71 |
Estudo do comportamento PTCR em cerâmicas de BaTiO3 : la sinterizadas a laserSilva, Marcelo Souza da 10 October 2014 (has links)
The present work aimed to laser sintering and physical characterization of barium titanate ceramics doped with lanthanum, Ba1-xLaxTiO3 (0.1 ≤ x ≤ 0.4) mol%, and co-doped
with manganese, in order to study the PTC effect (Positive Temperature Coefficient of Resistance). In electrical and electronic equipments, materials that exhibit PTC effect are
generally used in circuit protection, or as temperature sensors (thermistors), whose main advantages of thermistors are no contacts subject to corrosion, high resistance to mechanical
shock, the long operating life, low cost and more stable than thermocouples. Additionally, the laser sintering process uses a CO2 laser as the main heating source. This process has been
touted as a promising technology for the ceramic processing, which are subjected to extremely high heating and cooling rates (~ 2000 ° C / min). During the processes of synthesis and characterization Differential Thermal Analysis (DTA), Thermogravimetry (TG), Dilatometry, Differential Scanning Calorimetry, X-ray Diffraction, Scanning Electron
Microscopy, Impedance Spectroscopy and Conductive Microscopy Atomic Force (CAFM) technique were used. Lanthanum doped barium titanate powders were produced via solid state reaction method and calcined at 1200 ° C for 4 hours. The laser sintering process was efficient
to obtain ceramics with relative density of up to 95%. The sintered ceramics presented homogeny microstructure surface under the condition of Pmax = 5.5 W/mm2 for 60 seconds.
The 02BT La sample showed the lowest room temperature resistivity (104 .cm). This value is roughly three orders of magnitude lower than that observed for conventionally sintered
ceramic in electric furnace and with the same dopant concentration. Finally, it is clear that the sintering conditions strongly modify the PTC behavior of the like-BaTiO3 ceramics, thus allowing the fabrication of ceramic components for the thermistors manufacture with different characteristics. / O presente trabalho teve como objetivos a sinterização a laser e a caracterização físicas de cerâmicas de titanato de bário dopadas com lantânio, Ba1-xLaxTiO3 (0,1 ≤ X ≤ 0,4)
mol%, e co-dopadas com manganês, visando estudar o efeito PTC (Coeficiente positivo de resistência com a elevação da temperatura). Em equipamentos eletro-eletrônicos os materiais
que exibem o efeito PTC geralmente são utilizados na proteção de circuitos ou como sensores de temperatura (termistores), cujas principais vantagens dos termistores são a inexistência de
contatos sujeitos à corrosão, a alta resistência a choques mecânicos, a longa vida de operação, baixo custo, e são mais estáveis que os termopares. Adicionalmente, o processo de
sinterização a laser utiliza como principal fonte de calor um laser de CO2. Este processo tem sido apontado como uma técnica promissora no processamento de corpos cerâmicos, os quais
são submetidos a taxas de aquecimento e resfriamento extremamente elevadas (~2000 °C/min), podendo provocar assim alterações em suas propriedades físicas. Durante os
processos de síntese e caracterização fez-se uso das técnicas de Diferencial de Análise Térmica (DTA), Termogravimétria (TG), Dilatometria, Calorimétria Exploratória Diferencial,
Difração de raios X, Microscopia Eletrônica de Varredura e Espectroscopia de Impedância e de Microscopia de Força Atômica em modo condutivo (CAFM). Pós de titanato de bário
dopados com lantânio foram sintetizados pelo método da reação de estado sólido e calcinados a 1200 oC por 4 horas. O processo e sinterização a laser se mostrou eficiente para obtenção de
cerâmicas com densidade relativa de até 95%. Foi obtida uma homogeneidade na microestrutura em toda a superfície da cerâmica, sob a condição de Pmax = 5,5 W/mm2 por
60s. A amostra 02BT:La apresentou menor valor de resistividade à temperatura ambiente, da ordem de 104 .cm. Este valor é aproximadamente três ordens de grandeza menor que o
observado para a cerâmica sinterizada convencionalmente em forno elétrico e na mesma concentração de dopante. Finalmente, é possível afirmar que as condições de sinterização
modificam fortemente o comportamento PTC em cerâmicas a base de BaTiO3, possibilitando dessa forma a confecção de cerâmicas para fabricação de componentes termistores com
diferentes características.
|
72 |
Applications of resonant hard x-ray diffraction for characterization of structural modifications in crystals / Anwendungen resonanter Beugung harter Röntgenstrahlen zur Beschreibung struktueller Änderungen in KristallenRichter, Carsten 08 March 2018 (has links) (PDF)
Die Arbeit behandelt die vielseitigen Möglichkeiten im Bereich der Kristallstrukturanalyse mit Röntgenstrahlung, welche sich zusätzlich bei resonanter Anregung von Elektronenübergängen ergeben. Existierende resonante Methoden aus diesem Bereich werden im materialwissenschaftlichen Kontext neu dargelegt und ausgebaut. Zudem werden neue Methoden zur Strukturverfeinerung vorgestellt, welche darauf zielen, mithilfe resonanter Anregung kleine Abweichungen von der Idealstruktur oder aber Phasenumwandlungen zu beschreiben. Im Vordergrund steht dabei die hier erstmals ausgearbeitete Methode der Unterdrückung von Beugungsintensität durch Variation der atomaren Streufaktoren über gezieltes Einstellen der Röntgenenergie. Dies ist stark abhängig von internen Strukturparametern und ermöglichte so eine pikometergenaue Bestimmung von Atompositionen in einer neuen, polaren Oberflächenschicht des Strontiumtitanats. Weitere Anwendungen auf verschiedene Klassen kristalliner Materialien werden vorgestellt und basieren auf unterschiedlichen Aspekten resonanter Beugung wie zum Beispiel verbotenen Reflexen.
