• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 7
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation électrique et électro-optique de transistor à base de nanotube de carbone en vue de leur modélisation compacte

Liao, Si-Yu 29 April 2011 (has links) (PDF)
Afin de permettre de développer un modèle de mémoire non-volatile basée sur le transistor à nanotube de carbone à commande optique qui est utilisée dans des circuits électroniques neuromorphiques, il est nécessaire de comprendre les physiques électroniques et optoélectroniques des nanotubes de carbone, en particulier l'origine de l'effet mémoire que présente ces transistors. C'est dans ce contexte général que cette thèse s'intègre. Le travail est mené sur trois plans : * Caractériser électriquement et optoélectroniquement des structures de test des CNTFETs et des OG-CNTFETs. * Développer un modèle compact pour les contacts Schottky dans les transistors à nanotube de carbone de la façon auto-cohérente basé sur le diamètre et la nature du métal d'électrode en utilisant la méthode de la barrière effective avec les paramètres nécessaires calibrés. * Modéliser l'OG-CNTFET selon les régimes de fonctionnement, lecture, écriture, effacement ou programmation pour application à une mémoire non-volatile en intégrant le mécanisme de piégeage et dépiégeage à l'interface polymère/oxyde.
2

Etude et réalisation de transistors à nanotubes de carbone pour la détection sélective de gaz.

Gorintin, Louis 23 November 2011 (has links) (PDF)
Ce travail de thèse porte sur la réalisation d'un capteur d'espèces chimiques gazeuses à partir de transistors à nanotubes de carbone à effet de champs (i.e. CNTFET). Cette nouvelle génération de capteurs présente de nombreux avantages : compacts et bas coût, ils peuvent être intégrés dans des systèmes de détection ultrasensibles et autonomes. Ils sont destinés à des applications de sécurité civile ponctuelle ou en réseau comme la détection de gaz d'attaque ou d'explosifs. Nous proposons la réalisation de transistors à tapis aléatoires de nanotubes de carbone. L'utilisation de ces tapis permet de résoudre les problèmes de fabrication en quantité et de reproductibilité rencontrée avec les transistors à un seul nanotube. La première partie de nos travaux repose sur la mise au point d'une méthode de dépôt de tapis de nanotubes à l'aide d'un aérographe assisté d'un robot automatisé: des poudres commerciales de nanotubes de carbone sont mises en solution puis déposées de manière aléatoire par atomisation de micro gouttes de solvant. Les tapis ainsi obtenus permettent de réaliser en grand nombre de transistors avec des performances électriques reproductibles. La seconde partie présente le développement d'une matrice de transistors composée par des électrodes de différente nature (platine, palladium, or, nickel, titane) afin de répondre au problème de la sélectivité pour la détection gazeuse rencontré par ce type de dispositif. Ainsi nous discriminons les gaz en réalisant une empreinte électronique exploitant la modification spécifique des caractéristiques des différentes jonctions métal/nanotubes, et donc des caractéristiques de transfert des CNTFETs. Notre capteur présente une sensibilité et une sélectivité à l'ammoniac, au dioxyde d'azote, au diméthyle methylphosphonate (simulant du gaz sarin) et à l'eau oxygénée. La production en grand nombre de ces éléments permet de valider le potentiel industriel de ces capteurs.
3

Conception et optimisation de la tête haute fréquence d'un récepteur hétérodyne à 1.2 THz pour l'instrument JUICE-SWI / Design and optimization at the highest frequency of a heterodyne receiver at 1.2 THz for the JUICE-SWI instrument

