• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 335
  • 18
  • 17
  • 17
  • 15
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 494
  • 494
  • 219
  • 218
  • 163
  • 139
  • 116
  • 91
  • 81
  • 75
  • 71
  • 70
  • 63
  • 62
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Detecting Faults in Telecom Software Using Diffusion Models : A proof of concept study for the application of diffusion models on Telecom data / Feldetektering av telekom-mjukvaror med hjälp av diffusionsmodeller

Nabeel, Mohamad January 2023 (has links)
This thesis focuses on software fault detection in the telecom industry, which is crucial for companies like Ericsson to ensure stable and reliable software. Given the importance of software performance to companies that rely on it, automatically detecting faulty behavior in test or operational environments is challenging. Several approaches have been proposed to address this problem. This thesis explores reconstruction-based and forecasting-based anomaly detection using diffusion models to address software failure detection. To this end, the usage of the Structured State Space Sequence Diffusion Model was explored, which can handle temporal dependencies of varying lengths. The numerical time series data results were promising, demonstrating the model’s effectiveness in capturing and reconstructing the underlying patterns, particularly with continuous features. The contributions of this thesis are threefold: (i) A proposal of a framework for utilizing diffusion models for Time Series anomaly detection, (ii) a proposal of a particular Diffusion model Architecture that is capable of outperforming existing Ericsson Solutions on an anomaly detection dataset, (iii) presentation of experiments and results which add extra insight into the model’s capabilities, exposing some of its limitations and suggesting future research avenues to enhance its capabilities further. / Uppsatsen fokuserar på detektering av programvarufel inom telekomindustrin, vilket är essentiellt för företag som Ericsson för att säkerställa stabil och pålitlig programvara. Med hänsyn till vikten av programvarans prestanda för företag som är beroende av den är automatisk detektering av felaktigt beteende i test- eller operativa miljöer en utmanande uppgift. Flera metoder har föreslagits för att lösa problemet. Uppsatsen utforskar generativ-baserad och prediktiv-baserad anomalidetektering med hjälp av diffusionsmodeller för att hantera detektering av programvarufel. Den valda nätverksarkitekturen för att återskapa tidsseriedata var modellen ”Structured State Space Sequence Diffusion”. Resultaten för numeriska tidsseriedata var lovande och visade på modellens effektivitet i att fånga och återskapa de underliggande mönstren. Dock observerades det att modellen stötte på svårigheter vid hantering av kategoriska tidsseriekolumner. Begränsningarna i att fånga kategoriska tidsseriefunktioner pekar på ett område där modellens förmågor kan förbättras. Framtida forskning kan fokusera på att förbättra modellens förmåga att hantera kategoriska data på ett effektivt sätt.
302

Modern Anomaly Detection: Benchmarking, Scalability and a Novel Approach

Pasupathipillai, Sivam 27 November 2020 (has links)
Anomaly detection consists in automatically detecting the most unusual elements in a data set. Anomaly detection applications emerge in domains such as computer security, system monitoring, fault detection, and wireless sensor networks. The strategic importance of detecting anomalies in these domains makes anomaly detection a critical data analysis task. Moreover, the contextual nature of anomalies, among other issues, makes anomaly detection a particularly challenging problem. Anomaly detection has received significant research attention in the last two decades. Much effort has been invested in the development of novel algorithms for anomaly detection. However, several open challenges still exist in the field.This thesis presents our contributions toward solving these challenges. These contributions include: a methodological survey of the recent literature, a novel benchmarking framework for anomaly detection algorithms, an approach for scaling anomaly detection techniques to massive data sets, and a novel anomaly detection algorithm inspired by the law of universal gravitation. Our methodological survey highlights open challenges in the field, and it provides some motivation for our other contributions. Our benchmarking framework, named BAD, tackles the problem of reliably assess the accuracy of unsupervised anomaly detection algorithms. BAD leverages parallel and distributed computing to enable massive comparison studies and hyperparameter tuning tasks. The challenge of scaling unsupervised anomaly detection techniques to massive data sets is well-known in the literature. In this context, our contributions are twofold: we investigate the trade-offs between a single-threaded implementation and a distributed approach considering price-performance metrics, and we propose a scalable approach for anomaly detection algorithms to arbitrary data volumes. Our results show that, when high scalability is required, our approach can handle arbitrarily large data sets without significantly compromising detection accuracy. We conclude our contributions by proposing a novel algorithm for anomaly detection, named Gravity. Gravity identifies anomalies by considering the attraction forces among massive data elements. Our evaluation shows that Gravity is competitive with other popular anomaly detection techniques on several benchmark data sets. Additionally, the properties of Gravity makes it preferable in cases where hyperparameter tuning is challenging or unfeasible.
303

