• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 15
  • 14
  • 10
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 119
  • 46
  • 42
  • 42
  • 27
  • 20
  • 19
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Etude théorique de bulles de gaz rares dans une matrice céramique à haute température : modélisation par des approches semi-empiriques / Behaviour of rare confined gases in a high-temperature ceramic matrix : modelling through semi-empirical approaches

Arayro, Jack 18 December 2015 (has links)
Le dioxyde d’uranium UO2 est le combustible standard dans les réacteurs nucléaires à eau pressurisée (REP). Durant le fonctionnement du réacteur les pastilles combustibles subissent des contraintes thermiques et mécaniques. Pour cette raison il est très important de bien connaître les propriétés de ce système à la fois dans les conditions de fonctionnement normales et accidentelles (300 à 2000K). Lors des réactions de fission de l’uranium, des gaz rares comme le xénon sont produits à l’intérieur du combustible. En raison de leur faible solubilité, ces gaz vont former des bulles intra- et inter- granulaires dans l’UO2. La présence de ces bulles dans le combustible a un impact sur les propriétés macroscopiques de ce dernier. A l'échelle nanométrique, les bulles intragranulaires prennent la forme d’un octaèdre facetté, essentiellement suivant les directions (111) et (100). Devant la complexité de l’étude de la stabilité de cet octaèdre, nous avons décomposé le problème afin de pouvoir l’étudier de façon plus systématique et de découpler les différents effets. Dans un premier temps, nous avons déterminé la stabilité des surfaces planes (111) et (100) de l’UO2 et les modifications de microstructure engendrées par leur relaxation. Dans un deuxième temps, nous avons caractérisé les isothermes d’adsorption du xénon sur ces surfaces relaxées, en les comparant à ceux de l’incorporation dans une boîte vide pour identifier les effets de surface. Une attention particulière a été portée sur la microstructure du xénon dans ces systèmes. Finalement, nous avons effectué une analyse des propriétés mécaniques (profils de pression et de contrainte au voisinage des surfaces). / Uranium dioxide UO2 is the standard fuel in nuclear pressurized water reactors (PWR). During the operation of the reactor the fuel pellets undergo thermal and mechanical stresses. For this reason it is very important to understand these thermomechanical properties of this system both in normal operation conditions and accidental situations (300 to 2000K). During fission reactions of uranium, rare gases such as xenon are produced within the fuel. Due to their low solubility, these gases will either be released or form intra- and inter-granular bubbles inside the UO2. The presence of these bubbles in the fuel has an impact on the thermomechanical properties of the latter. We focus in this thesis on the study of intragranularbubbles and their impact on the thermomechanical properties of UO2 , through modeling at the atomic scale. At this scale, intragranular bubbles take the shape of an octahedron, presenting mainly (111) and (100) facets. Given the complexity of the study of the stability of this octahedron, we have simplified the problem in order to study it in a more systematic way and to decouple the various effects. First, the stability of (100) and (111) extended surfaces of UO2 and microscructural modifications generated by their relaxation were studied. In a second step, we dermined adsorption isotherms of xenon on these relaxed surfaces, and compared them to the incorporation ones inside an empty box in order to isolate surface effects. A specific attention has been given to the microstructure of xenon in these systems. Finally, an analysis of the mechanical properties (pressure and stress profiles near by the surface).
102

Antropologická kritika liberalismu u Charlese Taylora / Charles Taylor's anthropological critique of liberalism

Boudal, Jiří January 2012 (has links)
The thesis presents Charles Taylor's conception of liberalism where the negative concept of liberty is rooted in a positive moral ideal of authenticity. First of all, both the main motivations which led liberals to defend the pure negative concept of liberty and Taylor's claim that these motivations all depend on the atomistic ontology is examined. Later, this atomistic basis is refuted and Taylor's holistic approach is offered which relies mainly on concepts of the personal identity and of the so called strong evaluation. Following this, concept of authenticity is presented as the implicit ideal of modern identity. Authenticity is interpreted as a pluralistic moral ideal appreciating uniqueness although containing some general moral demands. The thesis also shows that such a concept of authenticity presupposes negative liberty. Finally, some political consequences of such a liberal theory are provided.
103

Simulation des matériaux magnétiques à base Cobalt par Dynamique Moléculaire Magnétique / Simulation of Cobalt base materials using Magnetic Molecular Dynamics