Moro Melgar, Diego 06 September 2017 (has links)
La conception, fabrication et caractérisation d’un récepteur hétérodyne à 1.2 THz a été effectuée par le Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA) et constitue la base de ce rapport de thèse. Les études, analyse et résultats présentés dans ce manuscrit ont été effectués dans le cadre la mission JUpiter ICe moon Explorer (JUICE). JUICE est la première des grandes missions proposées à l’agenda du programme spatial Cosmic Vision 2015-2025 de l’Agence Spatial Européenne (ESA). La mission satellitaire JUICE est consacrée à l’étude du système Jovien. La charge utile du satellite est composée de 10 instruments à l’état-de-l’art et d'une expérience. Le développement du récepteur hétérodyne à 1.2 THz présenté dans cette thèse est dédié à SWI, acronyme anglais de “Submillimeter Wave Instrument", qui, grâce à une résolution spectrale de 107, étudiera à partir de 2030 la structure, la composition et la dynamique des températures de la stratosphère et de la troposphère de Jupiter ainsi que les exosphères et les surfaces des lunes glacées. La partie haute fréquence du récepteur est complètement basée sur la technologie de diodes Schottky planaires sur membrane d'arséniure de galium (GaAs), appelées “Planar Schottky Barrier Diodes” (PSBDs) dans le manuscrit. La réalisation du canal à 1.2 THz de SWI basé sur la technologie Schottky et entièrement développé par le consortium européen, dont fait parti le LERMA, a été le défi le plus significatif rencontré par ce dernier. L'extrême réduction de la taille des anodes des diodes Schottky nécessaire pour monter aux fréquences du THz a été atteinte en collaboration avec le Laboratoire de Photonique et de Nanostructures (LPN) en utilisant la lithographie électronique pour la fabrication de véritables “Monolithic Microwave Integrated Circuits” (MMIC).Une partie importante du ce rapport de thèse et consacrée à l’étude des phénomènes physiques additionnels qui apparaissent quand les dimensions des diodes sont fortement réduites. En particulier, les modifications du comportement résistif et capacitif des diodes Schottky dues à des phénomènes microscopiques bidimensionnels ont été étudiées au moyen d’un simulateur bidimensionnel Monte Carlo (2D-MC), en collaboration avec l’Université de Salamanca, en Espagne.Comme détaillé dans ce manuscrit, la caractérisation précise du comportement capacitif de la diode Schottky est un point critique pour déterminer la plage de fréquences de leur utilisation pour une application donnée. Toute modélisation imprécise de cette propriété de la diode peut entrainer un décalage significatif de la plage de fréquences d’opération d'un circuit THz.Cependant, la modélisation précise des diodes Schottky à ultra-hautes fréquences, n'est qu'une des étapes requises pour réussir à concevoir correctement un circuit THz. L’analyse précise et méticuleuse de l’interaction entre le comportement électromagnétique du chip MMIC et le comportement physique des diodes Schottky a été le but le plus important poursuit dans ce travail doctoral pour le développement du récepteur à 1.2 THz. Cette tâche a été abordée en utilisant les outils commerciaux “High Frequency Simulation/Structure Software” (Ansys-HFSS) et “Keysight Advance Design System” (Keysight-ADS). La combinaison des simulations électromagnétiques des structures tridimensionnelles du chip MMIC (Ansys-HFSS) et les simulations du comportement électrique non-linéaire de la diode Schottky (Keysight-ADS) est la manière actuelle d'aborder la conception de ce type de circuits THz. Le modèle électrique analytique de la diode requis par l’outil ADS a été défini par l'auteur conformément aux résultats précédemment obtenus avec le simulateur physique Monte Carlo. L’implémentation du modèle étendu de la diode Schottky dans cette méthode pour la conception et l'optimisation de chaque étage du