|
73 |
Příprava kompozitních vláknitých struktur metodou elektrostatického zvlákňování pro piezoaplikace / Electrospinning of composite fiberous structures for piezoapplicationsSchifferová, Zuzana January 2019 (has links)
Polymer and composite polymer-ceramic nanofibers were prepared by electrospinning process. Solution of 20 wt.% polyvinylidene fluoride (PVDF) in a mixture of dimethyl sulfoxide (DMSO) and acetone in the ratio of 7:3 was chosen as the most suitable precursor. When preparing composite nanofibers, 20 wt.% of barium calcium zirconate titanate (BCZT) or barium titanate (BT) nanoparticles was added to this PVDF solution. Given parameters were defined as the most suitable for the process of electrospinning: voltage of 50 kV, feeding rate of 30 l/min, distance between emitter and collector of 20 cm and needle diameter of 17 G. The effect of polymer molecular weight and the rotation speed of collector was also studied. Various properties of prepared samples were studied: morphology and fiber diameter, phase composition with the use of x-ray diffraction and Fourier transform infrared spectroscopy and also chosen electrical properties. Lower fiber diameters appeared with lower polymer molecular weight and higher rotation speed of the collector. These parameters resulted in higher percentage of the piezoelectric phase as well. The smallest achieved fiber diameter was around 300 nm, the highest percentage of phase was 92 % and the highest piezoelectric constant had a value of 16 pC/N. Composite fibers filled with BT particles showed better properties that the ones filled with BCZT particles.
|
74 |
Applications of resonant hard x-ray diffraction for characterization of structural modifications in crystalsRichter, Carsten 04 December 2017 (has links)
Die Arbeit behandelt die vielseitigen Möglichkeiten im Bereich der Kristallstrukturanalyse mit Röntgenstrahlung, welche sich zusätzlich bei resonanter Anregung von Elektronenübergängen ergeben. Existierende resonante Methoden aus diesem Bereich werden im materialwissenschaftlichen Kontext neu dargelegt und ausgebaut. Zudem werden neue Methoden zur Strukturverfeinerung vorgestellt, welche darauf zielen, mithilfe resonanter Anregung kleine Abweichungen von der Idealstruktur oder aber Phasenumwandlungen zu beschreiben. Im Vordergrund steht dabei die hier erstmals ausgearbeitete Methode der Unterdrückung von Beugungsintensität durch Variation der atomaren Streufaktoren über gezieltes Einstellen der Röntgenenergie. Dies ist stark abhängig von internen Strukturparametern und ermöglichte so eine pikometergenaue Bestimmung von Atompositionen in einer neuen, polaren Oberflächenschicht des Strontiumtitanats. Weitere Anwendungen auf verschiedene Klassen kristalliner Materialien werden vorgestellt und basieren auf unterschiedlichen Aspekten resonanter Beugung wie zum Beispiel verbotenen Reflexen.
|
75 |
Élaboration des composites et mélanges à base de caoutchouc naturel : relations structure - propriétés / Processing of natural rubber composites and blends : relation between structure and propertiesSalaeh, Subhan 04 July 2014 (has links)
Le caoutchouc naturel (NR) et le caoutchouc époxydé (ENR) ont constitué la base de cette étude consacrée à l’étude des composites et mélanges de polymères. La présence du groupe époxyde a conduit à une amélioration des propriétés mécaniques de ces formulations en termes de module et de la résistance à la traction. De plus, l’utilisation de la spectroscopie diélectrique a révélé que les ENRs présentent une conductivité plus élevée que le NR à basse fréquence et à haute température. En particulier, le caoutchouc naturel époxidé contenant 50 mol% de groupes époxyde ENR-50 présente des conductivités et permittivités les plus élevées. Par conséquent, ce dernier a été choisi pour préparer des composites polymères en incorporant des particules de titanate de barium (BT) et de noir de carbone (CB). Les résultats montrent que la permittivité et conductivité des composites élaborés augmentent avec le taux d'incorporation de ces charges. Par exemple, les composites BT/ENR-50 atteignent une permittivité élevée 48.7 pour 50 vol% de BT. De plus, les composites CB/ENR-50 présentent un seuil de percolation de 6.3 vol% de CB. Enfin les mélanges à base de poly(fluorure de vinylidène) (PVDF) et d’ENR ont été étudiés. Il a été observé que la morphologie de ces mélanges dépend du degré d’époxydation du caoutchouc naturel et bien entendu de la composition du mélange. Une morphologie co-continue peut être observée dans l’intervalle 40 et 60% en masse d’ENR-50. En outre, les résultats issus d’analyses dynamiques mécanique et diélectrique montrent que ces mélanges présentent une miscibilité partielle. Enfin, des composites à base de ces mélanges binaires PVDF/ENR- 50 contenant BT ont été préparés. L’étude des