Online Anomaly Detection for Time Series. Towards Incorporating Feature Extraction, Model Uncertainty and Concept Drift Adaptation for Improving Anomaly Detection

Tambuwal, Ahmad I. January 2021 (has links)
Time series anomaly detection receives increasing research interest given the growing number of data-rich application domains. Recent additions to anomaly detection methods in research literature include deep learning algorithms. The nature and performance of these algorithms in sequence analysis enable them to learn hierarchical discriminating features and time-series temporal nature. However, their performance is affected by the speed at which the time series arrives, the use of a fixed threshold, and the assumption of Gaussian distribution on the prediction error to identify anomalous values. An exact parametric distribution is often not directly relevant in many applications and it’s often difficult to select an appropriate threshold that will differentiate anomalies with noise. Thus, implementations need the Prediction Interval (PI) that quantifies the level of uncertainty associated with the Deep Neural Network (DNN) point forecasts, which helps in making a better-informed decision and mitigates against false anomaly alerts. To achieve this, a new anomaly detection method is proposed that computes the uncertainty in estimates using quantile regression and used the quantile interval to identify anomalies. Similarly, to handle the speed at which the data arrives, an online anomaly detection method is proposed where a model is trained incrementally to adapt to the concept drift that improves prediction. This is implemented using a window-based strategy, in which a time series is broken into sliding windows of sub-sequences as input to the model. To adapt to concept drift, the model is updated when changes occur in the new arrival instances. This is achieved by using anomaly likelihood which is computed using the Q-function to define the abnormal degree of the current data point based on the previous data points. Specifically, when concept drift occurs, the proposed method will mark the current data point as anomalous. However, when the abnormal behavior continues for a longer period of time, the abnormal degree of the current data point will be low compared to the previous data points using the likelihood. As such, the current data point is added to the previous data to retrain the model which will allow the model to learn the new characteristics of the data and hence adapt to the concept changes thereby redefining the abnormal behavior. The proposed method also incorporates feature extraction to capture structural patterns in the time series. This is especially significant for multivariate time-series data, for which there is a need to capture the complex temporal dependencies that may exist between the variables. In summary, this thesis contributes to the theory, design, and development of algorithms and models for the detection of anomalies in both static and evolving time series data. Several experiments were conducted, and the results obtained indicate the significance of this research on offline and online anomaly detection in both static and evolving time-series data. In chapter 3, the newly proposed method (Deep Quantile Regression Anomaly Detection Method) is evaluated and compared with six other prediction-based anomaly detection methods that assume a normal distribution of prediction or reconstruction error for the identification of anomalies. Results in the first part of the experiment indicate that DQR-AD obtained relatively better precision than all other methods which demonstrates the capability of the method in detecting a higher number of anomalous points with low false positive rates. Also, the results show that DQR-AD is approximately 2 – 3 times better than the DeepAnT which performs better than all the remaining methods on all domains in the NAB dataset. In the second part of the experiment, sMAP dataset is used with 4-dimensional features to demonstrate the method on multivariate time-series data. Experimental result shows DQR-AD have 10% better performance than AE on three datasets (SMAP1, SMAP3, and SMAP5) and equal performance on the remaining two datasets. In chapter 5, two levels of experiments were conducted basis of false-positive rate and concept drift adaptation. In the first level of the experiment, the result shows that online DQR-AD is 18% better than both DQR-AD and VAE-LSTM on five NAB datasets. Similarly, results in the second level of the experiment show that the online DQR-AD method has better performance than five counterpart methods with a relatively 10% margin on six out of the seven NAB datasets. This result demonstrates how concept drift adaptation strategies adopted in the proposed online DQR-AD improve the performance of anomaly detection in time series. / Petroleum Technology Development Fund (PTDF)
304