récepteur à 1.2THz, est le sujet développé dans ce rapport de thèse. / The design, fabrication and testing of a frequency heterodyne receiver at 1.2 THz has been developed by Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA) and it is the foundation of this dissertation. The studies, analysis and results presented in this manuscript have been carried out within the framework of the JUpiter ICe moon Explorer (JUICE) mission. JUICE is one of the proposed missions in the agenda of the European Space Agency (ESA) Cosmic Vision 2015-2025 program. The objective of the JUICE satellite mission is to study the Jovian system, especially the Jupiter atmosphere properties and the surface characteristics of its icy moons. Scientific equipment consisting of ten state-of-the-art instruments and one experiment comprise the payload of this satellite. The development of a 1.2 THz channel is part of the Submillimeter Wave Instrument (SWI) devoted to recovering the spectroscopy data of the Jupiter atmosphere and icy-moons’ surface composition. The scientific principle for this receiver is all-solid-state semiconductor technology based in GaAs Planar Schottky Barrier Diodes (PSBDs). The achievement of a 1.2 THz channel based in PSBDs totally developed by European partners was the major challenge proposed for SWI, with LERMA committed to this assignment. The required ultra-scaling of the Schottky anode size of PSBDs in the attainment of the THz range has been achieved in collaboration with Laboratoire de Photonique et de Nanostructures (LPN) using e-beam photolithography in the fabrication of Monolithic Microwave Integrated Circuits (MMIC). An important part of this dissertation addresses the appearance of additional physical phenomena when ultrascaling solid-state PSBDs. Particularly, the modification of the electrical resistivity and capacitance of SBDs due to two-dimensional phenomena has been studied by means of a physical microscopic Two-Dimensional Monte Carlo (2D-MC) simulator, in collaboration with the University of Salamanca, Salamanca, Spain. As discussed within this manuscript, the accurate characterization of the diode capacitance is one of the critical points when opening a frequency window in the required frequency range of a THz application. A misunderstanding of this modified capacitance during the design of these devices can lead to a considerable offset in the frequency range of the experimental module. However, the accurate modeling of PSBDs in such high frequency applications is only a part of the expertise required for the successful completion of this challenge. The accurate and meticulous analysis of the interrelationship between the electromagnetic behavior of the MMIC chip and the physical behavior of the integrated PSBDs is the main challenge faced in this dissertation for the development of the 1.2 THz receiver. This task has been addressed using the commercial Ansys High Frequency Simulation/Structure Software (Ansys-HFSS) and the Keysight Advance Design System (Keysight-ADS). The combination of the three-dimensional electromagnetic characterization of the chip structure (obtained with HFSS) with the non-linear electrical circuit simulation (carried out by ADS) of diodes is the current methodology for the design of these modules. The analytical electrical model of PSBDs required by ADS software has been defined by this author in agreement with the results obtained with the 2D-MC simulator. The implementation of this approach in the design and optimization of the different stages of the accomplished 1.2 THz receiver is the main subject of this dissertation. The interaction between the physical model of the PSBDs and the electromagnetic modeling of the structure will be discussed within the different chapters of this dissertation. Finally, the mechanical engineering of these applications must be addressed in this discussion.
4