morphologies a révélé que les particules de BT étaient dispersées dans la phase d’ENR-50 pour le mélange classique. Cependant, les particules de BT sont localisées à l'interface et dans la phase PVDF pour le mélange réticulé dynamiquement. En termes de propriétés, la permittivité plus élevée est obtenue pour le mélange PVDF/ENR 50 (80/20) ayant été réticulé dynamiquement / Natural rubber (NR) and epoxidized natural rubber (ENR) were chosen to study the composites and blends of polymers. The presence of epoxide group caused to improve the mechanical properties in terms of modulus and tensile strength. Furthermore, dielectric spectroscopy revealed that ENR showed conductivity process at low frequency and high temperature. Epoxidized natural rubber containing 50 mol% of epoxide group or ENR-50 exhibited the highest dielectric permittivity and electrical conductivity. Therefore, ENR-50 was then selected to prepare polymer composite filled with barium titanate (BT) and carbon black (CB) particles. The permittivity and conductivity of the composites increased with the volume content of the fillers. The BT/ENR-50 composites reached a high permittivity of 4 8 . 7 for addition of 50 vol% BT. Meanwhile, CB/ENR-50 composite reached percolation threshold at 6. 3 vol% of CB. The phase development and miscibility of poly(vinylidene fluoride) (PVDF)/epoxidixed natural rubber (ENR) blends were then investigated. It was also found that phase structure depended on epoxidation level and blend compositions. The blend exhibited a co-continuous phase morphology in the region of 40 to 60 wt% of ENR-50. Furthermore, the results from dynamic mechanical and dielectric analysis revealed that these blends present a partial miscibility. Finally, the composites based on binary blends of PVDF/ENR-50 containing BT were prepared. The study of the morphologies revealed that BT was dispersed in ENR-50 phase in the case of simple blend. However, the addition of BT after dynamic vulcanization induced localization of BT in PVDF phase and at interface. The highest increment of permittivity can be observed for the composite based on dynamically cured PVDF/ENR-50 (80/20) blend / ศึกษาอิทธิพลของโครงสร้างโมกุลยางธรรมชาติ (NR) และยางธรรมชาติอิพอกไซด์ (ENR) ต่อสมบัติ พบว่าการมีหมู่อิพอกไซด์อยู่ในยาง ENR ทำให้มีการปรับปรุงสมบัติเชิงกล เช่น มอดุลัสและความต้านทานต่อแรงดึง นอกจากนี้สมบัติไดอิเล็กทริกได้แสดงให้เห็นถึงการนำ ไฟฟ้าที่ความถี่ต่ำและอุณหภูมิสูง ยางที่มีหมู่อิพอกไซด์ 50 โมล% (ENR-50) มีค่าการนำไฟฟ้า และค่า permittivity สูงที่สุด ดังนั้นจึงนำยาง ENR-50 ไปใช้ในการเตรียมคอมพอสิตที่ใช้แบเรียม ไททาเนตและเขม่าดำเป็นตัวเติม ซึ่งพบว่าค่า permittivity และค่าการนำไฟฟ้าสูงขึ้นตาม ปริมาณตัวเติมที่ใส่ลงไป ที่ปริมาณ 50%โดยปริมาตรของแบเรียมไททาเนตในยางให้ค่า permittivity สูงถึง 48.7 ในขณะเดียวกันก็พบว่าการเตรียม ENR-50 คอมพอสิตที่ใช้เขม่าดำมี percolation threshold ที่ 6.3 vol% ของเขม่าดำ สำหรับการศึกษาการเปลี่ยนแปลงของสัณฐาน วิทยาและความเข้ากันได้ของพอลิเมอร์เบลนด์ระหว่างพอลิไวนิลลิดีนฟลูออไรด์ (PVDF) กับยาง ENR พบว่า สัณฐานวิทยาของพอลิเมอร์ที่เตรียมได้ขึ้นอยู่กับปริมาณหมู่อิพอกไซด์ในยาง ENR และอัตราส่วนการเบลนด์ อัตราส่วนการเบลนด์ในช่วง 40 ถึง 60% โดยน้ำหนักของยาง ENR- 50 ให้ลักษณะสัณฐานวิทยาแบบวัฏภาคร่วม (co-continuous) นอกจากนี้ผลการทดสอบจาก สมบัติพลวัตเชิงกลและสมบัติไดอิเล็กทริกแสดงให้เห็นถึงความเข้ากันได้บางส่วน (partial miscibility) ท้ายที่สุดนี้ได้เตรียมคอมพอสิตจากพอลิเมอร์เบลนด์ที่เติมแบเรียมไททาเนต สัณฐานวิทยาของคอมโพสิทที่เตรียมได้นั้น พบว่าแบเรียมไททาเนตกระจายตัวในเฟสยางเป็น หลัก อย่างไรก็ตามการเติมแบเรียมไททาเนตหลังจากการวัลคาไนซ์แบบไดนามิกส์ทำให้ แบเรียมไททาเนตกระจายตัวในเฟสพอลิไวนิลลิดีนฟลูออไรด์ (PVDF) และที่ผิวประจัญ (interface) นอกจากนี้คอมพอสิตที่เตรียมจากเทอร์โมพลาสติกวัลคาไนซ์ของ PVDF/ENR 50 ที่ อัตราส่วนการเบลนด์ที่ 80/20 ให้ค่า permittivity ที่สูง
|
76 |
Scattering Scanning Near-Field Optical Microscopy on Anisotropic Dielectrics / Aperturlose Nahfeldmikroskopie an anisotropen DielektrikaSchneider, Susanne Christine 17 October 2007 (has links) (PDF)
Near-field optical microscopy allows the nondestructive examination of surfaces with a spatial resolution far below the diffraction limit of Abbe. In fact, the resolution of this kind of microscope is not at all dependent on the wavelength, but is typically in the range of 10 to 100 nanometers. On this scale, many materials are anisotropic, even though they might appear isotropic on the macroscopic length scale. In the present work, the previously never studied interaction between a scattering-type near-field probe and an anisotropic sample is examined theoretically as well as experimentally. In the theoretical part of the work, the analytical dipole model, which is well known for isotropic samples, is extended to anisotropic samples. On isotropic samples one observes an optical contrast between different materials, whereas on anisotropic samples