11 |
Development of a Balun with Suspending Structure by MEMS TechnologyDeng, Yu-Ting 16 November 2011 (has links)
Balun is a key component in radio frequency (RF) circuits. The conventional Si-based planar spiral balun presented a high insertion loss. To solve this problem, this thesis firstly develops a Si-based suspending spiral balun using electrochemical deposition and surface micromachining technology for the fourth generation of wireless communication system.
To reduce the power dissipation of the conventional Si-based planar spiral balun, thesis utilized a suspending structure to reduce the power loss through the substrate and dielectric layer. The fabricated suspending spiral balun are constructed by three bottom GSG electrodes, thirty three supporting copper vias and a suspending spiral copper conducting layer. The main fabrication processes in this research including: (1) four thin-film deposition processes, (2) four photolithography processes, (3) two etching processes and (4) two copper electroplating processes. In addition, this thesis used the commercial software (Ansoft HFSS) to analysis the high frequency characteristic of Si-based suspending spiral balun.
The finished Si-based suspending spiral balun were measured by a commercial network analyzer under 2~8 GHz testing frequency range. Based on the measurement results, the value of insertion loss is 1.26 dB at 5.2 GHz, magnitude imbalanced is lower than 0.86 dB, phase imbalanced is less than 3.4 degree and CMRR is more than 30 dB. Finally, this thesis successfully develops a Si-based suspending spiral balun using MEMS technology for the fourth generation wireless communication system. Read more
|
12 |
A Study of Switched Mode Power Amplifiers using LDMOSAl Tanany, Ahmed January 2007 (has links)
This work focuses on different kinds of Switch Mode Power Amplifiers (SMPAs) using LDMOS technologies. It involves a literature study of different SMPA concepts. Choosing the suitable class that achieves the high efficiency was the base stone of this work. A push-pull class J power amplifier (PA) was designed with an integrated LC resonator inside the package using the bondwires and die capacitances. Analysis and motivation of the chosen class is included. Designing the suitable Input/Output printed circuit board (PCB) external circuits (i.e.; BALUN circuit, Matching network and DC bias network) was part of the work. This work is done by ADS simulation and showed a simulated result of about 70% drain efficiency for 34 W output power and 16 dB gain at 2.14 GHz. Study of the losses in each part of the design elements is also included. Another design at lower frequency (i.e.; at 0.94 GHz) was also simulated and compared to the previous design. The drain efficiency was 83% for 32 W output power and 15.4 dB Gain.
|
13 |
CMOS bulk-driven mixers with passive balunsVan Vorst, Daryl 11 1900 (has links)
The design, simulation, and measurement of two bulk-driven down-conversion mixers with on-chip
transformer baluns in 0.18 μm CMOS is presented. Applying either the RF signal or the
local oscillator (LO) signal to the bulk connection of the transistors allows the amplification and
switching stages of a conventional mixer to be combined into a single stage, thus improving the
voltage headroom of the mixer. The addition of a transformer balun to the mixers improves the
input impedance match, provides passive voltage gain, and performs single-ended to balanced
conversion. A semi-analytical power-series analysis of the mixers is also presented. The mixer in
which the RF signal is applied to the gates of the mixing transistors achieves a measured input-referred
1-dB compression point (P1dB) of −14 dBm, an input-referred third-order intercept
point (IIP3) of −5.2 dBm, a gain of 13.6 dB, a noise figure (NF) of 26 dB, and an LO-to-RF
isolation of 50 dB. The overall performance of both mixers is found to be comparable with
other CMOS mixers, but with a higher noise figure (which can be mitigated with a high gain
low-noise amplifier (LNA)).
|
14 |
CMOS bulk-driven mixers with passive balunsVan Vorst, Daryl 11 1900 (has links)
The design, simulation, and measurement of two bulk-driven down-conversion mixers with on-chip
transformer baluns in 0.18 μm CMOS is presented. Applying either the RF signal or the
local oscillator (LO) signal to the bulk connection of the transistors allows the amplification and
switching stages of a conventional mixer to be combined into a single stage, thus improving the
voltage headroom of the mixer. The addition of a transformer balun to the mixers improves the
input impedance match, provides passive voltage gain, and performs single-ended to balanced
conversion. A semi-analytical power-series analysis of the mixers is also presented. The mixer in
which the RF signal is applied to the gates of the mixing transistors achieves a measured input-referred
1-dB compression point (P1dB) of −14 dBm, an input-referred third-order intercept
point (IIP3) of −5.2 dBm, a gain of 13.6 dB, a noise figure (NF) of 26 dB, and an LO-to-RF
isolation of 50 dB. The overall performance of both mixers is found to be comparable with
other CMOS mixers, but with a higher noise figure (which can be mitigated with a high gain
low-noise amplifier (LNA)).