Telecom Fraud Detection Using Machine Learning

Xiong, Chao January 2022 (has links)
International Revenue Sharing Fraud (IRSF) is one of the most persistent types of fraud within the telecommunications industry. According to the 2017 Communications Fraud Control Association (CFCA) fraud loss survey, IRSF costs 6 billion dollars a year. Therefore, the detection of such frauds is of vital importance to avoid further loss. Though many efforts have been made, very few utilize the temporal patterns of phone call traffic. This project, supported with Sinch’s real production data, aims to exploit both spatial and temporal patterns learned by Graph Attention Neural network (GAT) with Gated Recurrent Unit (GRU) to find suspicious timestamps in the historical traffic. Moreover, combining with the time-independent Isolation forest model, our model should give better results for the phone call records. This report first explains the mechanism of IRSF in detail and introduces the models that are applied in this project, including GAT, GRU, and Isolation forest. Finally, it presents how our experiments have been conducted and the results with extensive analysis. Moreover, we have achieved 42.4% precision and 96.1% recall on the test data provided by Sinch, showing significant advantages over both previous work and baselines. / International Revenue Sharing Fraud (IRSF) är en av de mest ihållande typerna av bedrägerier inom telekommunikationsindustrin. Enligt 2017 Communications Fraud Control Association (CFCA) bedrägeriförlustundersökning kostar IRSF 6 miljarder dollar per år. Därför är upptäckten av sådana bedrägerier av avgörande betydelse för att undvika ytterligare förluster. Även om många ansträngningar har gjorts är det väldigt få som använder telefonsamtalstrafikens tidsmässiga mönster. Detta projekt, med stöd av Sinchs verkliga produktionsdata, syftar till att utnyttja både rumsliga och tidsmässiga mönster som lärts in av Graph Attention Neural Network (GAT) med Gated Recurrent Unit (GRU) för att hitta misstänkt tid i den historiska trafiken. Dessutom, i kombination med den tidsoberoende skogsmodellen Isolation, borde vår modell ge bättre resultat för telefonsamtalsposterna. Denna rapport förklarar först mekanismen för IRSF i detalj och introducerar modellerna som används i detta projekt, inklusive GAT, GRU och Isolation forest. Slutligen presenteras hur våra experiment har genomförts och resultaten med omfattande analys. Dessutom har vi uppnått 42.4% precision och 96.1% återkallelse på testdata från Sinch, vilket visar betydande fördelar jämfört med både tidigare arbete och baslinjer.
305

Context-aware Data Plausibility Check Using Machine Learning / Kontextmedveten dataplausibilitetskontroll med maskininlärning

