• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 6
  • Tagged with
  • 18
  • 18
  • 13
  • 11
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contributions mathématiques aux calculs de structures électroniques / Mathematical contributions to the calculations of electronic structures

Gontier, David 28 September 2015 (has links)
Cette thèse comprend trois sujets différents, tous en rapport à des problèmes de structures électroniques. Ces trois sujets sont présentés dans trois parties indépendantes.Cette thèse commence par une introduction générale présentant les problématiques et les principaux résultats.La première partie traite de la théorie de la fonctionnelle de la densité lorsqu'elle est appliquée aux modèles d'électrons avec spins polarisés. Cette partie est divisée en deux chapitres. Dans le premier de ces chapitres, nous introduisons la notion de N-représentabilité, et nous caractérisons les ensembles de matrices de densité de spin représentables. Dans le second chapitre, nous montrons comment traiter mathématiquement le terme de Zeeman qui apparaît dans les modèles comprenant une polarisation de spin. Le résultat d'existence qui est démontré dans (Anantharaman, Cancès 2009) pour des systèmes de Kohn-Sham sans polarisation de spin est étendu au cas des systèmes avec polarisation de spin.Dans la seconde partie, nous étudions l'approximation GW. Dans un premier temps, nous donnons une définition mathématique de la fonction de Green à un corps, et nous expliquons comment les énergies d'excitation des molécules peuvent être obtenues à partir de cette fonction de Green. La fonction de Green peut être numériquement approchée par la résolution des équations GW. Nous discutons du caractère bien posé de ces équations, et nous démontrons que les équations GW0 sont bien posées dans un régime perturbatif. Ce travail a été effectué en collaboration avec Eric Cancès et Gabriel Stoltz.Dans le troisième et dernière partie, nous analysons des méthodes numériques pour calculer les diagrammes de bandes de structures cristallines. Cette partie est divisée en deux chapitres. Dans le premier, nous nous intéressons à l'approximation de Hartree-Fock réduite (voir (Cances, Deleurence, Lewin 2008)). Nous prouvons que si le cristal est un insolant ou un semi-conducteur, alors les calculs réalisés dans des supercellules convergent exponentiellement vite vers la solution exacte lorsque la taille de la supercellule tend vers l'infini. Ce travail a été réalisé en collaboration avec Salma Lahbabi. Dans le dernier chapitre, nous présentons une nouvelle méthode numérique pour le calcul des diagrammes de bandes de cristaux (qui peuvent être aussi bien isolants que conducteurs). Cette méthode utilise la technique des bases réduites, et accélère les méthodes traditionnelles. Ce travail a été fait en collaboration avec Eric Cancès, Virginie Ehrlacher et Damiano Lombardi / This thesis contains three different topics, all related to electronic structure problems. These three topics are presented in three independent parts.This thesis begins with a general introduction presenting the problematics and main results.The first part is concerned with Density Functional Theory (DFT), for spin-polarized models. This part is divided in two chapters. In the first of these chapters, the notion of N-representability is introduced and the characterizations of the N-representable sets of spin-density 2X2 matrices are given. In the second chapter, we show how to mathematically treat the Zeeman term in spin-polarized DFT models. The existence of minimizers that was proved in (Anantharaman, Cancès 2009) for spin-unpolarized Kohn-Sham models within the local density approximation is extended to spin-polarized models.The second part of this thesis focuses on the GW approximation. We first give a mathematical definition of the one-body Green's function, and explain why methods based on Green's functions can be used to calculate electronic-excited energies of molecules. One way to compute an approximation of the Green's function is through the self-consistent GW equations. The well-posedness of these equations is discussed, and proved in the GW0 case in a perturbative regime. This is joint work with Eric Cancès and Gabriel Stoltz.In the third and final part, numerical methods to compute band-diagrams of crystalline structure are analyzed. This part is divided in two chapters.In the first one, we consider a perfect crystal in the reduced Hartree-Fock approximation (see (Cances, Deleurence, Lewin 2008)). We prove that, if the crystal is an insulator or a semi-conductor, then supercell calculations converge to the exact solution with an exponential rate of convergence with respect to the size of the supercell. This is joint work with Salma Lahbabi. In the last chapter, we provide a new numerical method to calculate the band diagram of a crystal (which can be either an insulator or a conductor). This method, based on reduced basis techniques, speeds up traditional calculations. This is joint work with Eric Cancès, Virginie Ehrlacher, and Damiano Lombardi
2