Beaujouan, David 07 November 2012 (has links)
Les propriétés magnétiques des matériaux sont fortement connectées à leur structure cristallographique. Nous proposons un modèle atomique de la dynamique d'aimantation capable de rendre compte de cette magnétoélasticité. Bien que ce travail s'inscrive dans une thématique générale de l'étude des matériaux magnétiques en température, nous la particularisons à un seul élément, le Cobalt. Dans ce modèle effectif, les atomes sont décrits par 3 vecteurs classiques qui sont position, impulsion et spin. Ils interagissent entre eux via un potentiel magnéto-mécanique ad hoc. On s'intéresse tout d'abord à la dynamique de spin atomique. Cette méthode permet d'aborder simplement l'écriture des équations d'évolution d'un système atomique de spins dans lequel la position et l'impulsion des atomes sont gelées. Il est toutefois possible de définir une température de spin permettant de développer naturellement une connexion avec un bain thermique. Montrant les limites d'une approche stochastique, nous développons une nouvelle formulation déterministe du contrôle de la température d'un système à spins.Dans un second temps, nous développons et analysons les intégrateurs géométriques nécessaires au couplage temporel de la dynamique moléculaire avec cette dynamique de spin atomique. La liaison des spins avec le réseau est assurée par un potentiel magnétique dépendant des positions des atomes. La nouveauté de ce potentiel réside dans la manière de paramétrer l'anisotropie magnétique qui est la manifestation d'un couplage spin-orbite. L'écriture d'un modèle de paires étendu de l'anisotropie permet de restituer les constantes de magnétostriction expérimentales du hcp-Co. En considérant un système canonique, où pression et température sont contrôlées, nous avons mis en évidence la transition de retournement de spin si particulière au Co vers 695K.Nous finissons par l'étude des retournements d'aimantation super-paramagnétiques de nanoplots de Co permettant de comparer ce couplage spin-réseau aux mesures récentes. / The magnetic properties of materials are strongly connected to their crystallographic structure. An atomistic model of the magnetization dynamics is developed which takes into account magneto-elasticity. Although this study is valid for all magnetic materials under temperatures, this study focuses only on Cobalt. In our effective model, atoms are described by three classical vectors as position, momentum and spin, which interact via an ad hoc magneto-mechanical potential.The atomistic spin dynamics is first considered. This method allows us to write the evolution equations of an atomic system of spins in which positions and impulsions are first frozen. However, a spin temperature is introduced to develop a natural connection with a thermal bath. Showing the limits of the stochastic approach, a genuine deterministic approach is followed to control the canonical temperature in this spin system.In a second step, several geometrical integrators are developed and analyzed to couple together both the molecular dynamics and atomic spin dynamics schemes. The connection between the spins and the lattice is provided by the atomic positions dependence of the magnetic potential. The novelty of this potential lies in the parameterization of the magnetic anisotropy which originates in the spin-orbit coupling. Using a dedicated pair model of anisotropy, the magnetostrictive constants of hcp-Co are restored. In a canonical system where pressure and temperature are controlled simultaneously, the transition of rotational magnetization of Co is found.Finally the magnetization reversals of super-paramagnetic Co nanodots is studied to quantify the impact of spin-lattice coupling respectively to recent measurements.
104

Structure et propriétés de carbones anisotropes par une approche couplant analyse d’image et simulation atomistique / Structure and properties of anisotropic carbons by an approach coupling image analysis and atomistic simulation