one expects an additional contrast between areas with different orientations of the same dielectric tensor. The calculations show that this anisotropy contrast is strong enough to be observed if the sample is excited close to a polariton resonance. The experimental setup allows the optical examination in the visible and in the infrared wavelength regimes. For the latter, a free-electron laser was used as a precisely tunable light source for resonant excitation. The basic atomic force microscope provides a unique combination of different scanning probe microscopy methods that are indispensable in order to avoid artifacts in the measurement of the near-field signal and the resulting anisotropy contrast. Basic studies of the anisotropy contrast were performed on the ferroelectric single crystals barium titanate and lithium niobate. On lithium niobate, we examined the spectral dependence of the near-field signal close to the phonon resonance of the sample as well as its dependence on the tip-sample distance, the polarization of the incident light, and the orientation of the sample. On barium titanate, analogous measurements were performed and, additionally, areas with different types of domains were imaged and the near-field optical contrast due to the anisotropy of the sample was directly measured. The experimental results of the work agree with the theoretical predictions. A near-field optical contrast due to the anisotropy of the sample can be measured and allows areas with different orientations of the dielectric tensor to be distinguished optically. The contrast results from variations of the dielectric tensor components both parallel and perpendicular to the sample surface. The presented method allows the optical examination of anisotropies of a sample with ultrahigh resolution, and promises applications in many fields of research, such as materials science, information technology, biology, and nanooptics. / Die optische Nahfeldmikroskopie ermöglicht die zerstörungsfreie optische Unter- suchung von Oberflächen mit einer räumlichen Auflösung weit unterhalb des klas- sischen Beugungslimits von Abbe. Die Auflösung dieser Art von Mikroskopie ist unabhängig von der verwendeten Wellenlänge und liegt typischerweise im Bereich von 10-100 Nanometern. Auf dieser Längenskala zeigen viele Materialien optisch anisotropes Verhalten, auch wenn sie makroskopisch isotrop erscheinen. In der vorliegenden Arbeit wird die bisher noch nicht bestimmte Wechselwirkung einer streuenden Nahfeldsonde mit einer anisotropen Probe sowohl theoretisch als auch experimentell untersucht. Im theoretischen Teil wird das für isotrope Proben bekannte analytische Dipol- modell auf anisotrope Materialien erweitert. Während fÄur isotrope Proben ein reiner Materialkontrast beobachtet wird, ist auf anisotropen Proben zusätzlich ein Kontrast zwischen Bereichen mit unterschiedlicher Orientierung des Dielektrizitätstensors zu erwarten. Die Berechnungen zeigen, dass dieser Anisotropiekontrast messbar ist, wenn die Probe nahe einer Polaritonresonanz angeregt wird. Der verwendete experimentelle Aufbau ermöglicht die optische Untersuchung von Materialien im sichtbaren sowie im infraroten Wellenlängenbereich, wobei zur re- sonanten Anregung ein Freie-Elektronen-Laser verwendet wurde. Das dem Nahfeld- mikroskop zugrunde liegende Rasterkraftmikroskop bietet eine einzigartige Kombi- nation verschiedener Rastersondenmikroskopie-Methoden und ermöglicht neben der Untersuchung von komplementären Probeneigenschaften auch die Unterdrückung von mechanisch und elektrisch induzierten Fehlkontrasten im optischen Signal. An den ferroelektrischen Einkristallen Lithiumniobat und Bariumtitanat wurde der anisotrope Nahfeldkontrast im infraroten WellenlÄangenbereich untersucht. An eindomÄanigem Lithiumniobat wurden das spektrale Verhalten des Nahfeldsignals sowie dessen charakteristische Abhängigkeit von Polarisation, Abstand und Proben- orientierung grundlegend untersucht. Auf Bariumtitanat, einem mehrdomänigen Kristall, wurden analoge Messungen durchgeführt und zusätzlich Gebiete mit ver- schiedenen Domänensorten abgebildet, wobei ein direkter nachfeldoptischer Kon- trast aufgrund der Anisotropie der Probe nachgewiesen werden konnte. Die experimentellen Ergebnisse dieser Arbeit stimmen mit den theoretischen Vorhersagen überein. Ein durch die optische Anisotropie der Probe induzierter Nahfeldkontrast ist messbar und erlaubt die optische Unterscheidung von Gebie- ten mit unterschiedlicher Orientierung des Dielektriziätstensors, wobei eine Än- derung desselben sowohl parallel als auch senkrecht zur Probenoberfläche messbar ist. Diese Methode erlaubt die hochauflösende optische Untersuchung von lokalen Anisotropien, was in zahlreichen Gebieten der Materialwissenschaft, Speichertech- nik, Biologie und Nanooptik von Interesse ist.
