• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 27
  • 10
  • 9
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 191
  • 81
  • 78
  • 76
  • 56
  • 53
  • 48
  • 39
  • 30
  • 30
  • 30
  • 30
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

RF MEMS Resonators for Mass Sensing Applications

Rivera, Ivan Fernando 01 January 2015 (has links)
Sensing devices developed upon resonant microelectromechanical and nanoelectromechanical (M/NEMS) system technology have become one of the most attractive areas of research over the past decade. These devices make exceptional sensing platforms because of their miniscule dimensions and resonant modes of operation, which are found to be extremely sensitive to added mass. Along their unique sensing attributes, they also offer foundry compatible microfabrication processes, low DC power consumption, and CMOS integration compatibility. In this work, electrostatically and piezoelectrically actuated RF MEMS bulk resonators have been investigated for mass sensing applications. The capacitively-transduced resonators employed electrostatic actuation to achieve desired resonance mode shapes. These devices were fabricated on silicon-on-insulator (SOI) substrates with a device layer resistivity ranging from 0.005 Ω cm to 0.020 Ω cm. The electrode-to-resonator capacitive gap was defined by two different techniques: oxidation enabled gap reduction and sacrificial atomic layer deposition (ALD). For oxidation enabled gap reduction, a hard mask composed of silicon nitride and polysilicon is deposited, patterned, and defined using standard MEMS thin-film layer deposition and fabrication techniques. The initial lithographically-defined capacitive gap of 1 μm is further reduced to ~300 nm by a wet furnace oxidation process. Subsequently, the reduced gap is transferred to the device layer using a customized dry high-aspect-ratio dry etching technique. For sacrificial approach, a ~100 nm-thin ALD aluminum oxide sidewall spacer is chemically etched away as the last microfabrication step to define the ~100 nm capacitive gap. Small capacitive gaps developed in this work results in small motional resistance (Rm) values, which relax the need of the read-out circuitry by enhancing the signal transduction. Piezoelectrically-actuated resonators were developed using thin-film bulk acoustic resonant (FBAR or TFBAR) and thin-film piezoelectric-on-substrate (TPoS) technologies with reported Q factors and resonant frequencies as high as 10,638 and 776.54 MHz, respectively, along with measured motional resistance values as low as 169Ω. To the best of our knowledge, this work is the first one that demonstrated TPoS resonators using LPCVD polysilicon as an alternative low loss structural layer to single-crystal silicon with Q factors as high as ~3,000 (in air) and measured motional resistance values as low as 6 kΩ with an equivalent acoustic velocity of 6,912 m s-1 for a 7 μm thick layer. Polysilicon based TPoS single devices were measured with the coefficient of resonant frequency of -3.77 ppm/°C, which was the lowest ever reported for this type of devices. Also a novel releasing process, thin-piezo on single crystal reactive etched (TPoSCRE), allows us to develop of TPoS resonators without the need to SOI wafers. The fabricated devices using this technique were reported with Q factor exceeding ~1,000 and measured motional resistance values as low as 9 kΩ. The sensitivity of a fourth-order contour mode ZnO-on-SOI disk resonator based mass sensor was determined by performing multiple depositions of platinum micro-pallets using a focus ion beam (FIB) equipped with gas injection system on strategically-chosen locations. It was found out that the sensitivity of the resonator on its maximal and minimal displacement points was of 1.17 Hz fg-1 and 0.334 Hz fg-1, respectively. Also, the estimated limit of detection of the resonator was found to be a record breaking 367 ag (1 ag = 10-18g) compared to devices with similar modes of resonance. Lastly, a lateral-extensional resonator was used to measure the weight of HKUST-1 MOF crystal cluster. The weight of it was found to be 24.75 pg and 31.19 pg by operating two lateral resonant modes, respectively.
72

Conception de nanomatériaux à base d'oxyde par ALD : de la détection aux membranes / Design of oxide based nanomaterials by ALD : from sensors to membrane application