|
15 |
CMOS bulk-driven mixers with passive balunsVan Vorst, Daryl 11 1900 (has links)
The design, simulation, and measurement of two bulk-driven down-conversion mixers with on-chip
transformer baluns in 0.18 μm CMOS is presented. Applying either the RF signal or the
local oscillator (LO) signal to the bulk connection of the transistors allows the amplification and
switching stages of a conventional mixer to be combined into a single stage, thus improving the
voltage headroom of the mixer. The addition of a transformer balun to the mixers improves the
input impedance match, provides passive voltage gain, and performs single-ended to balanced
conversion. A semi-analytical power-series analysis of the mixers is also presented. The mixer in
which the RF signal is applied to the gates of the mixing transistors achieves a measured input-referred
1-dB compression point (P1dB) of −14 dBm, an input-referred third-order intercept
point (IIP3) of −5.2 dBm, a gain of 13.6 dB, a noise figure (NF) of 26 dB, and an LO-to-RF
isolation of 50 dB. The overall performance of both mixers is found to be comparable with
other CMOS mixers, but with a higher noise figure (which can be mitigated with a high gain
low-noise amplifier (LNA)). / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate Read more
|
16 |
Compact and broadband antenna system at UHFRiauka, Nerijus January 2010 (has links)
The aim of this research was to study a novel, broadband, low cost, low profile and a high-medium gain antenna in the UHF band. This has been achieved through numerical modelling, theoretical investigation and physical measurements. In this study two commercially available antenna systems are investigated in order to compare and establish potential deficiencies in the UHF antenna systems. A number of disadvantages are resolved within a novel antenna system design. The parametric study is performed for each element of the novel antenna system in order to optimise its overall performance. The indoor and outdoor measurements have been carried out in house, in order to validate the predicted results. The novel antenna system is compared to the most popular and commercially available UHF antenna systems. The study demonstrates that the novel antenna system has clear advantages such as broadband, balanced, compact and low cost when compared to the commercial antenna designs studied here. The comparison of the manufacturers' data to the measured results shows a good match, validating the outdoor measurements technique used in this research.
|
17 |
Širokopásmová sinusová anténa s dvojí polarizací / Wideband Sinuous Antenna with Dual PolarizationHaloda, Jiří January 2012 (has links)
This paper deals with sinuous broadband antenna, witch operating frequency 1 to 6 GHz. The antenna parameters, which change their physical dimension were shown in this paper. Antenna structure is planar and feeding network line have to be planar too. There are different ways to describe and construct from unbalanced to balanced line by baluns. There are also design impedance transform to match antenna in this paper. The simulation and measured results are showen the antenna has wideband character.
|
18 |
Conception et réalisation de fonctions millimétriques en technologie BiCMOS 55nm / Design and realization of millimeter wave circuits in advanced BiCMOS 55nm technologySerhan, Ayssar 28 September 2015 (has links)
Au cours des dernières années, la faisabilité des émetteurs-récepteurs millimétriques entièrement intégrés a été largement démontrée en technologies silicium CMOS et BiCMOS. Deux axes sont actuellement très porteurs dans ce domaine : (1) l’amélioration des performances à travers des boucles d’asservissement intégrées (ALC : Automatique Level Control), (2) le développement de solutions de caractérisation sur silicium des composants millimétriques (BIT : Built In Test). L’objectif principal de cette thèse est de développer les blocsde base (détecteurs de puissance et baluns) pour répondre aux besoins actuels des applications ALC et BIT. Les circuits réalisés combinent l’avantage de composants actifs de la technologie BiCMOS 55 nm, de STMicroelectronics, avec l’avantage des structures passives à ondes lentes développées à l’IMEP-LAHC. Ce travail permet un développement plus rapide et robuste pour la future génération de systèmes millimétriques. / In the past few years, the feasibility of high performance millimeter-wave(mmWave) fully-integrated transceivers has been widely demonstrated in both CMOS andBiCMOS silicon technologies. Nowadays, automatic level control (ALC) solutions and in-situtesting (BIT: Built in Testing) and characterization of mmWave components, constitute themajor research interest in mmWave domain. This work focus on the development of the mainbuilding blocks (power detectors and baluns) that meet the requirement of the today’smmWave ALC and BIT applications. The developed prototypes take advantage of the highperformances transistors offered by the BiCMOS 55 nm technology, from STMicroelectronics, aswell as the high performances of the slow-wave based passive components developed by theIMEP-LAHC laboratory. Several prototypes were developed as a proof of concept for thedesignated applications. This work helps future generation millimeter-wave systems to havefaster development and better robustness. Read more
|
19 |
Méthode de conception des systèmes différentiels RF utilisant le formalisme des Modes Mixtes / Design method for differential structures based on the mixed-mode formalismGermain, Yves phaede 21 January 2015 (has links)
