD reactors 32 2.4 Flow-Type ALD reactor for fiber coating 33 2.5 Conclusion 35 2.6 References 35 3. Single layer oxide coatings 38 3.1 State of the art 38 3.2 Alumina coating using non-flammable precursors 39 3.2.1 Introduction 39 3.2.Result and discussion 39 3.3 Alumina coating using organometallic precursor 46 3.2.1 Introduction 46 3.2.2 Results and discussion 46 3.4 Titania coating using titanium tetrachloride and water 59 3.4.1 Introduction 59 3.4.2 Results and discussion 59 3.5 Experimental Part 67 3.5.1 General experiments 67 3.5.2 Alumina coating using aluminum chloride and water 69 3.5.3 Alumina coating using trimethylalumium and water 69 3.5.4 Titania coating 72 3.6 Conclusions 72 3.7 References 74 4. Coating thickness and morphology 78 4.1 Introduction 78 4.2 Results and discussion 80 4.2.1 Purge time 15 s 81 4.2.2 Purge time 30 s 85 4.2.3 Purge time 45 s to 100 s 85 4.3 Experimental part 88 4.4 Conclusions 89 4.5 References 89 5. Alumina and titania double layer coatings 91 5.1 Introduction 91 5.2 Results and discussion 92 5.3 Experimental part 102 5.4 Conclusions 103 5.5 References 103 6. Atomic layer deposition of aluminum phosphate 105 6.1 Introduction 105 6.2 Results and discussion 106 6.3 Experimental part 113 6.4 Conclusions 114 6.5 References 115 7. Alumina microtubes 117 7.1 Introduction 117 7.2 Results and discussion 118 7.2.1 Fibers before coating deposition 118 7.2.2 Coatings on the carbon fibers 118 7.2.3 Microtubes 121 7.3 Experimental part 127 7.4 Conclusions 128 7.5 References 128 8. Conclusions 131 Acknowledgements 136 Curriculum Vitae 138 Selbständigkeitserklärung 142 / Das Hauptziel dieser Dissertation bestand darin nachzuweisen, dass die Atomlagenabscheidung (engl. atomic layer deposition (ALD)) auf „endlose“ Fasern angewendet werden kann. Es wurde ein Reaktor zur Atomlagenabscheidung gestaltet, der speziell für die Beschichtung meterlanger Faserbündel geeignet ist. Aluminiumoxid, Titanoxid, Doppelschichten aus Aluminiumoxid und Titanoxid sowie Aluminiumphosphat wurden mit Hilfe des selbstgebauten Reaktors auf Kohlefaserbündel abgeschieden. Rasterelektronenmikroskopische (REM) und transmissionselektronenmikroskopische (TEM) Aufnahmen zeigten, dass die Beschichtung auf den Fasern einheitlich und oberflächentreu war. Des Weiteren wurde eine gute Adhäsion zwischen Beschichtung und Fasern beobachtet. Das Prinzip der Beschichtung mit Titanoxid und Aluminiumoxid mit Hilfe der ALD war bereits vorher bekannt und im Rahmen dieser Dissertation jedoch erstmals auf "endlose" Fasern angewendet. Des Weiteren wird in dieser Dissertation erstmals gezeigt, dass es möglich ist, Aluminiumphosphat mittels ALD abzuscheiden (sowohl auf planaren Oberflächen als auch auf Fasern). Aluminiumphosphat könnte von besonderem Interesse in der Faserbeschichtung sein, da es ein relativ weiches Material ist und könnte daher