Superconducting silicon on insulator and silicide-based superconducting MOSFET for quantum technologies / SOI supraconducteur et MOSFET supraconducteur à la base de siliciure pour les technologies quantiques

Francheteau, Anaïs 18 December 2017 (has links)
L'introduction de la supraconductivité dans des structures de type MOSFET en silicium ouvre de nouvelles perspectives dans la recherche en physique. Dans cette thèse, on s'intéresse aux propriétés de transport électronique au sein d'un MOSFET fabriqué avec des sources et drains supraconducteurs. Afin de garantir la reproductibilité de ces dispositifs, il est important d'intégrer des matériaux supraconducteurs compatibles avec la technologie CMOS exploitant la technologie silicium qui a pour énorme avantage d'être véritablement fiable et mature. L'idée fondamentale est de réaliser un nouveau type de circuit supraconducteur avec une géométrie de type transistor dans lequel un supracourant non dissipatif circulant au sein du dispositif, de la source vers le drain, serait modulé par une tension de grille : un JOFET. Une perspective importante est la réalisation d'un qubit supraconducteur grâce à une technologie parfaitement reproductible et mature. Cependant, à très basse température et avec la diminution de la taille des dispositifs, deux phénomènes a priori antagonistes entrent en compétition, à savoir la supraconductivité qui implique un grand nombre d'électrons condensés dans le même état quantique macroscopique et l'interaction Coulombienne qui décrit des processus de transport à une particule. L'intérêt de l'étude est donc de réaliser de tels transistors afin de mieux comprendre comment ce genre de dispositif hybride peut s'adapter à des propriétés opposées. Dans cette thèse, j'ai étudié deux façons d'introduire la supraconductivité dans nos dispositifs. La première option est de réaliser des sources et drains en silicium rendus supraconducteurs par dopage en bore et recuit laser effectué grâce à des techniques de dopage hors-équilibre robustes et bien maîtrisées. Même si la supraconductivité du silicium très fortement dopé en bore est connue depuis 2006 et son état supraconducteur a été très bien caractérisé sur des couches bidimensionnelles, la supraconductivité du SOI, qui est le substrat initial à la base de certains transistors, n'a jamais encore été testée et étudiée. L'objectif est de pouvoir adapter ces techniques de dopage au SOI afin de le rendre supraconducteur et de pouvoir l'intégrer par la suite dans des dispositifs de type MOSFET. La seconde option considérée est la réalisation de source et drain à base de siliciures supraconducteurs tel que le PtSi. Ce siliciure est intéressant du point de vue de sa température critique relativement haute de 1K. D'un point de vue technologique, les MOSFETs à barrière Schottky présentant des contacts en PtSi supraconducteur ont été élaborés au CEA/LETI. Les mesures à très basse température au sein d'un cryostat à dilution ont mis en évidence cette compétition entre la supraconductivité et les effets d'interaction Coulombienne et ont également révélé la supraconductivité dans le MOSFET comportant des contacts en PtSi grâce notamment à l'observation du gap induit dans le dispositif. / Superconducting transport through a silicon MOSFET can open up many new possibilities ranging from fundamental research to industrial applications. In this thesis, we investigate the electric transport properties of a MOSFET built with superconducting source and drain contacts. Due to their advantages in terms of scalability and reproducibility, we want to integrate superconducting materials compatible with CMOS technology, thus exploiting the reliable and mature silicon technology. The idea is to realize a new type of superconducting circuits in a transistor geometry in which a non-dissipative supercurrent flowing through the device from source to drain will be modulated by a gate: a JOFET. One important outcome is the realization of superconducting qubits in a perfectly reproducible and mature technology. However, at low temperature and with the reduction of the size of the devices, two antagonistic phenomena appear. The dissipation-free transport of Cooper pairs competes with lossy single-particle processes due to Coulomb interactions. The goal is to understand how these two conflicting properties manifest in such hybrid devices. In this thesis, I studied two different ways of introducing superconductivity in the devices. We deployed a high boron doping and a laser annealing provided by well-controlled out-of-equilibrium doping techniques to make the silicon superconducting. Although highly boron-doped silicon has been known to be superconducting since 2006, superconductivity of SOI, the basic brick of some transistors, was never tested before. We aim at adapting those doping techniques on SOI in order to make it superconducting and to integrate it in transistor-like devices. In a second project, we study source and drain contacts fabricated with superconducting silicides such as PtSi. Such Schottky barrier MOSFETs with superconducting PtSi contacts are elaborated at the CEA/LETI. Measurements at very low temperature revealed the competition between superconductivity and Coulomb interactions and moreover, have brought evidence of superconductivity in PtSi based silicon Schottky barrier MOSFET.
5

Caractérisation électrique et électro-optique de transistor à base de nanotube de carbone en vue de leur modélisation compacte

