• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 621
  • 203
  • 140
  • 119
  • 66
  • 61
  • 23
  • 19
  • 16
  • 14
  • 10
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 1507
  • 714
  • 518
  • 318
  • 230
  • 230
  • 227
  • 205
  • 188
  • 161
  • 161
  • 146
  • 144
  • 142
  • 139
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

An FM-AM multiplier of high accuracy and wide range

January 1951 (has links)
Robert Price. / "October 4, 1951." / Bibliography: p. 15. / Army Signal Corps Contract DA36-039 sc-100, Project no. 8-102B-0. Dept. of the Army Project no. 3-99-10-022.
142

Massively Parallel Implementations of Theories for Apparent Motion

Grzywacz, Norberto, Yuille, Alan 01 June 1987 (has links)
We investigate two ways of solving the correspondence problem for motion using the assumptions of minimal mapping and rigidity. Massively parallel analog networks are designed to implement these theories. Their effectiveness is demonstrated with mathematical proofs and computer simulations. We discuss relevant psychophysical experiments.
143

The Multi-Scale Veto Model: A Two-Stage Analog Network for Edge Detection and Image Reconstruction

Dron, Lisa 01 March 1992 (has links)
This paper presents the theory behind a model for a two-stage analog network for edge detection and image reconstruction to be implemented in VLSI. Edges are detected in the first stage using the multi-scale veto rule, which eliminates candidates that do not pass a threshold test at each of a set of different spatial scales. The image is reconstructed in the second stage from the brightness values adjacent to edge locations. The MSV rule allows good localization and efficient noise removal. Since the reconstructed images are visually similar to the originals, the possibility exists of achieving significant bandwidth compression.
144

Energy Functions for Early Vision and Analog Networks

Yuille, Alan 01 November 1987 (has links)
This paper describes attempts to model the modules of early vision in terms of minimizing energy functions, in particular energy functions allowing discontinuities in the solution. It examines the success of using Hopfield-style analog networks for solving such problems. Finally it discusses the limitations of the energy function approach.
145

SAT-based Verification for Analog and Mixed-signal Circuits

Deng, Yue 2012 May 1900 (has links)
The wide application of analog and mixed-signal (AMS) designs makes the verification of AMS circuits an important task. However, verification of AMS circuits remains as a significant challenge even though verification techniques for digital circuits design have been successfully applied in the semiconductor industry. In this thesis, we propose two techniques for AMS verification targeting DC and transient verifications, respectively. The proposed techniques leverage a combination of circuit modeling, satisfiability (SAT) and circuit simulation techniques. For DC verification, we first build bounded device models for transistors. The bounded models are conservative approximations to the accurate BSIM3/4 models. Then we formulate a circuit verification problem by gathering the circuit's KCL/KVL equations and the I-V characteristics which are constrained by the bounded models. A nonlinear SAT solver is then recursively applied to the problem formula to locate a candidate region which is guaranteed to enclose the actual DC equilibrium of the original circuit. In the end, a refinement technique is applied to reduce the size of candidate region to a desired resolution. To demonstrate the application of the proposed DC verification technique, we apply it to locate the DC equilibrium points for a set of ring oscillators. The experimental results show that the proposed DC verification technique is efficient in terms of runtime. For transient verification, we perform reachability analysis to verify the dynamic property of a circuit. Our method combines circuit simulation SAT to take advantage of the efficiency of simulation and the soundness of SAT. The novelty of the proposed transient verification lies in the fact that a significant part of the reachable state space is discovered via fast simulation while the full coverage of the reachable state space is guaranteed by the invoking of a few SAT runs. Furthermore, a box merging algorithm is presented to efficiently represent the reachable state space using grid boxes. The proposed technique is used to verify the startup condition of a tunnel diode oscillator and the phase-locking of a phase-locked loop (PLL). The experimental results demonstrate that the proposed transient verification technique can perform reachability analysis for reasonable complex circuits over a great number of time steps.
146

Effects and compensation of the analog integrator nonidealities in dual-quantization delta-sigma modulators