als eine Art „schwacher“ Verbindung zwischen Faser und Matrix in Kompositen dienen. Die Oxidationsbeständigkeit von beschichten Kohlefasern wurde im Vergleich zu unbeschichteten Fasern bis zu einem gewissen Grad erhöht. Monoschichten von Aluminiumoxid und Titanoxid waren dafür wenig effektiv. Aluminiumphosphatbeschichtete Fasern waren deutlich besser geeignet als die beiden anderen. Eine Doppelschicht aus Titanoxid gefolgt von Aluminiumoxid verbesserte die Oxidationsbeständigkeit nochmals deutlich gegenüber allen anderen Beschichtungen, die in dieser Dissertation verwendet wurden. Mikroröhren aus Aluminiumoxid, Titanoxid und Doppelschichten wurden durch die selektive Entfernung der zugrunde liegenden Kohlefasern erhalten. Einzelne Mikroröhren waren von benachbarten Röhren getrennt und sie weisen eine nahezu einheitliche Wanddicke auf.:Bibliographische Beschreibung und Referat 2 Abstract 4 List of abbreviations 10 1. General introduction and outline of this dissertation 12 1.1 References 20 2. Atomic layer deposition: Process and reactor 25 2.1 Introduction 25 2.2 Principle of atomic layer deposition 26 2.3 Materials and methods 29 2.3.1 Precursors 29 2.3.2 Precursors transportation 31 2.3.3 Carrier and purge gas 32 2.3.4 ALD reactors 32 2.4 Flow-Type ALD reactor for fiber coating 33 2.5 Conclusion 35 2.6 References 35 3. Single layer oxide coatings 38 3.1 State of the art 38 3.2 Alumina coating using non-flammable precursors 39 3.2.1 Introduction 39 3.2.Result and discussion 39 3.3 Alumina coating using organometallic precursor 46 3.2.1 Introduction 46 3.2.2 Results and discussion 46 3.4 Titania coating using titanium tetrachloride and water 59 3.4.1 Introduction 59 3.4.2 Results and discussion 59 3.5 Experimental Part 67 3.5.1 General experiments 67 3.5.2 Alumina coating using aluminum chloride and water 69 3.5.3 Alumina coating using trimethylalumium and water 69 3.5.4 Titania coating 72 3.6 Conclusions 72 3.7 References 74 4. Coating thickness and morphology 78 4.1 Introduction 78 4.2 Results and discussion 80 4.2.1 Purge time 15 s 81 4.2.2 Purge time 30 s 85 4.2.3 Purge time 45 s to 100 s 85 4.3 Experimental part 88 4.4 Conclusions 89 4.5 References 89 5. Alumina and titania double layer coatings 91 5.1 Introduction 91 5.2 Results and discussion 92 5.3 Experimental part 102 5.4 Conclusions 103 5.5 References 103 6. Atomic layer deposition of aluminum phosphate 105 6.1 Introduction 105 6.2 Results and discussion 106 6.3 Experimental part 113 6.4 Conclusions 114 6.5 References 115 7. Alumina microtubes 117 7.1 Introduction 117 7.2 Results and discussion 118 7.2.1 Fibers before coating deposition 118 7.2.2 Coatings on the carbon fibers 118 7.2.3 Microtubes 121 7.3 Experimental part 127 7.4 Conclusions 128 7.5 References 128 8. Conclusions 131 Acknowledgements 136 Curriculum Vitae 138 Selbständigkeitserklärung 142
116