Farbos, Baptiste 02 December 2014 (has links)
Des techniques combinées d'analyse/synthèse d'images et de simulation atomistique ont permis d’étudier la nanostructure/-texture de matériaux carbonés anisotropes et denses de type pyrocarbone (PyC) laminaire hautement texturé. Des représentations atomiques d’un PyC laminaire rugueux tel que préparé (AP) ainsi que d’un PyC laminaire régénéré AP et après plusieurs traitements thermiques (HT) ont été reconstruites pour mieux caractériser ces matériaux. Ces modèles comportent des domaines graphéniques de quelques nanomètres, joints entre eux par des lignes de défauts formées de paires de cycles à 5 et 7 carbones dans le plan et par des dislocations vis et des atomes tétravalents entre les plans. Les modèles les plus ordonnés ont des domaines plus étendus et un plus faible taux de connexions inter-plan. Les propriétés mécaniques et thermiques prédites à partir de ces modèles sont proches de celles du graphite et augmentent avec la cohérence intra-plan et la densité de connexions inter-plans. Des modèles de graphène polycristallins ont aussi été générés. Ils sont apparus, du point de vue structural et des propriétés mécaniques, très proches des feuillets de carbones des PyCs. Ils ont permis d'étudier la réorganisation structurale se produisant au cours du HT : formation de lignes de défauts, réparation de lacunes, … Il s'agit d'un premier pas vers l'étude de la graphitation des PyCs. La méthode de reconstruction a enfin été adaptée à l'étude de l'évolution structurale d'un graphite au cours de son irradiation par les électrons. Cela a permis d'observer à l'échelle atomique la création et la propagation des défauts au cours de l'irradiation. / Combined images analysis/synthesis techniques and atomistic simulation methods have allowed studying the nanostructure/-texture of anisotropic dense carbons of the highly textured laminar pyrocarbon (PyC) type.Atomic representations of an as-prepared (AP) rough laminar PyC as well as a regenerative laminar PyC AP and after several heat treatments (HT) were reconstructed to better characterize these materials.The models contain nanosized graphene domains connected between them by line defects formed by pairs of rings with 5 and 7 carbons inside layers and by screw dislocations and fourfold atoms between layers. The most ordered models have larger domains and a lower percentage of connections between the layers.Mechanical and thermal properties predicted from these models are close to those of graphite and increase with the coherence inside layers and the density of connections between layers.Models of polycrystalline graphene were also generated, showing structure and mechanical properties very close to those of the carbon layers extracted from PyCs. The structural reorganization occurring during the HT of such materials was studied: thinning of line defects and vacancy healing were observed. This represents a first step towards the study of the graphitization of PyCs.The reconstruction method was eventually adapted to study the structural evolution of a nuclear-grade graphite during its irradiation by electrons, allowing us to observe how defects are created and propagate during irradiation.
105

Atomistic simulations of defect nucleation and free volume in nanocrystalline materials

Tucker, Garritt J. 20 May 2011 (has links)
Atomistic simulations are employed in this thesis to investigate defect nucleation and free volume of grain boundaries and nanocrystalline materials. Nanocrystalline materials are of particular interest due to their improved mechanical properties and alternative strain accommodation processes at the nanoscale. These processes, or deformation mechanisms, within nanocrystalline materials are strongly dictated by the larger volume fraction of grain boundaries and interfaces due to smaller average grain sizes. The behavior of grain boundaries within nanocrystalline materials is still largely unknown. One reason is that experimental investigation at this scale is often difficult, time consuming, expensive, or impossible with current resources. Atomistic simulations have shown the potential to probe fundamental behavior at these length scales and provide vital insight into material mechanisms. Therefore, work conducted in this thesis will utilize atomistic simulations to explore structure-property relationships of face-centered-cubic grain boundaries, and investigate the deformation of nanocrystalline copper as a function of average grain size. Volume-averaged kinematic metrics are formulated from continuum mechanics theory to estimate nonlocal deformation fields and probe the nanoscale features unique to strain accommodation mechanisms in nanocrystalline metals. The kinematic metrics are also leveraged to explore the tensile deformation of nanocrystalline copper at 10K. The distribution of different deformation mechanisms is calculated and we are able to partition the role of competing mechanisms in the overall strain of the nanocrystalline structure as a function of grain size. Grain boundaries are observed to be influential in smaller grained structures, while dislocation glide is more influential as grain size increases. Under compression, however, the resolved compressive normal stress on interfaces hinders grain boundary plasticity, leading to a tension-compression asymmetry in the strength of nanocrystalline copper. The mechanisms responsible for the asymmetry are probed with atomistic simulations and the volume-averaged metrics. Finally, the utility of the metrics in capturing nonlocal nanoscale deformation behavior and their potential to inform higher-scaled models is discussed.
106

Thermodynamic driving forces in protein regulation studied by molecular dynamics simulations / Molekulardynamische Studien zu thermodynamischen Triebkräfte von Proteinregulierung

Hensen, Ulf 22 January 2009 (has links)
No description available.
107

Computational investigations of molecular transport processes in nanotubular and nanocomposite materials