Liao, Si-yu 29 April 2011 (has links)
Afin de permettre de développer un modèle de mémoire non-volatile basée sur le transistor à nanotube de carbone à commande optique qui est utilisée dans des circuits électroniques neuromorphiques, il est nécessaire de comprendre les physiques électroniques et optoélectroniques des nanotubes de carbone, en particulier l’origine de l'effet mémoire que présente ces transistors. C’est dans ce contexte général que cette thèse s'intègre. Le travail est mené sur trois plans :• Caractériser électriquement et optoélectroniquement des structures de test des CNTFETs et des OG-CNTFETs.• Développer un modèle compact pour les contacts Schottky dans les transistors à nanotube de carbone de la façon auto-cohérente basé sur le diamètre et la nature du métal d’électrode en utilisant la méthode de la barrière effective avec les paramètres nécessaires calibrés.• Modéliser l'OG-CNTFET selon les régimes de fonctionnement, lecture, écriture, effacement ou programmation pour application à une mémoire non-volatile en intégrant le mécanisme de piégeage et dépiégeage à l’interface polymère/oxyde. / This PhD thesis presents a computationally efficient physics-based compact model for optically-gated carbon nanotube field effect transistors (OG-CNTFETs), especially in the non-volatile memory application. This model includes memory operations such as “read”, “write”, “erase” or “program”, and “reset” which are modeled using trapping and detrapping mechanisms at the polymer/oxide interface. The relaxation of the memory state is taken into account. Furthermore, the self-consistent modeling of Schottky barriers at contacts between the carbon nanotube channel and metal electrodes is integrated in this model applying the effective Schottky barrier method. The Schottky contact model can be included in CNTFET based devices for a typical biasing range of carbon nanotube transistors. This compact model is validated by the good agreement between simulation results and experimental data (I-V characteristics). In the non-volatile memory application, this model can fully reproduce device behaviors in transient simulations. A prediction study of the key technological parameter, the CNT diameter variety is established to expect its impact on the transistor performance, and more importantly, on the memory operation. In the other hand, this thesis presents a preliminary electric characterization (I-V) of CNTFETs and OG-CNTFETs for the device modeling database. A preliminary optoelectronic characterization method is proposed.
6

Caractérisations des défauts profonds du SiC et pour l'optimisation des performances des composants haute tension / Deep levels characterizations in SiC to optimize high voltage devices