Influence of the environment on the fatigue properties of alumina ultra-thin coatings and silicon and nickel thin films

Baumert, Eva K. 20 September 2013 (has links)
This dissertation presents the investigation of three thin film materials used in microelectromechanical systems (MEMS): alumina, silicon, and nickel. For this purpose, novel experimental techniques to test thin films under MEMS-relevant loading conditions were developed in order to study environmental effects and the underlying fatigue mechanisms of amorphous alumina ultra-thin coatings, mono-crystalline brittle silicon thin films, and poly-crystalline ductile nickel thin films. Knowledge of these mechanisms is necessary to improve the reliability of MEMS, especially of those devices operating in harsh environments. MEMS resonators were used to investigate both the fatigue and time-dependent behavior of alumina, silicon, and nickel. While micro-resonators were used in prior studies to research the fatigue properties of mono- and polycrystalline silicon, this work is the first in (1) using them to investigate fatigue properties of ultra-thin coatings and metallic films and in (2) using micro-resonators to investigate the time-dependent fatigue behavior of silicon films. For fatigue testing, the micro-resonators were subjected to fully-reversed loading at resonance (≈40 kHz for alumina-coated silicon, ≈8 kHz for nickel). Experiments were conducted in air at 30 °C, 50% relative humidity (RH) or 80 °C, 90% RH and testing was carried out over a broad range of applied stresses. The resonance frequency evolution proved to be a metric for the accumulated damage, which could be further quantified using finite element analysis. In addition, scanning and transmission electron microscopy were used to examine the extent of fatigue damage. For testing under static loads, the resonators were subjected to external loading using a micromanipulator and probe-tip. Experiments with atomic-layer-deposited alumina investigated the cohesive and interfacial fatigue properties of alumina coatings of four different thicknesses, ranging from nominally 4.2 nm to 50.0 nm on silicon micro-resonators. Fatigue loading led to both cohesive and interfacial damage, while static loading did not result in any damage. Both the cohesive and interfacial fatigue crack growth rates are approximately one order of magnitude higher at 80 °C, 90% RH than at 30 °C, 50% RH and seem to increase with increasing strain energy release rate. A combination of compressive loading and the silicon sidewall's surface roughness is believed to cause the observed fatigue behavior. Experiments with 10-micrometer-thick deep reactive ion etched silicon micro-resonators investigated two aspects: whether surface oxidation is the critical parameter in silicon thin film fatigue and time-dependent failure in silicon as a potential underlying cause of resonator failures in the low cycle fatigue (LCF, <17 cycles, corresponding to ≈5 min) regime. To confirm whether surface oxidation is the critical parameter in silicon thin film fatigue, the influence of oxygen diffusion barrier alumina coatings on the fatigue behavior was investigated. The coatings led to an increase in fatigue life by at least two orders of magnitude compared to uncoated devices in the harsh environment, which not only confirms reaction layer fatigue (RLF) as governing fatigue mechanism in silicon thin films, but also constitutes a practical solution to significantly increase fatigue lifetimes. Previous LCF data were inconsistent with the RLF model, given that thick surface oxidation is unrealistic for tests lasting only few minutes. Accordingly, time-dependent failure in silicon was investigated as underlying cause and the observation of resonator failures under static loading indeed suggest that time-dependent crack growth may be responsible for LCF failures. Experiments with metallic micro-resonators investigated the fatigue crack initiation in 20-micrometer-thick electro-deposited nickel under MEMS-relevant conditions, such as extreme stress gradients resulting in non-propagating cracks, fully-reversed loading (over a large range of stress amplitudes), exposure to mild and harsh environments, and accumulation of billions of cycles. Under these circumstances, extrusions form locally at the notch root (within few million cycles at high stress amplitudes). Very thick local oxides (only at the location of the extrusions) of up to 1100 nm were observed in the harsh environment, with thinner oxides (up to 700 nm) in the mild environment. Micro-cracks form in the oxide but do not propagate given the extreme stress gradients. Finite element analysis confirmed that oxidation and micro-cracking lead to changes in the resonance frequency, which are consistent with the experimental results. Accumulation of cyclic plasticity appears to also lead to a decrease in resonance frequency which scales with applied strain.
117

Spectroscopic ellipsometry for the in-situ investigation of atomic layer depositions

Sharma, Varun 07 July 2014 (has links) (PDF)
Aim of this student research project was to develop an Aluminium Oxide (Al2O3 ) ALD process from trimethylaluminum (TMA) and Ozone in comparison of two shower head designs. Then studying the detailed characteristics of Al2O3 ALD process using various measurement techniques such as Spectroscopic Ellipsometry (SE), x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM). The real-time ALD growth was studied by in-situ SE. In-situ SE is very promising technique that allows the time-continuous as well as time-discrete measurement of the actual growth over an ALD process time. The following ALD process parameters were varied and their inter-dependencies were studied in detail: exposure times of precursor and co-reactant as well as Argon purge times, the deposition temperature, total process pressure, flow dynamics of two different shower head designs. The effect of varying these ALD process parameters was studied by looking upon ALD cycle attributes. Various ALD cycle attributes are: TMA molecule adsorption (Mads ), Ligand removal (Lrem ), growth kinetics (KO3 ) and growth per cycle (GPC).
118