Abou Chaaya, Adib 09 September 2014 (has links)
Conception de nanomatériaux à base d'oxyde par ALD : de la détection aux membranes / In this context, the aim of this PhD work is the synthesis of different nanostructured materials based on ALD oxide thin film (Al2O3, ZnO and Al2O3/ZnO nanolaminates) deposited on different types of substrates such as silicon substrate, glass, nanofibers, multipores and monopores membranes, PET and gold coated nickel dogbones. ALD deposition was performed on those substrates with changing the film thickness (number of cycles), the deposition temperature, and the film composition (doping, multilayers etc.). After the ALD deposition chemical, structural, optical, electrical and mechanical characterization were performed on the ALD deposited layer in order to study the influence of the deposition parameters on the thin film properties. The deposited and characterized ALD films were investigated on different fields:• Optical properties for solar cell applications (Chapter 2) • UV detection (Chapter 3)• Protective coating and gas barrier (chapter 4)• Ionic transport, water desalination, Mass spectrometry, DNA sequencing and Gas purification (chapter 5)The atomic layer deposition technique combined with nanostructured templates show several advantages on several application fields that will be reported on this thesis. The structural and properties evolution of the ALD thin film with the deposition parameter evolution leaded to a doped ZnO layer and Al2O3/ZnO multilayer with tunable optical, electrical and mechanical properties that can be interesting for different applications such as solar cell and UV detection. The conformal coating on high aspect ratio template with the angstrom range thickness control offered by the atomic layer deposition technique meted our target on nanopores diameter tuning for different applications on the nanometeric range such as gas purification. Moreover the compatibility of the deposited materials with some biological function leaded to a combination between nanostructure materials and biological function that shows promising results for different applications such as ionic transport, water desalination, mass spectrometry and DNA sequencing.
73

Dotování grafenu pomocí pomalých elektronů / Graphene doping by low-energy electrons

Stará, Veronika January 2018 (has links)
Tato diplomová práce se zabývá dotováním grafenu nízkoenergiovými elektrony. Na křemíkový substrát pokrytý vrstvou SiO2 jsou pomocí litograficky vyrobené masky nadeponované kovové kontakty z titanu a zlata. Grafen vyrobený pomocí metody depozice z plynné fáze je přenesen na substrát a slouží jako vodivé spojení kovových elektrod, které vytvářejí kolektor a emitor. Na křemík je ze spodu přivedeno napětí, které tak vytváří spodní hradlo. Takto vytvořený grafenový tranzistor je ozařován nízkoenergiovými elektrony, které mění dotování grafenu. Z polohy maxima v závislosti odporu grafenu na hradlovém napětí lze vyčíst typ dotování. Toto maximum udává napětí, při kterém Fermiho meze grafenu prochází Diracovým bodem v pásové struktuře grafenu. Velikost hradlového napětí, primární energie elektronového svazku a proud svazku jsou tři parametry, které mají velký vliv na změny dotování. Při ozařování transistoru dochází ke změně typu dotování právě tehdy, když odpor grafenu v závislosti na hradlovém napětí dosáhne maxima. Vývoj této změny je zkoumán pro různé energie a proudy primárního svazku v závislosti na hradlovém napětí i v čase. Typ dotování je také prozkoumán při zastavení ozařování v různých fázích smyčky hradlového napětí. Dopování grafenu nízkoenergiovými elektrony je popsáno v teoretickém modelu.
74

Aplikace metapovrchů pro strukturální zbarvení / Aplikace metapovrchů pro strukturální zbarvení

Červinka, Ondřej January 2021 (has links)
Color filters enable photosensors to obtain spectral composition of incoming radiation, be it to mimic human vision or to separate analytical signals. Efforts to increase the resolution of these photosensors lead to decrease in size of individual picture elements – pixels, which places increasing demands on the color filter technology. Conventional color filters operating on the principle of absorption of light in organic pigments are frequently used, but they are no longer meeting growing requirements of increasing sensor resolution. Here, metasurfaces comes to an aid, utilizing nanostructures to separate colors and thus creating structural coloration. There are many approaches to separate colors using metasurfaces, but each carries certain disadvantages with their principle of operation. In this thesis, we present a novel approach to separate colors which utilizes manipulation of radiation polarization. The presented color filter is first modeled and optimizes through numerical simulations and then manufactured using nanofabrication methods. Finally, the optical response of nanostructures is verified by several optical spectroscopy methods.
75

Catalyst Development and Control of Catalyst Deactivation for Carbon Dioxide Conversion