|
77 |
Conductive Domain Walls in Ferroelectric Bulk Single Crystals / Leitfähige Domänenwände in ferroelektrischen EinkristallenSchröder, Mathias 13 May 2014 (has links) (PDF)
Ferroic materials play an increasingly important role in novel (nano-)electronic applications. Recently, research on domain walls (DWs) received a big boost by the discovery of DW conductivity in bismuth ferrite (BiFeO3 ) and lead zirconate titanate (Pb(Zrx Ti1−x )O3) ferroic thin films.
These achievements open a realistic and unique perspective to reproducibly engineer conductive paths and nanocontacts of sub-nanometer dimensions into wide-bandgap materials. The possibility to control and induce conductive DWs in insulating templates is a key step towards future innovative nanoelectronic devices [1]. This work focuses on the investigation of the charge transport along conductive DWs in ferroelectric single crystals. In the first part, the photo-induced electronic DC and AC charge transport along such DWs in lithium niobate (LNO) single crystals is examined. The DC conductivity of the bulk and DWs is investigated locally using piezoresponse force microscopy (PFM) and conductive AFM (c-AFM). It is shown that super-bandgap illumination (λ ≤ 310 nm) in combination with (partially) charged 180° DWs increases the DC conductivity of the DWs up to three orders of magnitude compared to the bulk. The DW conductivity is proportional to the charge of the DW given by its inclination angle α with respect to the polar axis. The latter can be increased by doping the crystal with magnesium (0 to 7 mol %) or reduced by sample annealing. The AC conductivity is investigated locally utilizing nanoimpedance microscopy (NIM) and macroscopic impedance measurements.
Again, super-bandgap illumination increases the AC conductivity of the DWs. Frequency-dependent measurements are performed to determine an equivalent circuit describing the domains and DWs in a model system. The mixed conduction model for hopping transport in LNO is used to analyze the frequency-dependent complex permittivity. Both, the AC and DC results are then used to establish a model describing the transport along the conductive DW through the insulating domain matrix material. In the last part, the knowledge obtained for LNO is applied to study DWs in lithium tantalate (LTO), barium titanate (BTO) and barium calcium titanate (BCT) single crystals. Under super-bandgap illumination, conductive DWs are found in LTO and BCT as well, whereas a domain-specific conductivity is observed in BTO.
|
78 |
Structural, Ferroelectric, Piezoelectric and Phase Transition Studies of Lead Free (Na0.5Bi0.5)TiO3 Based CeramicsGarg, Rohini January 2013 (has links) (PDF)
Ferroelectric materials, especially the polycrystalline ceramics, are very promising material for a variety of applications such as high permittivity dielectrics, ferroelectric memories, piezoelectric sensors, piezoelectric/electrostrictive transducers, electrooptic devices and PTC thermistors. Among the ferroelectric based piezoelectric ceramics the lead–zirconate-titanate Pb(Zr1-xTix)O3 (PZT) have dominated transducer and actuator market due to its excellent piezoelectric and dielectric properties, high electromechanical coupling, large piezoelectric anisotropy, ease of processing and low cost. However, the toxicity of lead based compounds has raised serious environmental concerns and therefore has compelled the researchers to look for new lead free alternatives with good piezoelectric and ferroelectric properties. (Na0.5Bi0.5)TiO3 (NBT) and its solid solution is one of the leading lead free piezoceramic ceramics due to their interesting ferroelectric, piezoelectric, electromechanical and dielectric property. The parent compound NBT is a ferroelectric with a moderately high Curie temperature (~250 oC), large ferroelectric polarization (~40µC/cm2) polarization, promising piezoelectric properties with 0.08% strain and longitudinal piezoelectric coefficient (d33) ~ 80 pC/N. X-ray and neutron diffraction studies in the past have shown that NBT exhibits rhombohedral (R3c) at room temperature. Neutron diffraction studies have suggested that NBT undergo a gradual rhombohedral to tetragonal (P4bm) transformation in a temperature region 200-320 ºC. Though the structure and phase transition behavior of NBT has been extensively investigated for over six decades now, this subject has again become debatable in recent few years, with some group reporting formation of orthorhombic phase above room temperature and another group suggesting monoclinic distortion at room temperature using high resolution x-ray diffraction technique. Interestingly the intermediate orthorhombic instability, reported by electron diffraction studies, has never been captured by neutron diffraction method though neutron diffraction is an equally powerful tool for studying (oxygen) octahedral tilts in perovskites. Needless to mention, the understanding of the subtle structural distortions have great significance with regard to the determination of the structure-piezoelectric property correlations in NBT based piezoceramics. The present thesis deals with such subtle structural issues in great detail. The systems investigated in the thesis are Ca and Ba modified NBT. While the Ca modified system was chosen to understand the subtle orthorhombic instability that has been reported above room temperature (only) by detailed electron diffraction work, Ba-modified NBT is the most investigated among the NBT-derived piezoelectric material systems and this thesis attempts to address some of the very complex nature of the structure-piezoelectric property correlation of this system.