Konduri, Suchitra 12 February 2009 (has links)
The unique physical properties of nanomaterials, attributed to the combined effects of their size, shape, and composition, have sparked significant interest in the field of nanotechnology. Fabrication of nanodevices using nanomaterials as building-blocks are underway to enable novel technological applications. A fundamental understanding on the structure-property relationships and the mechanism of synthesizing nanomaterials with tailored physical properties is critical for a rationale design of functional nanodevices. In this thesis, molecular simulations that employ a detailed atomistic description of the nanoscopic structures were used to understand the structure-transport property relationships in two novel classes of porous nanomaterials, namely, polymer/porous inorganic layered nanocomposite materials and single-walled metal oxide nanotubes, and provide predictions for the design of nanodevices using these nanomaterials. We employed molecular dynamics to study transport of gas molecules (in particular He, H2, N2 and O2) through a polydimethylsiloxane/porous layered silicate (AMH-3) nanocomposite membrane material as a function of its composition. Gas separation performance of the nanocomposite was found to be substantially enhanced for H2/N2 and H2/O2 compared to pure polymeric material due to the molecular sieving effect of AMH-3, suggesting the possibility of developing a new class of superior separation devices. We also developed force field parameters for layered aluminophosphates that are emerging as potential inorganic layers for construction of nanocomposite materials. We presented preliminary work on developing Transition State Approach-Monte Carlo simulation method for calculating gas transport properties of nanocomposite materials. We investigated in detail the diameter control phenomenon in single-walled metal oxide nanotubes using molecular dynamics simulations and demonstrated the existence of a thermodynamic 'handle' for tuning the nanotube diameters and derived a unique correlation between nanotube energy, composition, and diameter to precisely predict nanotube diameters. Finally, using a combination of molecular dynamics, monte carlo and sorption experiments, we investigated adsorption and diffusion properties of water in single-walled aluminosilicate nanotubes. We predicted high water fluxes in these nanotubes, due to short lengths, hydrophilic interior and near-bulk-water diffusivities. Overall, my research represents two examples of the progress in developing a predictive basis for the design and analysis of nanostructures for applications in separations, nanofluidics, and fuel cell technology.
108

Etude des cellules mémoires résistives RRAM à base de HfO2 par caractérisation électrique et simulations atomistiques / Investigation of HfO2-based resistive RAM cells by electrical characterization and atomistic simulations

Traoré, Boubacar 27 April 2015 (has links)
La mémoire NAND Flash représente une part importante dans le marché des circuits intégrés et a bénéficié de la traditionnelle miniaturisation de l’industrie des sémiconducteurs lui permettant un niveau d’intégration élevé. Toutefois, cette miniaturisation semble poser des sérieux problèmes au-delà du noeud 22 nm. Dans un souci de dépasser cette limite, des solutions mémoires alternatives sont proposées parmi lesquelles la mémoire résistive (RRAM) se pose comme un sérieux candidat pour le remplacement de NAND Flash. Ainsi, dans cette thèse nous essayons de répondre à des nombreuses questions ouvertes sur les dispositifs RRAM à base d’oxyde d’hafnium (HfO2) en particulier en adressant le manque de compréhension physique détaillée sur leur fonctionnement et leur fiabilité. L’impact de la réduction de taille des RRAM, le rôle des électrodes et le processus de formation et de diffusion des défauts sont étudiés. L’impact de l’alliage/dopage de HfO2 avec d’autres matériaux pour l’optimisation des RRAM est aussi abordé. Enfin, notre étude tente de donner quelques réponses sur la formation du filament conducteur, sa stabilité et sa possible composition. / Among non-volatile memory technologies, NAND Flash represents a significant portion in the IC market and has benefitted from the traditional scaling of semiconductor industry allowing its high density integration. However, this scaling seems to be problematic beyond the 22 nm node. In an effort to go beyond this scaling limitation, alternative memory solutions are proposed among which Resistive RAM (RRAM) stands out as a serious candidate for NAND Flash replacement. Hence, in this PhD thesis we try to respond to many open questions about RRAM devices based on hafnium oxide (HfO2), in particular, by addressing the lack of detailed physical comprehension about their operation and reliability. The impact of scaling, the role of electrodes, the process of defects formation and diffusion are investigated. The impact of alloying/doping HfO2 with other materials for improved RRAM performance is also studied. Finally, our study attempts to provide some answers on the conductive filament formation, its stability and possible composition.
109