Basiri, Mohaddeseh January 2021 (has links)
In the last two decades, computing and storage technologies have experienced enormous advances. Leveraging these recent advances, AI is making the leap from traditional classification use cases to automation of complex systems through advanced machine learning and reasoning algorithms. While the literature on AI algorithms and applications of these algorithms in automation is mature, there is a lack of research on trustworthy AI, i.e. how different industries can trust the developed AI modules. AI algorithms are data-driven, i.e. they learn based on the received data, and also act based on the received status data. Then, an initial step in addressing trustworthy AI is investigating plausibility of the data that is fed to the system. In this work, we study the state-of-the-art data plausibility check approaches. Then, we propose a novel approach that leverages machine learning for an automated data plausibility check. This novel approach is context-aware, i.e. it leverages potential contextual data related to the dataset under investigation for a plausibility check. Performance evaluation results confirm the outstanding performance of the proposed approach in data plausibility check. / Under de senaste två decennierna har beräkning- och lagringsteknologier upplevt enorma framsteg. Genom att utnyttja dessa senaste framsteg gör AI språnget från traditionella klassificeringsanvändningsfall till automatisering av komplexa system genom avancerade maskininlärnings- och resonerings algoritmer. Medan litteraturen om AI-algoritmer och tillämpningar av dessa algoritmer inom automatisering är mogen, saknas forskning om pålitlig AI, dvs. hur olika branscher kan lita på de utvecklade AI-modulerna. AI-algoritmer är datadrivna, dvs. de lär sig baserat på mottagen data, och agerar också baserat på mottagen statusdata. Sedan är det av yttersta vikt att kontrollera riktigheten av de data som matas till systemet. I det här arbetet studerar vi de senaste metoderna för rimlighetskontroll av data. Sedan föreslår vi ett nytt tillvägagångssätt som utnyttjar maskininlärning för en automatisk datasäkerhetskontroll. Detta nya tillvägagångssätt är kontextmedvetet, dvs det utnyttjar potentiell kontextuell information relaterad till datainnehåll som undersöks för en rimlighetskontroll. Resultatutvärderingsresultat bekräftar den enastående prestandan för det föreslagna tillvägagångssättet i rimlighetskontroll av data.
306

Analysis of Transactional Data with Long Short-Term Memory Recurrent Neural Networks

Nawaz, Sabeen January 2020 (has links)
An issue authorities and banks face is fraud related to payments and transactions where huge monetary losses occur to a party or where money laundering schemes are carried out. Previous work in the field of machine learning for fraud detection has addressed the issue as a supervised learning problem. In this thesis, we propose a model which can be used in a fraud detection system with transactions and payments that are unlabeled. The proposed modelis a Long Short-term Memory in an auto-encoder decoder network (LSTMAED)which is trained and tested on transformed data. The data is transformed by reducing it to Principal Components and clustering it with K-means. The model is trained to reconstruct the sequence with high accuracy. Our results indicate that the LSTM-AED performs better than a random sequence generating process in learning and reconstructing a sequence of payments. We also found that huge a loss of information occurs in the pre-processing stages. / Obehöriga transaktioner och bedrägerier i betalningar kan leda till stora ekonomiska förluster för banker och myndigheter. Inom maskininlärning har detta problem tidigare hanterats med hjälp av klassifierare via supervised learning. I detta examensarbete föreslår vi en modell som kan användas i ett system för att upptäcka bedrägerier. Modellen appliceras på omärkt data med många olika variabler. Modellen som används är en Long Short-term memory i en auto-encoder decoder nätverk. Datan transformeras med PCA och klustras med K-means. Modellen tränas till att rekonstruera en sekvens av betalningar med hög noggrannhet. Vår resultat visar att LSTM-AED presterar bättre än en modell som endast gissar nästa punkt i sekvensen. Resultatet visar också att mycket information i datan går förlorad när den förbehandlas och transformeras.
307

Deep Contrastive Metric Learning to Detect Polymicrogyria in Pediatric Brain MRI

Zhang, Lingfeng 28 November 2022 (has links)
Polymicrogyria (PMG) is one brain disease that mainly occurs in the pediatric brain. Heavy PMG will cause seizures, delayed development, and a series of problems. For this reason, it is critical to effectively identify PMG and start early treatment. Radiologists typically identify PMG through magnetic resonance imaging scans. In this study, we create and open a pediatric MRI dataset (named PPMR dataset) including PMG and controls from the Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada. The difference between PMG MRIs and control MRIs is subtle and the true distribution of the features of the disease is unknown. Hence, we propose a novel center-based deep contrastive metric learning loss function (named cDCM Loss) to deal with this difficult problem. Cross-entropy-based loss functions do not lead to models with good generalization on small and imbalanced dataset with partially known distributions. We conduct exhaustive experiments on a modified CIFAR-10 dataset to demonstrate the efficacy of our proposed loss function compared to cross-entropy-based loss functions and the state-of-the-art Deep SAD loss function. Additionally, based on our proposed loss function, we customize a deep learning model structure that integrates dilated convolution, squeeze-and-excitation blocks and feature fusion for our PPMR dataset, to achieve 92.01% recall. Since our suggested method is a computer-aided tool to assist radiologists in selecting potential PMG MRIs, 55.04% precision is acceptable. To our best knowledge, this research is the first to apply machine learning techniques to identify PMG only from MRI and our innovative method achieves better results than baseline methods.
308