Ces travaux de recherche visent à introduire et à généraliser l'utilisation des systèmes différentiels dans les applications RF et Micro-ondes. En particulier, dans la conception de dispositifs pour les fonctions d'amplification à faible bruit. Pour cela, il est indispensable de développer des outils fiables et rigoureux tels que le formalisme des modes mixtes introduit par Bockelman. C'est dans cet esprit que s'inscrit la première phase de l'étude. Le but étant de développer un outil pour l'analyse de la stabilité linéaire des systèmes différentiels à trois et quatre accès. Par ailleurs, les interfaces des circuits numériques ultra-rapides (CNA) sont de topologie différentielle. Ce qui augmente encore l'intérêt de disposer de méthodes rigoureuses pour la conception des systèmes différentiels. Dans la deuxième phase de l'étude la problématique de l'intégration système des CNAs dans les nouvelles générations des chaines de transmission RF des satellites de télécommunications est traitée. La conception d'un balun actif large bande capable d'assurer la conversion de la sortie analogique différentielle du CNA en sortie simple accès (Single-ended) référencée par rapport à la masse est détaillée. Afin de répondre aux contraintes d'intégration, une technologie BiCMOS SiGe 0.25 μm est utilisée pour son implémentation. Les performances obtenues par la mesure de la puce Silicium réalisée respectent les spécifications techniques initiales de l'application. Ce qui permet de valider la méthodologie de conception utilisée. L'objectif final est d'être capable d'intégrer sur un même substrat monolithique le CNA et le balun actif large bande de conversion de modes. / This research work aims to develop analytical tools for the analysis and design of differential systems. While the use of differential circuits in RF reception/transmission chains is increasingly growing, there is no accurate method to study their stability. First the common tools to study RF differential components are introduced. Then, the development of a CAD tool that can be rigorously used to investigate the extrinsic stability of linear differential systems is presented. Finally this tool is applied to study the stability of in a real case. The design addresses a three port component that aims to convert the differential output of digital to analog converter into a single-ended access for a spatial application purpose. This broadband active balun is designed using BiCMOS technology. Measurements are performed and the results are in good agreement with the simulation. All the initial specications are achieved, which validate the approach developed in this study. Read more
|
20 |
Compact and Wideband MMIC Phase Shifters Using Tunable Active Inductor Loaded All-Pass NetworksZaiden, David M. 16 November 2017 (has links)
This dissertation addresses the design of monolithically integrated phase shifters at S- and L- frequency bands using a commercially available GaAs process from Triquint. The focus of the design is to operate over a wide bandwidth with full 360° phase shift capability, 50 Ω input/output impedance match and low RMS phase and gain errors. The first version of the design is based on passive all-pass phase shifters integrated with wideband amplifiers to compensate for insertion loss. This design uses a 4-bit system to achieve the required phase shift and each bit consists of 3 sections of all-pass filters designed at separate frequencies within the 0.8 – 3 GHz band. Simulation results show a complete 360° phase shift with RMS gain error of less than 0.6 dB and RMS phase error of less than 2.5°. The system is also shown to achieve good input and output impedance matching characteristics. However, the fabricated prototype fails to perform with full functionality due to the excessive number of passive inductors in the design and the resulting mutual coupling. The mutual coupling issue could be solved by spacing out the layout to allow more separation among the inductors. Unfortunately, in the S- and L-bands, this is not an option for this research work as the fabricated design already uses the maximum allowed chip size as determined by the foundry. In addition, larger chip sizes considerably increase the cost in practical applications. To address the challenging needs of small size, wide bandwidth and low frequency applicability, the second design introduced in this dissertation proposes a novel phase shifter implementation that utilizes tunable active differential inductors within all-pass networks. The inductor tuning is used to achieve phase shifts up to 180⁰. A switchable active balanced to unbalanced transition circuit (balun) is included in front of the all-pass network to complement its phase shift capability by another 180°. In addition, the all-pass network is followed by a variable gain amplifier (VGA) to correct for gain variations among the phase shifting states and act as an output buffer. Although active inductors have been previously used in the design of various components, to the best of our knowledge, this is the first time that they have been used in an all-pass phase shifter. The approach is demonstrated with an on-chip design and implementation exhibiting wideband performance for S and L band applications by utilizing the 0.5 µm TriQuint pHEMT GaAs MMIC process. Specifically, the presented phase shifter exhibits 1 × 3.95 mm2 die area and operates within the 1.5 GHz to 3 GHz band (i.e. 2:1 bandwidth) with 10 dB gain, less than 1.5 dB RMS gain error and less than 9° RMS phase error. Comparison with the state-of-the-art MMIC phase shifters operating in S and L bands demonstrates that the presented phase shifter exhibits a remarkable bandwidth performance from a very compact footprint with low power consumption. Consequently, it presents an important alternative for implementation of wideband phase shifters where all-passive implementations will consume expensive die real estate. Read more
|
Page generated in 0.0348 seconds