Atomistic modelling of precipitation in Ni-base superalloys

Schmidt, Eric January 2019 (has links)
The presence of the ordered $\gamma^{\prime}$ phase ($\text{Ni}_{3}\text{Al}$) in Ni-base superalloys is fundamental to the performance of engineering components such as turbine disks and blades which operate at high temperatures and loads. Hence for these alloys it is important to optimize their microstructure and phase composition. This is typically done by varying their chemistry and heat treatment to achieve an appropriate balance between $\gamma^{\prime}$ content and other constituents such as carbides, borides, oxides and topologically close packed phases. In this work we have set out to investigate the onset of $\gamma^{\prime}$ ordering in Ni-Al single crystals and in Ni-Al bicrystals containing coincidence site lattice grain boundaries (GBs) and we do this at high temperatures, which are representative of typical heat treatment schedules including quenching and annealing. For this we use the atomistic simulation methods of molecular dynamics (MD) and density functional theory (DFT). In the first part of this work we develop robust Bayesian classifiers to identify the $\gamma^{\prime}$ phase in large scale simulation boxes at high temperatures around 1500 K. We observe significant \gamma^{\prime} ordering in the simulations in the form of clusters of $\gamma^{\prime}$-like ordered atoms embedded in a $\gamma$ host solid solution and this happens within 100 ns. Single crystals are found to exhibit the expected homogeneous ordering with slight indications of chemical composition change and a positive correlation between the Al concentration and the concentration of $\gamma^{\prime}$ phase. In general, the ordering is found to take place faster in systems with GBs and preferentially adjacent to the GBs. The sole exception to this is the $\Sigma3 \left(111\right)$ tilt GB, which is a coherent twin. An analysis of the ensemble and time lag average displacements of the GBs reveals mostly `anomalous diffusion' behaviour. Increasing the Al content from pure Ni to Ni 20 at.% Al was found to either consistently increase or decrease the mobility of the GB as seen from the changing slope of the time lag displacement average. The movement of the GB can then be characterized as either `super' or `sub-diffusive' and is interpreted in terms of diffusion induced grain boundary migration, which is posited as a possible precursor to the appearance of serrated edge grain boundaries. In the second part of this work we develop a method for the training of empirical interatomic potentials to capture more elements in the alloy system. We focus on the embedded atom method (EAM) and use the Ni-Al system as a test case. Recently, empirical potentials have been developed based on results from DFT which utilize energies and forces, but neglect the electron densities, which are also available. Noting the importance of electron densities, we propose a route to include them into the training of EAM-type potentials via Bayesian linear regression. Electron density models obtained for structures with a range of bonding types are shown to accurately reproduce the electron densities from DFT. Also, the resulting empirical potentials accurately reproduce DFT energies and forces of all the phases considered within the Ni-Al system. Properties not included in the training process, such as stacking fault energies, are sometimes not reproduced with the desired accuracy and the reasons for this are discussed. General regression issues, known to the machine learning community, are identified as the main difficulty facing further development of empirical potentials using this approach.
110

Calculs ab-initio et simulations atomistiques des propriétés thermodynamiques et cinétiques de complexes de métaux de transition utilisés comme batteries / First principles and Atomistic simulation of the thermodynamical and dynamical properties of transition-metal complexes for battery application