Zhang, Teng 13 December 2018 (has links)
En raison de l'attrait croissant pour les applications haute tension, haute tempé-rature et haute fréquence, le carbure de silicium (SiC) continue d'attirer l'attention du monde entier comme l'un des candidats les plus compétitifs pour remplacer le sili-cium dans le champ électrique de puissance. Entre-temps, il est important de carac-tériser les défauts des semi-conducteurs et d'évaluer leur influence sur les dispositifs de puissance puisqu'ils sont directement liés à la durée de vie du véhicule porteur. De plus, la fiabilité, qui est également affectée par les défauts, devient une question incontournable dans le domaine de l'électricité de puissance.Les défauts, y compris les défauts ponctuels et les défauts prolongés, peuvent introduire des niveaux d'énergie supplémentaires dans la bande passante du SiC en raison de divers métaux comme le Ti, le Fe ou le réseau imparfait lui-même. En tant que méthode de caractérisation des défauts largement utilisée, la spectroscopie à transitoires en profondeur (DLTS) est supérieure pour déterminer l'énergie d'activa-tion Ea , la section efficace de capture Sigma et la concentration des défauts Nt ainsi que le profil des défauts dans la région d'épuisement grâce à ses divers modes de test et son analyse numérique avancée. La détermination de la hauteur de la barrière Schottky (HBS) prête à confusion depuis longtemps. Outre les mesures expérimentales selon les caractéristiques I-V ou C-V, différents modèles ont été proposés, de la distribution gaussienne du HBS au modèle de fluctuation potentielle. Il s'est avéré que ces modèles sont reliés à l'aide d'une hauteur de barrière à bande plate Phi_BF . Le tracé de Richardson basé sur Phi_BF ainsi que le modèle de fluctuation potentielle deviennent un outil puissant pour la caractérisation HBS. Les HBSs avec différents contacts métalliques ont été caractéri-sés, et les diodes à barrières multiples sont vérifiées par différents modèles. Les défauts des électrons dans le SiC ont été étudiés avec des diodes Schottky et PiN, tandis que les défauts des trous ont été étudiés dans des conditions d'injec-tion forte sur des diodes PiN. 9 niveaux d'électrons et 4 niveaux de trous sont com-munément trouvés dans SiC-4H. Une relation linéaire entre le Ea extrait et le log(sigma) indique l'existence de la température intrinsèque de chaque défaut. Cependant, au-cune différence évidente n'a été constatée en ce qui concerne l'inhomogénéité de la barrière à l'oxyde d'éther ou le métal de contact. De plus, les pièges à électrons près de la surface et les charges positives fixes dans la couche d'oxyde ont été étudiés sur des MOSFET de puissance SiC par polarisation de porte à haute température (HTGB) et dose ionisante totale (TID) provoquées par irradiation. Un modèle HTGB-assist-TID a été établi afin d'ex-plain l'effet de synergie. / Due to the increasing appeal to the high voltage, high temperature and high fre-quency applications, Silicon Carbide (SiC) is continuing attracting world’s attention as one of the most competitive candidate for replacing silicon in power electric field. Meanwhile, it is important to characterize the defects in semiconductors and to in-vestigate their influences on power devices since they are directly linked to the car-rier lifetime. Moreover, reliability that is also affected by defects becomes an una-voidable issue now in power electrics. Defects, including point defects and extended defects, can introduce additional energy levels in the bandgap of SiC due to various metallic impurities such as Ti, Fe or intrinsic defects (vacancies, interstitial…) of the cristalline lattice itself. As one of the widely used defect characterization method, Deep Level Transient Spectroscopy (DLTS) is superior in determining the activation energy Ea , capture cross section sigma and defect concentration Nt as well as the defect profile in the depletion region thanks to its diverse testing modes and advanced numerical analysis. Determination of Schottky Barrier Height (SBH) has been confusing for long time. Apart from experimental measurement according to I-V or C-V characteristics, various models from Gaussian distribution of SBH to potential fluctuation model have been put forward. Now it was found that these models are connected with the help of flat-band barrier height Phi_BF . The Richardson plot based on Phi_BF along with the potential fluctuation model becomes a powerful tool for SBH characterization. SBHs with different metal contacts were characterized, and the diodes with multi-barrier are verified by different models. Electron traps in SiC were studied in Schottky and PiN diodes, while hole traps were investigated under strong injection conditions in PiN diodes. 9 electron traps and 4 hole traps have been found in our samples of 4H-SiC. A linear relationship between the extracted Ea and log(sigma) indicates the existence of the intrinsic temper-ature of each defects. However, no obvious difference has been found related to ei-ther barrier inhomogeneity or contact metal. Furthermore, the electron traps near in-terface and fixed positive charges in the oxide layer were investigated on SiC power MOSFETs by High Temperature Gate Bias (HTGB) and Total Ionizing Dose (TID) caused by irradiation. An HTGB-assist-TID model was established in order to ex-plain the synergetic effect.
7

Caractérisation de techniques d'implantations ioniques alternatives pour l'optimisation du module source-drain de la technologie FDSOI 28nm / Characterization of alternative ion implantation techniques for the optimization of the source-drain module of FDSOI 28 nm technology