Síntese de estruturas 3D de nanotubos de carbono verticalmente alinhados, dopados e não-dopados, decorados com nanopartículas de óxido de titânio, sua caracterização microestrutural e de propriedades fotocatalíticas e elétricas

Acauan, Luiz Henrique January 2015 (has links)
Neste trabalho foi desenvolvido um procedimento experimental para a fabricação de estruturas 3D de nanotubos de carbono crescidos sobre substrato de cobre e decorados com partículas de óxido de titânio. Foram relacionados os três tipos diferentes de NTCs nesta estrutura (simples, dopados com nitrogênio e tratados com plasma) com a deposição do TiO2 por ALD. Foram igualmente propostas três aplicações para esta estrutura. A síntese dos NTCs verticalmente orientados, dopados e não dopados, foi otimizada dentre alguns parâmetros de síntese como temperatura, agente oxidante e principalmente, o filme catalisador. A introdução de defeitos nos NTCP através do tratamento a plasma oxidativo foi avaliada frente a variáveis como pressão, potência e tempo de exposição. A relação entre os defeitos destes três tipos de NTCs e a deposição de TiO2 por ALD foi avaliada por microscopia eletrônica de transmissão, Raman, XPS e TGA. O procedimento experimental para confecção da estrutura 3D foi desenvolvido etapa por etapa via diversas técnicas experimentais, desde caracterização química, imagem, até testes empíricos. Na estrutura final, foram avaliadas as propriedades fotocatalíticas pela decomposição de corante orgânico em meio aquoso, propriedades capacitivas por voltametria cíclica e propriedades de emissão por campo através de curvas de campo elétrico por corrente de emissão e diagramas F-N. Foram obtidas florestas de NTCs de boa qualidade com até 0.5mm de altura, de diâmetros e número de paredes regulares. Nestes foi possível introduzir defeitos de maneira controlável, mantendo o arranjo da floresta. As florestas de NTCNx alcançam uma altura de até 0,3mm com concentração de nitrogênio de 2% tendo os nanotubos uma estrutura típica “bamboo-like”. Os resultados mostram a relação entre o tipo de defeito e a deposição de TiO2 por ALD, obtendo-se partículas cristalinas para os NTCP e NTCNx, sendo neste ultimo as partículas homogeneamente distribuídas e com tamanho uniforme, enquanto nos NTCOx forma-se uma densa camada de TiO2 composta por grandes grãos monocristalinos A partir de processo como tratamentos térmicos e transferência dos NTC de substrato foi possível obter uma estrutura 3D composta de uma camada carbono grafítico e NTC-VAs sobre um substrato de cobre, sem alterar o arranjo inicial das florestas. As amostras mostraram efeito de emissão de elétrons por campo elétrico, porém estas requerem uma análise mais quantitativa. Os ensaios de fotocatálise mostraram que a imobilização do TiO2 em um suporte denso inviabiliza a degradação do corante em meio aquoso. Os NTCNx apresentaram maior capacitância que as mostras de NTCP, e o TiO2 foi aparentemente ineficaz para a melhoria desta propriedade. / In this work, we propose an experimental procedure for fabrication of 3D carbon nanotubes structures anchored with titanium oxide particles, on a copper substrate. We correlate three different types of CNTs from this structure (pristine, doped with nitrogen and treated with plasma) with the deposition of TiO2 by ALD. It was yet suggested, three applications for this structure. The synthesis of vertically aligned CNTs, doped and undoped, was optimized among several synthesis parameters such as temperature, oxidizing agent and specially, the catalyst film. The introduction of defects in NTCP by oxidative plasma treatment was evaluated against variables such as pressure, power and exposure time. The association between the defects from these three types of CNTs and the deposition of TiO2 by ALD was assessed by transmission microscopy, Raman, XPS and TGA. The experimental procedure for assembling the 3D structure had been studied step by step by various techniques, from chemical and imaging, up to empirical testing. In the final structure, the photocatalytic properties were evaluated by the organic dye decomposition in an aqueous medium, capacitive properties by cyclic voltammetry and field emission properties through electric field versus emission current curves and F-N diagram. Was obtained high quality NTCs with a height up to 0.5mm with regular diameters and number of walls. On these, it was introduced, in a controllable way, a high amount of defects without jeopardizing the forest structure. The NTCNx forest reach a 0,3nm height with a 2% nitrogen concentration in its typical structure “bamboo-like”. The results show the relation between the type of defect and the deposition of TiO2 by ALD, forming crystalline particles over the NTCP and NTCNx, in this last evenly distributed with uniform size, while on the NTCOx is is formed a dense TiO2 layer shaped by large monocrystalline grains. By process such as heat treatments and CNT transferring was achieved a 3d structure composed by a graphitic carbon layer and VACNTs over a cupper substrate, without disturb the forest assembly. The samples showed electron field emission effect, but its assessment for quantitative analysis was limited to technical issues. The photocatalysis tests showed that immobilization of TiO2 on a dense support prevents the dye degradation in an aqueous medium. The NTCNx shown higher capacitance than NTCP, and the TiO2 was apparently ineffective for improvement of this property.
119