Bhatti, Asif Iqbal 20 December 2018 (has links)
Ce travail théorique vise à étudier, via les méthodes Premiers Principes, les propriétés des complexes de métaux de transitions, left[Mleft(dmbpyright)_{3}right]^{n+}nCi^{-} pour un usage en batterie. Pour cette étude ab-initio, les composés mono et bi-nucléaires ont été retenus. La pertinance de notre modélisation a été validée sur les composés mononucléaires. Nous nous sommes interessé au complexes de Fe, Ru et Cu pour lesquels une validation expérimentale était possible. Notre étude a principalement consisté à faire varier les degrés de liberté que nous possédons pour optimiser le voltage et la cinétique de chargement des batteries. Pour cela, nous avons fait varier le TM = Fe, Ru, et Cu, la nature des contre-ions Ci^{-}=PF_{6}^{-}, TFSI^{-} et ClO_{4}^{-} en interaction avec le polymère lors du processus de charge, ainsi que la longeur de la chaîne alkyl qui sépare les deux monomers dans le cas des composés binucléaires. Le composé à base de Fe avec une chaîne -left(CH_{2}right)_{n=6}- a été retenu comme le meilleur candidat pour une application batterie. Le composé à base Ru montre un comportement proche de celui du Fe, quant-au complexe de Cu, il présente des changements de géométrie locale sous chargement trop importants, le rendant peu apte à conduire à une cinétique efficace. Cette étude nous a permis de déterminer que l'approximation PBE était le meilleur choix possible pour modéliser nos complexes dans les conditions de fonctionnement en batterie (dans le champ créé par les contre-ions) et que l'approximation PBE0, généralement utilisée dans la littérature, ne pouvait rendre compte de la physico-chimie de nos composés dans de telles conditions.De surcroît, nous avons dévelopé pour le complexe de Fe, un potentiel atomistique de type “Champ de forces” de manière à pouvoir aborder les aspects dynamiques impliquant de plus grandes tailles de boîte de simulation. Ici, nous modélisons une structure 3D, totalement réticulée à partir de nos monomères à base de Fe. Nous nous sommes servi de la base de donnés DFT que nous avions généré (énergies, géométries, état de spin et fréquences vibrationnelles calculées) pour ajuster les paramètres entrant dans l'écriture du modèle. La construction de la géométrie initiale du polymère 3D a nécessité l'écriture d'un code de calcul visant à produire un arrangement complétement réticulé et à assigner les charges effectives issues des calculs DFT. Ce modèle nous a permis de déterminer les coefficients de diffusion des contre-ions pour les états totalement chargé et non-chargé. Un calcul plus ambitieux vise à déterminer les chemins de diffusion des contre-ions lors d'un processus de chargement en considérant un seul centre de degré d'oxydation 3+ au centre du polymère 3D, pour lequel les centres actifs possèdent un degré d'oxidation 2+. Les contre-ions assurent la neutralité globale.Keyword: Polymer, Electrochemistry, Li-ion Battery, DFT, Force Field development, 3D structure, Atomistic modeling / Abstract Standard redox potentials for mono and bi-nuclear transition metal (TM) complexes left[Mleft(dmbpyright)_{3}right]^{n+}nCi^{-}, have been investigated using First Principles Calculation. Three metal centers are investigated: Fe, Ru, and Cu. Our modeling is validated on mono-nuclear compounds. This approach consists in determining the best small polymer (bi-nuclear) made out of these monomers for a battery application. For that, we varied the three available degrees of freedom i.e., the nature of the central TM atom (Fe, Ru, and Cu), counter-ions Ci=PF_{6}^{-}, TFSI^{-} and ClO_{4}^{-} in interaction with the polymer, and the alkyl chain -left(CH_{2}right)_{n}- of length n that connects both mono-nuclear in the bi-nuclear compound. The Iron compound with -left(CH_{2}right)_{n=6}- is found to be the best candidate. The left[Culeft(dmbpyright)_{2}right]^{n+}nCi^{-} complex shows too much structure deformation upon loading, making it less reliable for cathode material. Moreover, we studied two XC functional, PBE and PBE0 and found, for three complexes PBE approximation retains the ligand field picture whereas PBE0 functional induces an exaggerated and unexpected band dispersion by dissolving the ligand field picture expected for the octahedral environment of the TM in the studied complexes. These findings validate that hybrid functional for which it was designed to localize and cancel self-interaction error does not work for all system. More particularly, the PBE0 approximation fails to model the three complexes (Fe, Ru, and Cu) in functional conditions (in the field made by the counter-ions).Abstract Further, we have developed an atomistic potential relying on the Force Field scheme for the Iron complex in order to study the dynamical properties of this compound at larger simulation scale (3D reticulated polymerization made of our Fe complex monomers). We made an intensive use of our DFT data (energies, geometries, spin-state configurations and calculated vibrational properties) to develop the required parameters entering the model. Moreover, computational techniques (written python language) were developed specifically to create a 3D structure of transition metal complexes satisfying the condition to be fully reticulated. Bounding conditions had to be designed and a procedure aiming at fixing reliable and physical effective charges on each atom of the simulation cell (compatible with DFT results) were developed. Our first simulations have been attached to calculate the diffusion coefficients of the counter-ions in both the fully loaded and unloaded states. A more ambitious and realistic calculation aims at investigating the paths of the counter-ions when one single center starts to be loaded in an unloaded environment.Abstract Keyword: Polymer, Electrochemistry, Li-ion Battery, DFT, Force Field development, 3D structure, Atomistic modeling

Page generated in 0.0749 seconds