• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 39
  • 14
  • 10
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 214
  • 214
  • 61
  • 51
  • 47
  • 41
  • 39
  • 28
  • 27
  • 27
  • 25
  • 24
  • 24
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Patofyziologie non-motorických projevů při postižení bazálních ganglií / Pathophysiology of non-motor symptoms in basal ganglia involvement

Majerová, Veronika January 2013 (has links)
The basal ganglia (BG) are a group of brain nuclei situated deep in the cerebral hemispheres. While BG were primarily associated with motor functions, in recent years there has been an increasing evidence that BG are also significantly involved in a wide range of non-motor functions. This work focused on some of the non-motor symptoms associated with two typical basal ganglia disorders: Parkinson's disease (PD) and Huntington's disease (HD). The first study concerned spatial navigation impairment in patients with HD. Their spatial navigation skills were tested using the Blue Velvet Arena, technique evaluating spatial navigation in real space, capable to selectively differentiate between two components of spatial navigation - allocentric (environment-oriented) and egocentric (self-oriented). Allocentric navigation is linked to hippocampal function, whereas egocentric navigation is usually associated with striatum, a structure predominantly affected in HD. We found that spatial navigation is not significantly affected in the early stages of HD and that in more advanced stages, when spatial navigation is already impaired, there is no significant difference between allocentric and egocentric navigation impairment. We speculate that the striatal involvement does not contribute to the impairment of the...
212

Timing and expectation of reward: a neuro-computational model of the afferents to the ventral tegmental area

Vitay, Julien, Hamker, Fred H. January 2014 (has links)
Neural activity in dopaminergic areas such as the ventral tegmental area is influenced by timing processes, in particular by the temporal expectation of rewards during Pavlovian conditioning. Receipt of a reward at the expected time allows to compute reward-prediction errors which can drive learning in motor or cognitive structures. Reciprocally, dopamine plays an important role in the timing of external events. Several models of the dopaminergic system exist, but the substrate of temporal learning is rather unclear. In this article, we propose a neuro-computational model of the afferent network to the ventral tegmental area, including the lateral hypothalamus, the pedunculopontine nucleus, the amygdala, the ventromedial prefrontal cortex, the ventral basal ganglia (including the nucleus accumbens and the ventral pallidum), as well as the lateral habenula and the rostromedial tegmental nucleus. Based on a plausible connectivity and realistic learning rules, this neuro-computational model reproduces several experimental observations, such as the progressive cancelation of dopaminergic bursts at reward delivery, the appearance of bursts at the onset of reward-predicting cues or the influence of reward magnitude on activity in the amygdala and ventral tegmental area. While associative learning occurs primarily in the amygdala, learning of the temporal relationship between the cue and the associated reward is implemented as a dopamine-modulated coincidence detection mechanism in the nucleus accumbens.
213

Signal Transduction: Dopamine D1 receptor-induced signaling cascades in the striatum in Parkinson's disease