ETUDE THERMODYNAMIQUE ET EXPERIMENTALE DU DEPÔT ALD (ATOMIC LAYER DEPOSITION) DE TaN ET DE SON PRECURSEUR ORGANOMETALLIQUE PDMAT, Ta[N(CH3)2]5, UTILISE EN MICROELECTRONIQUE

Violet, Perrine 29 September 2008 (has links) (PDF)
L'étude de la vaporisation et de la décomposition thermique du PDMAT sous vide a été réalisée par spectrométrie de masse avec cellule d'effusion et cellules tandem respectivement. La conception et la validation du réacteur, spécifique à l'étude par spectrométrie de masse des molécules organométalliques très réactives au contact de l'air, réalisé au cours de cette thèse, sont exposées. En parallèle des premiers dépôts ALD de TaN à partir de PDMAT et NH3 ont été réalisés sur le réacteur ALD en cours d'optimisation et caractérisés par microscopie électronique et XPS. La confrontation de ces deux résultats permet de proposer des schémas de réactions se produisant lors du dépôt de TaN dans un réacteur ALD et de déterminer les propriétés structurales et thermodynamiques des molécules identifiées. Ces données sont utilisées dans différentes approches de modélisations thermodynamiques du procédé de croissance à partir de la phase gazeuse.
120

Vélocimètrie laser Doppler bidimensionnelle pour écoulement turbulent supersonique : quelques aspects spécifiques des processus de mesure

LACHARME, Jean-Paul 16 November 1984 (has links) (PDF)
L'étude des écoulements turbulents supersoniques par Vélocimétrie Laser Doppler soulève de nombreuses difficultés spécifiques. Les fréquences élevées des fluctuations de vitesse posent notamment le problème de l'inertie des particules, aggravé par la basse densité de fluide. Dans le montage bidimensionnel, le processus de validation des signaux dépend fortement de la direction de la vitesse instantanée mesurée. Ces phénomènes dont les conséquences ont été mises en évidence dans les mesures sont largement étudiées et commentés. Nous avons développé et parfois optimisé le traitement statistique des données bidimensionnelles. Le traitement de l'intervalle de temps séparant les acquisitions laisse déjà entrevoir les difficultés majeures qui s'opposent à une exploitation systématique de cette donnée temporelle.

Page generated in 0.046 seconds