Yang, Yaohua, 1969- 20 February 1993 (has links)
Graduation date: 1993
147

Digital videoregistrering

Eliasson, Viktor January 2013 (has links)
This Bachelor thesis examines the possibility of replacing an outdated, analog video recording system to a digital counterpart. It is key that the video and audio signals remain synchronized, generator locked and time stamped. It is up to nine different video sources and a number of audio sources to be recorded and treated in such a manner which enables synchronized playback. The  different video sources do not always follow a universal standard, and differ from format as well as resolution. This thesis aims to compare a number of state of the art commercial of the shelf solutions with proprietary hardware. Great emphasis is placed on giving a functional view over the system features and to evaluate different compression methods. The report also discusses different transmission, storage and playback options. The report culminates in a series of proposed solutions to sub problems which are solved and treated separately, leading to a final proposal from the author. The final draft set how well the system meets pre-set requirements to price.
148

A 43mW single-channel 4GS/s 4-bit flash ADC IN 0.18um CMOS

Sheikhaei, Samad 05 1900 (has links)
The continued speed improvement of serial links and appearance of new communication technologies, such as ultra wideband (UWB), have introduced increasing demands on the speed and power specifications of high speed low to medium resolution analog to digital converters (ADCs). While multi channel ADCs can achieve high speeds, they often require extensive and costly post fabrication calibration. A single channel 4 bit flash ADC, suitable for abovementioned or similar applications, implemented entirely using current mode logic (CML) blocks, is presented. CML implementation allows for high sampling rates, while typically providing low power consumption at high speeds. To improve the conversion rate, both the analog (comparator array) and the digital (encoder) parts of the ADC are fully pipelined. Furthermore, the logic functions in the encoder are reformulated to reduce wire crossings and delay and to equalize the wires lengths in the layout. To keep the design simple, inductors are avoided. As a result, a compact design with small wire parasitics is achieved. Moreover, some geometric layout techniques, including a common centroid layout for the resistor ladder, are introduced to reduce the effect of mismatches to eliminate the use of digital calibration. The ADC is designed and fabricated in 0.18um CMOS and operates at 4GS/s. It achieves an effective number of bits (ENOB) of 3.71 (3.14, 2.75) for a 10MHz (0.501GHz, 1.491GHz) signal sampled at 4GS/s (3GS/s, 3GS/s). Differential/integral nonlinearity (DNL/INL) errors are between +/-0.35LSB and +/-0.26LSB, respectively. The ADC consumes 43mW from a 1.8V supply and occupies 0.06mm2 active area. Due to the use of CML circuits, the ADC achieves the highest speed reported for a single channel 4 bit ADC in a 0.18um CMOS technology. It also reports the best power performance among the 4-bit ADCs with similar or higher speeds. The active area is also among the smallest reported. In addition, in this thesis, the signal to noise ratio (SNR) of an ADC is formulated in terms of its INL performance. The related formulas in the literature are not accurate for low resolution ADCs, and yet they do not take the input waveform into account. Two standard waveforms, ramp and sinusoid, are considered here. The SNR formulas are derived and confirmed by simulation results.
149