The first chapter of the thesis provides a brief introduction to the field of ferroelectrics, perovskite structure and their phase transition. A brief exposure to the conventional lead based relaxor ferroelectric and piezoelectric material is provided. A detailed overview of the existing knowledge related to room temperature structure of NBT and its phase transition studies with temperature has been discussed in the later part of this chapter. The second chapter includes various the experimental techniques that have been employed to synthesis and characterize the specimens under investigation.
The third chapter deals with the phase transition behaviour of Ca modified NBT as a function of composition and temperature in the dilute concentration region. This work was carried out with the view to obtain a better understanding and compliment the intrinsic high temperature orthorhombic instability in NBT reported by electron diffraction technique. Interestingly, inspite of the fact that neutron diffraction method is a very sensitive tool for investigating subtle change in the nature of octahedral tilt in oxide perovskites, the intermediate orthorhombic distortion proposed by the electron diffraction studies has so far never been captured in any of the neutron diffraction studies. In this work we have verified the genuineness of the intrinsic instability with regard to the non-polar orthorhombic structure using neutron powder diffraction by adopting a special strategy which helped in capturing the characteristic signatures (the superlattice reflections) of the orthorhombic phase in the neutron powder diffraction patterns. It was found that small fraction of Ca-substitution (8-10 mol %) was good enough to amplify the magnitude of the orthorhombic (Pbnm) distortion, without altering the sequence of the structural evolution with temperature of the parent compound (NBT) itself, and stabilizing it at the global length scale at lower temperatures than pure NBT. This chapter presents the innovative approach that was used to extract reliable information about the very complex phase transition behaviour, involving coexistence of the various similar looking but crystallographically different phases in different temperature regimes by Rietveld analysis of temperature dependent neutron powder diffraction pattern in conjunction with temperature dependent dielectric and ferroelectric characterization of the specimens. The detailed study revealed the following sequence of structural evolution with temperature: Cc+Pbnm →Pbnm
+ P4/mbm → P4/mbm →Pm3 m.
The fourth chapter gives a detail account of the structure-property correlations and the phase transition behaviour of (1-x)(Na0.5Bi0.5)TiO3 – (x)BaTiO3 (0≤x≤0.10), the most important solid solution series with NBT as reported in the literature. The phase transformation behaviour of this system has been investigated as a function of composition (0<x≤0.10), temperature, electric field and mechanical-impact by Raman scattering, ferroelectric, piezoelectric measurements, x-ray and neutron powder diffraction methods. The structure of the morphotropic phase boundary (MPB) compositions of this system, which is interesting from the piezoelectric property point of view, has been under controversy for long. While some groups report the structure to be pseudocubic, other groups suggest it to be combination of rhombohedral and tetragonal. A perusal of the literature suggests that the reported nature and composition range of MPB is dependent on the method of synthesis and characterization technique used. In the present study, crystal structure of the NBT-BT solid solution has been investigated at the close interval near the MPB (0.05≤x≤0.10). Though x-ray diffraction study revealed three distinct composition ranges characterizing different structural features in the equilibrium state at room temperature: (i) monoclinic (Cc) + rhombohedral (R3c) for 0≤x≤0.05, (ii) “cubic-like” for 0.06≤x≤0.0675 and (iii) MPB like for 0.07≤x<0.10, Raman and neutron powder diffraction studies revealed identical symmetry for the cubic like and the MPB compositions. Both the cubic like compositions and the MPB compositions exhibit comparatively large d33. In the later part of this chapter this apparent contradiction is resolved by the fact that the cubic like structure transforms irreversibly to MPB after electric poling, a procedure which involves applying high dc electric field (well above the coercive field) to the pellet before carrying out the piezoelectric measurements.