Maslava, Natallia January 2012 (has links)
Parkinsons sjukdom är en av de vanligaste progressiva neurodegenerativa sjukdomer som drabbar upp till tio miljoner människor i världen. Sjukdomen orsakas av död av de nervceller som producerar signalämnet dopamin. För att kompensera bristen på dopamin, får patienter läkemedlet levodopa som är en precursor för dopamin. Men tyvärr leder denna behandling till ett ännu svårare tillstånd – levodopa-inducerad dyskinesi (LID). Dyskinesier innebär onormala ofrivilliga rörelser. För att förstå mekanismer som orsakar LID har djurmodeller utvecklats som simulerar Parkinsons sjukdom. Många studier har påpekat att LID uppstår på grund av ökad fosforylering av extracellulära signalreglerade kinaser 1 och 2 (ERK1/2). Det är viktigt att förstå hur ERK1/2 aktiveras vid Parkinsons sjukdom via dopaminreceptorer på cellmembranet hos nervceller i striatum för att utveckla någon rimlig behandling av LID eller för att förhindra det tillståndet. Syftet med denna studie var att undersöka signalvägar som induceras av dopamin D1-receptorn i vävnadsprov från regionen striatum i hjärnan från lesionerade råttor. Nivån av fosforylation ERK1/2 mättes med hjälp av Western blot. Genom att blockera målmolekyler kunde olika signalvägar blockeras, och resultaten tyder på att det finns tydliga förändringar i dopamin D1-receptor inducerade signalvägar. Aktivering av dopamin D1 receptor inducerade fosforylering av ERK1/2, dopamin D1-receptor inducerad fosforylering av ERK1/2 visade sig att vara beroende av calcium signalering, och det var möjligt att reglera fosforylering av ERK1/2 via signalväg som är inducerad av Grupp 1 metabotropiska glutamatreceptorer. Projektet är inte slutfört och fler målmolekyler behöver testas för att dra definitiva slutsatser om hur signalvägarna interagerar med varandra och hur man på ett effektivt sätt kan reglera dessa. Under arbetets gång hade Western blot-tekniken förbättrats och optimiserats. / Parkinson's disease is one of the most common neurodegenerative diseases affecting up to ten million people worldwide. The disease is caused by the death of neurons that produce the neurotransmitter dopamine. To compensate the lack of dopamine, patients are treated with levodopa, a precursor of dopamine. Levodopa invariably causes a troublesome complication in the form of unwanted involuntary movements known as “levodopa-induced dyskinesia”. Many studies have pointed out that levodopa-induced dyskinesia occurs due to increased phosphorylation of extracellular signal regulated kinases 1 and 2 (ERK1/2). It is important to understand how ERK1/2 is activated in Parkinson's disease by dopamine receptors in order to develop a reasonable treatment for LID or to prevent this condition in levodopa-treatment of Parkinsonian patients. The aim of this study was to investigate the pathways induced by the dopamine D1 receptor in striatal “slices” from parkinsonian rats. The level of phosphorylation of ERK1/2 (pERK 1/2) was measured by Western blot. Along the pathways leading to the activation of pERK 1/2 different target molecules were blocked. The clear alterations in the dopamine D1 induced signaling pathways were observed. Activation of the dopamine D1 receptor induced phosphorylation of ERK1/2, the dopamine D1 receptor-mediated increase of pERK was shown to be dependent on calcium signaling, and the DA D1 receptor-induced phosphorylation of ERK1/2 was possible to modulate via Group 1 metabotropic glutamate receptor pathway. The project is to be continued in the future and more target molecules should be tested in order to draw definite conclusions about how these signaling pathways interact with each other and how to regulate them effectively. During the project, Western blot technique was improved and optimized for the future experiments of the present study.
214

Advanced Modeling of Longitudinal Spectroscopy Data

Kundu, Madan Gopal January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Magnetic resonance (MR) spectroscopy is a neuroimaging technique. It is widely used to quantify the concentration of important metabolites in a brain tissue. Imbalance in concentration of brain metabolites has been found to be associated with development of neurological impairment. There has been increasing trend of using MR spectroscopy as a diagnosis tool for neurological disorders. We established statistical methodology to analyze data obtained from the MR spectroscopy in the context of the HIV associated neurological disorder. First, we have developed novel methodology to study the association of marker of neurological disorder with MR spectrum from brain and how this association evolves with time. The entire problem fits into the framework of scalar-on-function regression model with individual spectrum being the functional predictor. We have extended one of the existing cross-sectional scalar-on-function regression techniques to longitudinal set-up. Advantage of proposed method includes: 1) ability to model flexible time-varying association between response and functional predictor and (2) ability to incorporate prior information. Second part of research attempts to study the influence of the clinical and demographic factors on the progression of brain metabolites over time. In order to understand the influence of these factors in fully non-parametric way, we proposed LongCART algorithm to construct regression tree with longitudinal data. Such a regression tree helps to identify smaller subpopulations (characterized by baseline factors) with differential longitudinal profile and hence helps us to identify influence of baseline factors. Advantage of LongCART algorithm includes: (1) it maintains of type-I error in determining best split, (2) substantially reduces computation time and (2) applicable even observations are taken at subject-specific time-points. Finally, we carried out an in-depth analysis of longitudinal changes in the brain metabolite concentrations in three brain regions, namely, white matter, gray matter and basal ganglia in chronically infected HIV patients enrolled in HIV Neuroimaging Consortium study. We studied the influence of important baseline factors (clinical and demographic) on these longitudinal profiles of brain metabolites using LongCART algorithm in order to identify subgroup of patients at higher risk of neurological impairment. / Partial research support was provided by the National Institutes of Health grants U01-MH083545, R01-CA126205 and U01-CA086368

Page generated in 0.0429 seconds