High-Speed Analog-to-Digital Converters for Broadband Applications

Ismail, Ayman January 2007 (has links)
Flash Analog-to-Digital Converters (ADCs), targeting optical communication standards, have been reported in SiGe BiCMOS technology. CMOS implementation of such designs faces two challenges. The first is to achieve a high sampling speed, given the lower gain-bandwidth (lower ft) of CMOS technology. The second challenge is to handle the wide bandwidth of the input signal with a certain accuracy. Although the first problem can be relaxed by using the time-interleaved architecture, the second problem remains as a main obstacle to CMOS implementation. As a result, the feasibility of the CMOS implementation of ADCs for such applications, or other wide band applications, depends primarily on achieving a very small input capacitance (large bandwidth) at the desired accuracy. In the flash architecture, the input capacitance is traded off for the achievable accuracy. This tradeoff becomes tighter with technology scaling. An effective way to ease this tradeoff is to use resistive offset averaging. This permits the use of smaller area transistors, leading to a reduction in the ADC input capacitance. In addition, interpolation can be used to decrease the input capacitance of flash ADCs. In an interpolating architecture, the number of ADC input preamplifiers is reduced significantly, and a resistor network interpolates the missing zero-crossings needed for an N-bit conversion. The resistive network also averages out the preamplifiers offsets. Consequently, an interpolating network works also as an averaging network. The resistor network used for averaging or interpolation causes a systematic non-linearity at the ADC transfer characteristics edges. The common solution to this problem is to extend the preamplifiers array beyond the input signal voltage range by using dummy preamplifiers. However, this demands a corresponding extension of the flash ADC reference-voltage resistor ladder. Since the voltage headroom of the reference ladder is considered to be a main bottleneck in the implementation of flash ADCs in deep-submicron technologies with reduced supply voltage, extending the reference voltage beyond the input voltage range is highly undesirable. The principal objective of this thesis is to develop a new circuit technique to enhance the bandwidth-accuracy product of flash ADCs. Thus, first, a rigorous analysis of flash ADC architectures accuracy-bandwidth tradeoff is presented. It is demonstrated that the interpolating architecture achieves a superior accuracy compared to that of a full flash architecture for the same input capacitance, and hence would lead to a higher bandwidth-accuracy product, especially in deep-submicron technologies that use low power supplies. Also, the gain obtained, when interpolation is employed, is quantified. In addition, the limitations of a previous claim, which suggests that an interpolating architecture is equivalent to an averaging full flash architecture that trades off accuracy for the input capacitance, is presented. Secondly, a termination technique for the averaging/interpolation network of flash ADC preamplifiers is devised. The proposed technique maintains the linearity of the ADC at the transfer characteristics edges and cancels out the over-range voltage, consumed by the dummy preamplifiers. This makes flash ADCs more amenable for integration in deep-submicron CMOS technologies. In addition, the elimination of this over-range voltage allows a larger least-significant bit. As a result, a higher input referred offset is tolerated, and a significant reductions in the ADC input capacitance and power dissipation are achieved at the same accuracy. Unlike a previous solution, the proposed technique does not introduce negative transconductance at flash ADC preamplifiers array edges. As a result, the offset averaging technique can be used efficiently. To prove the resulting saving in the ADC input capacitance and power dissipation that is attained by the proposed termination technique, a 6-bit 1.6-GS/s flash ADC test chip is designed and implemented in 0.13-$\mu$m CMOS technology. The ADC consumes 180 mW from a 1.5-V supply and achieves a Signal-to-Noise-plus-Distortion Ratio (SNDR) of 34.5 dB and 30 dB at 50-MHz and 1450-MHz input signal frequency, respectively. The measured peak Integral-Non-Linearity (INL) and Differential-Non-Linearity (DNL) are 0.42 LSB and 0.49 LSB, respectively.
150

Automatiserad konstruktion av analoga förstärkare

Dida, Bashkim January 2005 (has links)
The last few decades the development in the field of electronics has been huge. The components performance gets better at the same time as the manufacturing cost decreases. Many of the design moments that have to be done, are done automatically today, but it can get better. Especially for analog circuit design. At Electronic System in Linköpings universitet, research is in progress to develop a tool that can design analog circuits in reasonable time. It means that it has to size the components (transistors, resistances, capacitances etc), so that the circuit can fulfill the performance requirements. An optimization method in conjunction with derived equations for the circuit performance is used to solve this task. The tool is created to design e.g. analog amplifiers. The goal is to decrease the design time and at the same time achieve better circuit performance. This tool has been tested on three different circuits, a power-amplifier, a Nested Miller Compensated amplifier with an active feedback (Active Nested Miller Compensation) and a Nested Miller Compensated amplifier without an active feedback (Nested Miller Compensation). In this report the results from the designing tests are presented.

Page generated in 0.0298 seconds