The effect of electrical field and mechanical impact has been studied for all the three different composition range, and it was found that electric field and mechanical impact both led to irreversible phase transformation in the same direction, though the transformation with mechanical impact remains incomplete in comparison to electric field. The most pronounced effect was observed for the cubic like compositions 0.06≤x≤0.0675 – they undergo phase separation to rhombohedral and tetragonal phases by electrical and mechanical perturbations. In the non-perturbed state the cubic-like critical compositions mimics features of relaxor ferroelectrics and extremely short coherence length (~ 40-50 Å) of the out-of-phase octahedral tilts. In the poled state this coherence length grows considerably and the system behaves like a normal ferroelectric. This confirmed a strong coupling between the lattice, octahedral tilts and polarization degrees of freedom. Neutron diffraction study of compositions exhibiting cubic-like and the MPB like revealed that the traditional P4bm tetragonal structure model fails to account for the intensity of the superlattice reflections. Thus the tetragonal structure stabilized above room temperature in pure NBT is different from the tetragonal phase observed at room temperature in the NBT-BT system. The results of the effect of mechanical impact and electric field has also been reported in this chapter for the critical composition exhibiting MPB (x=0.07).
A detailed structural analysis of the precritical compositions, x≤0.05, revealed coexistence of ferroelectric phases (Cc+R3c) in equilibrium state (annealed specimens). This transforms to single phase (R3c) state after poling. Thus though the precritical (x≤0.05) and critical compositions (0.06≤x<0.10) of NBT-BT exhibits coexistence of ferroelectric phases in the equilibrium state, the fact that the electric poling makes the specimen single phase, R3c, after poling for the precritical compositions and retains the two phase nature of the critical compositions makes the critical compositions exhibit considerably higher piezoelectric response than the precritical compositions.
Chapter five is dedicated to phase transition behaviour of the post critical compositions of (1-x)(Na0.5Bi0.5)TiO3–(x)BaTiO3 (0.16≤x≤1) using temperature dependent XRD, dielectric and ferroelectric studies. Though structurally the entire composition range is tetragonal, several notable features were revealed during detailed examination of the structural and dielectric behaviour. This study is also important from the view point that pure BT is a major component of multilayer ceramic capacitors and that an increase in the Curie point would be a welcome step for better temperature stability of the device. NBT does this. The transition temperature increases from 120 ºC for pure BT to 275 ºC for x=0.30 along with simultaneous increase in c/a ratio from 1.009 (pure BT) to 1.02 (x=0.30). Detailed analysis of temperature and frequency dependent dielectric data revealed deviation from Curie-Weiss and suggests a gradual transformation to relaxor-ferroelectric state as the NBT concentration increases in BT. The measure of frequency dispersion ‘γ’ parameter was determined from modified Curie-Weiss law for various compositions in the system. The ferroelectric and piezoelectric properties have also been investigated in detail for this composition range and an attempt has been made to correlate the composition variation of these properties with their structural parameters. This chapter shows a systematic correlation between all physical quantities such as Curie point, piezoelectric coefficient, polarization and tetragonality as a function of composition.
|
79 |
Conductive Domain Walls in Ferroelectric Bulk Single CrystalsSchröder, Mathias 07 March 2014 (has links)
Ferroic materials play an increasingly important role in novel (nano-)electronic applications. Recently, research on domain walls (DWs) received a big boost by the discovery of DW conductivity in bismuth ferrite (BiFeO3 ) and lead zirconate titanate (Pb(Zrx Ti1−x )O3) ferroic thin films.
These achievements open a realistic and unique perspective to reproducibly engineer conductive paths and nanocontacts of sub-nanometer dimensions into wide-bandgap materials. The possibility to control and induce conductive DWs in insulating templates is a key step towards future innovative nanoelectronic devices [1]. This work focuses on the investigation of the charge transport along conductive DWs in ferroelectric single crystals. In the first part, the photo-induced electronic DC and AC charge transport along such DWs in lithium niobate (LNO) single crystals is examined. The DC conductivity of the bulk and DWs is investigated locally using piezoresponse force microscopy (PFM) and conductive AFM (c-AFM). It is shown that super-bandgap illumination (λ ≤ 310 nm) in combination with (partially) charged 180° DWs increases the DC conductivity of the DWs up to three orders of magnitude compared to the bulk. The DW conductivity is proportional to the charge of the DW given by its inclination angle α with respect to the polar axis. The latter can be increased by doping the crystal with magnesium (0 to 7 mol %) or reduced by sample annealing. The AC conductivity is investigated locally utilizing nanoimpedance microscopy (NIM) and macroscopic impedance measurements.
Again, super-bandgap illumination increases the AC conductivity of the DWs. Frequency-dependent measurements are performed to determine an equivalent circuit describing the domains and DWs in a model system. The mixed conduction model for hopping transport in LNO is used to analyze the frequency-dependent complex permittivity. Both, the AC and DC results are then used to establish a model describing the transport along the conductive DW through the insulating domain matrix material. In the last part, the knowledge obtained for LNO is applied to study DWs in lithium tantalate (LTO), barium titanate (BTO) and barium calcium titanate (BCT) single crystals. Under super-bandgap illumination, conductive DWs are found in LTO and BCT as well, whereas a domain-specific conductivity is observed in BTO.