PRAAG Algorithm in Anomaly Detection

Zhang, Dongyang January 2016 (has links)
Anomaly detection has been one of the most important applications of datamining, widely applied in industries like financial, medical,telecommunication, even manufacturing. In many scenarios, data are in theform of streaming in a large amount, so it is preferred to analyze the datawithout storing all of them. In other words, the key is to improve the spaceefficiency of algorithms, for example, by extracting the statistical summary ofthe data. In this thesis, we study the PRAAG algorithm, a collective anomalydetection algorithm based on quantile feature of the data, so the spaceefficiency essentially depends on that of quantile algorithm.Firstly, the master thesis investigates quantile summary algorithms thatprovides quantile information of a dataset without storing all the data point.Then, we implement the selected algorithms and run experiments to test theperformance. Finally, the report focuses on experimenting on PRAAG tounderstand how the parameters affect the performance and compare it withother anomaly detection algorithms.In conclusion, GK algorithm provides a more space efficient way to estimatequantiles than simply storing all data points. Also, PRAAG is effective in termsof True Prediction Rate (TPR) and False Prediction Rate (FPR), comparingwith a baseline algorithm CUSUM. In addition, there are many possibleimprovements to be investigated, such as parallelizing the algorithm. / Att upptäcka avvikelser har varit en av de viktigaste tillämpningarna avdatautvinning (data mining). Det används stor utsträckning i branscher somfinans, medicin, telekommunikation, och även tillverkning. I många fallströmmas stora mängder data och då är det mest effektivt att analysera utanatt lagra data. Med andra ord är nyckeln att förbättra algoritmernasutrymmeseffektivitet till exempel genom att extraheraden statistiskasammanfattning avdatat. PRAAGär en kollektiv algoritm för att upptäckaavvikelser. Den ärbaserad på kvantilenegenskapernai datat, såutrymmeseffektiviteten beror i huvudsak på egenskapernahoskvantilalgoritmen.Examensarbetet undersöker kvantilsammanfattande algoritmer som gerkvantilinformationen av ett dataset utan att spara alla datapunkter. Vikommer fram till att GKalgoritmenuppfyllervåra krav. Sedan implementerarvialgoritmerna och genomför experiment för att testa prestandan. Slutligenfokuserar rapporten påexperiment på PRAAG för att förstå hur parametrarnapåverkar prestandan. Vi jämför även mot andra algoritmer för att upptäckaavvikelser.Sammanfattningsvis ger GK ett mer utrymmeseffektiv sätt att uppskattakvantiler än att lagra alla datapunkter. Dessutom är PRAAG, jämfört med enstandardalgoritm (CUSUM), effektiv när det gäller True Prediction Rate (TPR)och False Prediction Rate (FPR). Det finns fortfarande flertalet möjligaförbättringar som ska undersökas, t.ex. parallelisering av algoritmen.
309