Daubriac, Richard 10 December 2018 (has links)
Durant ces dernières années, l’apparition de nouvelles architectures (FDSOI, FinFETs ou NW-FETs) et l’utilisation de nouveaux matériaux (notamment SiGe) ont permis de repousser les limites des performances des dispositifs MOS et de contourner l’effet canal court inhérent à la miniaturisation des composants. Cependant, pour toutes ces nouvelles architectures, la résistance de contact se dégrade au fil des nœuds technologiques. Celle-ci dépend fortement de deux paramètres physiques : la concentration de dopants actifs proches de la surface du semi-conducteur et de la hauteur de barrière Schottky du contact siliciuré. De multiples procédés avancés ont été proposé pour améliorer ces deux paramètres physiques (pré-amorphisation, recuit laser, ségrégation de dopants, etc…). Afin d’optimiser les conditions expérimentales de ces nouvelles techniques de fabrication, il est primordial de pouvoir caractériser avec fiabilité leur impact sur les deux grandeurs physiques citées. Dans le cadre de cette thèse, deux thématiques dédiées à l’étude de chacun des paramètres sont abordées, explicitant les méthodes de caractérisation développées ainsi que des exemples concrets d’applications. La première partie concerne l’étude de la concentration de dopants actifs proches de la surface du semi-conducteur. Dans cet axe, nous avons mis en place une méthode d’Effet Hall Différentiel (DHE). Cette technique combine gravures successives et mesures par effet Hall conventionnel afin d’obtenir le profil de concentration de dopants actifs en fonction de la profondeur. Nous avons développé et validé une méthode de gravure chimique et de mesure électrique pour des couches ultra-minces de SiGe et de Si dopées. Les profils de concentration générés ont une résolution en profondeur inférieure à 1 nm et ont permis d’étudier de façon approfondie dans les premiers nanomètres proches de la surface de couches fabriquées grâce à des techniques d’implantation et de recuit avancées comme par exemple, la croissance en phase solide activée par recuit laser. La deuxième partie porte sur la mesure de hauteurs de barrière Schottky pour des contacts siliciurés. Durant cette étude, nous avons transféré une technique se basant sur des diodes en tête bêche pour caractériser l’impact de la ségrégation de différentes espèces à l’interface siliciure/semi-conducteur sur la hauteur de barrière Schottky d’un contact en siliciure de platine. Cette méthode de mesure associée à des simulations physiques a permis d’une part, d’extrairer avec fiabilité des hauteurs de barrières avec une précision de 10meV et d’autre part, d’effectuer une sélection des meilleures conditions de ségrégation de dopants pour la réduction de la hauteur de barrière Schottky. Pour conclure, ce projet a rendu possible le développement de méthodes de caractérisation pour l’étude de matériaux utilisés en nanoélectronique. De plus, nous avons pu apporter des éclaircissements concernant l’impact de techniques d’implantation ionique alternatives sur des couches de Si et SiGe ultrafines, et ce, dans le but de réduire la résistance de contact entre siliciure et semi-conducteur dans le module source-drain de transistors ultimes. / During the past few decades, the emergence of new architectures (FDSOI, FinFETs or NW-FETs) and the use of new materials (like silicon/germanium alloys) allowed to go further in MOS devices scaling by solving short channel effect issues. However, new architectures suffer from contact resistance degradation with size reduction. This resistance strongly depends on two parameters: the active dopant concentration close to the semi-conductor surface and the Schottky barrier height of the silicide contact. Many solutions have been proposed to improve both of these physical parameters: pre-amorphisation, laser annealing, dopant segregation and others. In order to optimize the experimental conditions of these fabrication techniques, it is mandatory to measure precisely and reliably their impact on cited parameters.Within the scope of this thesis, two parts are dedicated to each lever of the contact resistance, each time precising the developed characterization method and concrete application studies. The first part concerns the study of the active dopant concentration close to the semi-conductor surface. In this axis, we developed a Differential Hall Effet method (DHE) which can provide accurate depth profiles of active dopant concentration combining successive etching processes and conventional Hall Effect measurements. To do so, we validated layer chemical etching and precise electrical characterization method for doped Si and SiGe. Obtained generated profiles have a sub-1nm resolution and allowed to scan the first few nanometers of layers fabricated by advanced ion implantation and annealing techniques, like solid-phase epitaxy regrowth activated by laser annealing. In the second part, we focused on the measurement of Schottky barrier height of platinum silicide contact. We transferred a characterization method based on back-to-back diodes structure to measure platinum silicide contacts with different dopant segregation conditions. The electrical measurements were then fitted with physical models to extract Schottky barrier height with a precision of about 10meV. This combination between measurements and simulations allowed to point out the best ion implantation and annealing conditions for Schottky barrier height reduction.To conclude, thanks to this project, we developed highly sensitive characterization methods for nanoelectronics application. Moreover, we brought several clarifications on the impact of alternative ion implantation and annealing processes on Si and SiGe ultra-thin layers in the perspective of contact resistance reduction in FDSOI source-drain module.

Page generated in 0.0678 seconds