|
80 |
Scattering Scanning Near-Field Optical Microscopy on Anisotropic DielectricsSchneider, Susanne Christine 31 August 2007 (has links)
Near-field optical microscopy allows the nondestructive examination of surfaces with a spatial resolution far below the diffraction limit of Abbe. In fact, the resolution of this kind of microscope is not at all dependent on the wavelength, but is typically in the range of 10 to 100 nanometers. On this scale, many materials are anisotropic, even though they might appear isotropic on the macroscopic length scale. In the present work, the previously never studied interaction between a scattering-type near-field probe and an anisotropic sample is examined theoretically as well as experimentally. In the theoretical part of the work, the analytical dipole model, which is well known for isotropic samples, is extended to anisotropic samples. On isotropic samples one observes an optical contrast between different materials, whereas on anisotropic samples one expects an additional contrast between areas with different orientations of the same dielectric tensor. The calculations show that this anisotropy contrast is strong enough to be observed if the sample is excited close to a polariton resonance. The experimental setup allows the optical examination in the visible and in the infrared wavelength regimes. For the latter, a free-electron laser was used as a precisely tunable light source for resonant excitation. The basic atomic force microscope provides a unique combination of different scanning probe microscopy methods that are indispensable in order to avoid artifacts in the measurement of the near-field signal and the resulting anisotropy contrast. Basic studies of the anisotropy contrast were performed on the ferroelectric single crystals barium titanate and lithium niobate. On lithium niobate, we examined the spectral dependence of the near-field signal close to the phonon resonance of the sample as well as its dependence on the tip-sample distance, the polarization of the incident light, and the orientation of the sample. On barium titanate, analogous measurements were performed and, additionally, areas with different types of domains were imaged and the near-field optical contrast due to the anisotropy of the sample was directly measured. The experimental results of the work agree with the theoretical predictions. A near-field optical contrast due to the anisotropy of the sample can be measured and allows areas with different orientations of the dielectric tensor to be distinguished optically. The contrast results from variations of the dielectric tensor components both parallel and perpendicular to the sample surface. The presented method allows the optical examination of anisotropies of a sample with ultrahigh resolution, and promises applications in many fields of research, such as materials science, information technology, biology, and nanooptics. / Die optische Nahfeldmikroskopie ermöglicht die zerstörungsfreie optische Unter- suchung von Oberflächen mit einer räumlichen Auflösung weit unterhalb des klas- sischen Beugungslimits von Abbe. Die Auflösung dieser Art von Mikroskopie ist unabhängig von der verwendeten Wellenlänge und liegt typischerweise im Bereich von 10-100 Nanometern. Auf dieser Längenskala zeigen viele Materialien optisch anisotropes Verhalten, auch wenn sie makroskopisch isotrop erscheinen. In der vorliegenden Arbeit wird die bisher noch nicht bestimmte Wechselwirkung einer streuenden Nahfeldsonde mit einer anisotropen Probe sowohl theoretisch als auch experimentell untersucht. Im theoretischen Teil wird das für isotrope Proben bekannte analytische Dipol- modell auf anisotrope Materialien erweitert. Während fÄur isotrope Proben ein reiner Materialkontrast beobachtet wird, ist auf anisotropen Proben zusätzlich ein Kontrast zwischen Bereichen mit unterschiedlicher Orientierung des Dielektrizitätstensors zu erwarten. Die Berechnungen zeigen, dass dieser Anisotropiekontrast messbar ist, wenn die Probe nahe einer Polaritonresonanz angeregt wird. Der verwendete experimentelle Aufbau ermöglicht die optische Untersuchung von Materialien im sichtbaren sowie im infraroten Wellenlängenbereich, wobei zur re- sonanten Anregung ein Freie-Elektronen-Laser verwendet wurde. Das dem Nahfeld- mikroskop zugrunde liegende Rasterkraftmikroskop bietet eine einzigartige Kombi- nation verschiedener Rastersondenmikroskopie-Methoden und ermöglicht neben der Untersuchung von komplementären Probeneigenschaften auch die Unterdrückung von mechanisch und elektrisch induzierten Fehlkontrasten im optischen Signal. An den ferroelektrischen Einkristallen Lithiumniobat und Bariumtitanat wurde der anisotrope Nahfeldkontrast im infraroten WellenlÄangenbereich untersucht. An eindomÄanigem Lithiumniobat wurden das spektrale Verhalten des Nahfeldsignals sowie dessen charakteristische Abhängigkeit von Polarisation, Abstand und Proben- orientierung grundlegend untersucht. Auf Bariumtitanat, einem mehrdomänigen Kristall, wurden analoge Messungen durchgeführt und zusätzlich Gebiete mit ver- schiedenen Domänensorten abgebildet, wobei ein direkter nachfeldoptischer Kon- trast aufgrund der Anisotropie der Probe nachgewiesen werden konnte. Die experimentellen Ergebnisse dieser Arbeit stimmen mit den theoretischen Vorhersagen überein. Ein durch die optische Anisotropie der Probe induzierter Nahfeldkontrast ist messbar und erlaubt die optische Unterscheidung von Gebie- ten mit unterschiedlicher Orientierung des Dielektriziätstensors, wobei eine Än- derung desselben sowohl parallel als auch senkrecht zur Probenoberfläche messbar ist. Diese Methode erlaubt die hochauflösende optische Untersuchung von lokalen Anisotropien, was in zahlreichen Gebieten der Materialwissenschaft, Speichertech- nik, Biologie und Nanooptik von Interesse ist.
|
Page generated in 0.0708 seconds