Water Anomaly Detection Using Federated Machine Learning

Wallén, Melker, Böckin, Mauricio January 2021 (has links)
With the rapid increase of Internet of Things-devices(IoT), demand for new machine learning algorithms and modelshas risen. The focus of this project is implementing a federatedlearning (FL) algorithm to detect anomalies in measurementsmade by a water monitoring IoT-sensor. The FL algorithm trainsacross a collection of decentralized IoT-devices, each using thelocal data acquired from the specific sensor. The local machinelearning models are then uploaded to a mutual server andaggregated into a global model. The global model is sent back tothe sensors and is used as a template when training starts againlocally. In this project, we only have had access to one physicalsensor. This has forced us to virtually simulate sensors. Thesimulation was done by splitting the data gathered by the onlyexisting sensor. To deal with the long, sequential data gatheredby the sensor, a long short-term memory (LSTM) network wasused. This is a special type of artificial neural network (ANN)capable of learning long-term dependencies. After analyzing theobtained results it became clear that FL has the potential toproduce good results, provided that more physical sensors aredeployed. / I samband med den snabba ökningen avInternet of Things-enheter (IoT) har efterfrågan på nya algoritmeroch modeller för maskininlärning ökat. Detta projektfokuserar på att implementera en federated learning (FL) algoritmför att detektera avvikelser i mätdata från en sensorsom övervakar vattenkvaliteten. FL algoritmen tränar en samlingdecentraliserade IoT-enheter, var och en med hjälp av lokaldata från sensorn i fråga. De lokala maskininlärningsmodellernaladdas upp till en gemensam server och sammanställs till englobal modell. Den globala modellen skickas sedan tillbaka tillsensorerna och används som mall när den lokala träningen börjarigen. I det här projektet hade vi endast tillgång till en fysisksensor. Vi har därför varit tvungna att simulera sensorer. Dettagjordes genom att dela upp datamängden som samlats in frånden fysiska sensorn. För att hantera den långa sekventiella dataanvänds ett long short-term memory (LSTM) nätverk. Detta ären speciell typ av artificiellt neuronnät (ANN) som är kapabeltatt minnas mönster under en längre tid. Efter att ha analyseratresultaten blev det tydligt att FL har potentialen att produceragoda resultat, givet att fler fysiska sensorer implementeras. / Kandidatexjobb i elektroteknik 2021, KTH, Stockholm
310

Anomaly Detection using LSTM N. Networks and Naive Bayes Classifiers in Multi-Variate Time-Series Data from a Bolt Tightening Tool / Anomali detektion med LSTM neuralt nätverk och Naive Bayes klassificerare av multivariabel tidsseriedata från en mutterdragare

Selander, Karl-Filip January 2021 (has links)
In this thesis, an anomaly detection framework has been developed to aid in maintenance of tightening tools. The framework is built using LSTM networks and gaussian naive bayes  classifiers. The suitability of LSTM networks for multi-variate sensor data and time-series prediction as a basis for anomaly detection has been explored. Current literature and research is mostly concerned with uni-variate data, where LSTM based approaches have had variable but often good results. However, most real world settings with sensor networks, such as the environment and tool from which this thesis data is gathered, are multi-variable. Thus, there is a need to research the effectiveness of the LSTM model in this setting. The thesis has emphasized the need of well defined evaluation metrics of anomaly detection approaches, the difficulties of defining anomalies and anomaly datasets, as well as illustrated the effectiveness of LSTM networks in multi-variate environments. / I den här uppsatsen har ett anomali detektions ramverk utvecklats för att bidra till underhållandet av åtdragarverktyg. Ramverket bygger på LSTM neurala nätverk och gaussian Naive Bayes klassificerare. Användbarheten av LSTM nätverk för multi-variabel data och tidsserie prediktion som basis för anomali detektion har undersökts. Nutida literatur och forskning berör mest envariabel data där LSTM baserade metoder ofta har presterat bra. Men, de flesta system i verkligheten är inte envariabel utan multivariabel, som den miljö verktyget, vars data undersöks i den här uppsatsen, opererar i. Därför anses det att det finns ett behov att undersöka användbarheten av LSTM modeller i den här typen av miljö. Det här arbetet har betonat vikten av väldefinierade utvärderingsvärden för anomali detektion, svårigheterna med att definiera anomalier och anomalidataset, samt illustrerat användbarheten av LSTM nätverk i multivariabla miljöer.

Page generated in 0.0782 seconds