Otor, Hope O. January 2020 (has links)
No description available.
76

Development of UHF Micromechanical Resonators and Arrays Based on Silicon-OnInsulator (SOI) Technology

Xiong, Mingke 20 March 2010 (has links)
A novel micromachining technology on SOI substrates is presented that is capable of producing on-chip high-Q resonators and resonator arrays equipped with high aspect-ratio (30:1) microstructures and nano-gap capacitive transducers filled with high-k dielectrics. The newly developed IC-compatible MEMS microfabrication process consists of merely three standard photolithography steps, which is much simpler than the other SOI-based resonator device technologies. In order to achieve the optimum performance and yield of the resonators and resonator arrays, this SOI-based fabrication process has been carefully designed and investigated step by step. For capacitively-transduced extensional mode (e.g., radial-contour and wine-glass mode) resonators, formation of nano-scale capacitive gaps and large resonator-to-electrode overlap area is essential for reducing the motional resistance Rx and DC bias voltage by strengthening the capacitive transduction. Atomic Layer Deposition (ALD) technology with superb conformability and uniformity as well as outstanding thickness controllability is used to deposit the ultra-thin layer (~10 nm) of high-k dielectric material that acts as the solid capacitive gaps, which allows the mass production of on-chip capacitively-transduced resonators and resonator arrays with greatly enhanced electromechancial coupling coefficient, and thus lower motional resistance and DC bias voltage. Using this technique, high-Q micromechanical resonators and resonator arrays on SOI substrates operating at ultra-high frequencies (UHF) have been developed. The ultimate goal of this project is to implement on-chip narrow-band micromechanical filters with unprecedented frequency selectivity and ultra-low insertion loss. By fine-tuning the nonlinear characteristics of the capacitive transducers enabled by the new SOI technology, novel on-chip mechanical signal processors for frequency manipulation, such as mixer and multiplier, will be investigated.
77

Intermediate layer contacts for tandem solar cells based on ALD SnO2

Iona, Georgia January 2021 (has links)
In this project, samples with a metal/semiconductor/metal structure were fabricated and investigated with the potential application as the interconnecting layer of a tandem solar cell in mind. Degenerately doped p-Si and n-Si were used as bottom (metal like) contacts, as Si represents one of the most common materials for the bottom cell of tandem devices. A transparent, wide bandgap semiconductor in the form of SnO₂ was investigated for the intermediate layer as it is a common choice for the selective back contact of top cells based on perovskites. However, atomic layer deposition (ALD) was used as an alternative to the typical solution based application of the SnO₂ layer. The top layer was simply chosen as a triple layer metal contact stack (Ni-Al-Ni) to provide for good contact with the SnO₂.The goal of the project was to study the electrical properties of the samples through I-V measurements and how the I-V characteristic depends on the oxide’s thickness under the possible influence of the contact areas. Three different thicknesses of the SnO2 layer were used for the p-Si sample: 50, 200 and 400 Å. For the n-Si samplesonly one thickness (400 Å) was studied. Using the diode equation, four parameterswere calculated (Jo, Rsh, Rs and n) for different measurements combing different contact configurations. The latter included measurements between the front and the back of the samples and measurements between contacts on the front with and/orwithout SnO2 layer. From the results, it was concluded that as the thickness of SnO₂ increases, the saturation current (Jo) decreases while both shunt resistance (Rsh) andseries resistance (Rs) increase. The ideality factor (n) neither depends significantly on effective area, nor on SnO2 thickness. The p-Si and n-Si samples show similar behavior in the case of 400 Å SnO2 thickness. The contact areas only appreciatively affect Jo, but it is not clear what lies behind this dependence. In all cases, the top contacts obtained major wear during measurements, reducing the number of trustworthy measurements that could be used on the smaller areas. The resistivity through the oxide layer was calculated to ρSnO₂ = 247±96 MΩ cm, which is higher than for SnO₂ deposited by other techniques, and too high for tandem cell application. Schottky barriers formed at the interfaces will typically limit the charge transport further.
78

Use of Atomic Layer Deposition to Create Bioactive Titania Nanostructures for Improved Biocompatibility of Titanium Implants

Humphreys, Morgan Grace 16 January 2020 (has links)
No description available.
79

Annealing Effects on the Band Alignment of ALD SiO2 on (Inx Ga1−x )2 O3 for x = 0.25–0.74

Fares, Chaker, Xian, Minghan, Smith, David J., McCartney, M.R., Kneiß, Max, von Wenckstern, Holger, Grundmann, Marius, Tadjer, Marko, Ren, Fan, Pearton, S.J. 28 April 2023 (has links)
The band alignment of Atomic Layer Deposited SiO 2 on (In x Ga1−x) 2 O 3 at varying indium concentrations is reported before and after annealing at 450 °C and 600 °C to simulate potential processing steps during device fabrication and to determine the thermal stability of MOS structures in high-temperature applications. At all indium concentrations studied, the valence band offsets (VBO) showed a nearly constant decrease as a result of 450 °C annealing. The decrease in VBO was −0.35 eV for (In0.25Ga 0.75) 2 O 3 , −0.45 eV for (In0.42Ga 0.58) 2 O 3 , −0.40 eV for (In0.60Ga 0.40) 2 O 3 , and −0.35 eV (In0.74 Ga0.26) 2 O 3 for 450 °C annealing. After annealing at 600 °C, the band alignment remained stable, with <0.1 eV changes for all structures examined, compared to the offsets after the 450 °C anneal. The band offset shifts after annealing are likely due to changes in bonding at the heterointerface. Even after annealing up to 600 °C, the band alignment remains type I (nested gap) for all indium compositions of (In x Ga1−x ) 2 O 3 studied.
80

Fabrication of Advanced Materials for Chromatography, Sample Preparation, and Separations, and Accompanying Material Characterization

Patel, Dhananjay I. 03 December 2021 (has links)
My dissertation primarily focuses on the fabrication of materials for solid phase microextraction (SPME) and separation devices. In my first project, I used direct current magnetron sputtering (DCMS) to prepare sputtered silicon coatings on fused silica fibers. These fibers were then subjected to the chemical vapor deposition of 6-phenyhexylsilane (6-PH) as a stationary phase. Six different types of fibers were made using two different throw distances (4 cm and 20 cm) and three different silicon thicknesses (0.5, 1.8, and 2.8 µm). These coatings were characterized by time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), spectroscopic ellipsometry (SE), and contact angle goniometry. These SPME fibers were evaluated using gas chromatography (GC). The extraction efficiencies of sputtered, 6-PH-coated fibers were compared to that of a commercial fiber (7 µm PDMS) for polycyclic aromatic hydrocarbons (PAHs). Our 2.8 µm thick sputtered silicon coatings showed competitive extraction of low molecular weight PAHs and ca. 3 times the extraction efficiency for higher molecular weight PAHs. In addition, it outperformed the commercial fiber by showing better linearity, repeatability, and detection limits. A method for analyzing polyaromatic hydrocarbons in baby formula was developed, which showed very good linearity (0.5-125 ppb), repeatability (2-26%), detection limits (0.12-0.81 ppb), and recoveries (103-135%). In my second project, I focused on preparing sputtered carbon SPME fibers using DCMS sputtering. These fibers were tested with and without PDMS coatings on top by SPME-GC-MS. In addition, a new SPME evaluation mix was developed for testing the newly developed SPME fibers. The evaluation mix included analytes with diverse functionalities and properties. Our best carbon fiber showed very competitive extraction capabilities on a per volume basis when compared with a commercial 95 µm carbon-based fiber. In a third project, I built an ALD system to deposit thin films inside GC capillary columns. This system has a unique design that also allows for ALD on witness silicon samples before and after the capillary column. This system yields very promising results with ALD of alumina inside 5 and 12 m long capillary columns. The ALD coatings deposited inside the columns were characterized by transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). The thicknesses of the coatings on witness shards were almost identical to the thicknesses of the coatings in the capillaries. My fourth project focused on characterizing a liquid polymer (diphenyl siloxane dimethyl siloxane (DPS-DMS)) via SE. This material was a potential stationary phase for our SPME fibers. Transmission measurements were obtained via a dual cuvette approach that eliminated the effects of the cuvettes and their interfaces. The optical function of this material was modeled with a Sellmeier function in its transparent region.

Page generated in 0.0382 seconds