Contributions mathématiques aux calculs de structures électroniques / Mathematical contributions to the calculations of electronic structures

Gontier, David 28 September 2015 (has links)
Cette thèse comprend trois sujets différents, tous en rapport à des problèmes de structures électroniques. Ces trois sujets sont présentés dans trois parties indépendantes.Cette thèse commence par une introduction générale présentant les problématiques et les principaux résultats.La première partie traite de la théorie de la fonctionnelle de la densité lorsqu'elle est appliquée aux modèles d'électrons avec spins polarisés. Cette partie est divisée en deux chapitres. Dans le premier de ces chapitres, nous introduisons la notion de N-représentabilité, et nous caractérisons les ensembles de matrices de densité de spin représentables. Dans le second chapitre, nous montrons comment traiter mathématiquement le terme de Zeeman qui apparaît dans les modèles comprenant une polarisation de spin. Le résultat d'existence qui est démontré dans (Anantharaman, Cancès 2009) pour des systèmes de Kohn-Sham sans polarisation de spin est étendu au cas des systèmes avec polarisation de spin.Dans la seconde partie, nous étudions l'approximation GW. Dans un premier temps, nous donnons une définition mathématique de la fonction de Green à un corps, et nous expliquons comment les énergies d'excitation des molécules peuvent être obtenues à partir de cette fonction de Green. La fonction de Green peut être numériquement approchée par la résolution des équations GW. Nous discutons du caractère bien posé de ces équations, et nous démontrons que les équations GW0 sont bien posées dans un régime perturbatif. Ce travail a été effectué en collaboration avec Eric Cancès et Gabriel Stoltz.Dans le troisième et dernière partie, nous analysons des méthodes numériques pour calculer les diagrammes de bandes de structures cristallines. Cette partie est divisée en deux chapitres. Dans le premier, nous nous intéressons à l'approximation de Hartree-Fock réduite (voir (Cances, Deleurence, Lewin 2008)). Nous prouvons que si le cristal est un insolant ou un semi-conducteur, alors les calculs réalisés dans des supercellules convergent exponentiellement vite vers la solution exacte lorsque la taille de la supercellule tend vers l'infini. Ce travail a été réalisé en collaboration avec Salma Lahbabi. Dans le dernier chapitre, nous présentons une nouvelle méthode numérique pour le calcul des diagrammes de bandes de cristaux (qui peuvent être aussi bien isolants que conducteurs). Cette méthode utilise la technique des bases réduites, et accélère les méthodes traditionnelles. Ce travail a été fait en collaboration avec Eric Cancès, Virginie Ehrlacher et Damiano Lombardi / This thesis contains three different topics, all related to electronic structure problems. These three topics are presented in three independent parts.This thesis begins with a general introduction presenting the problematics and main results.The first part is concerned with Density Functional Theory (DFT), for spin-polarized models. This part is divided in two chapters. In the first of these chapters, the notion of N-representability is introduced and the characterizations of the N-representable sets of spin-density 2X2 matrices are given. In the second chapter, we show how to mathematically treat the Zeeman term in spin-polarized DFT models. The existence of minimizers that was proved in (Anantharaman, Cancès 2009) for spin-unpolarized Kohn-Sham models within the local density approximation is extended to spin-polarized models.The second part of this thesis focuses on the GW approximation. We first give a mathematical definition of the one-body Green's function, and explain why methods based on Green's functions can be used to calculate electronic-excited energies of molecules. One way to compute an approximation of the Green's function is through the self-consistent GW equations. The well-posedness of these equations is discussed, and proved in the GW0 case in a perturbative regime. This is joint work with Eric Cancès and Gabriel Stoltz.In the third and final part, numerical methods to compute band-diagrams of crystalline structure are analyzed. This part is divided in two chapters.In the first one, we consider a perfect crystal in the reduced Hartree-Fock approximation (see (Cances, Deleurence, Lewin 2008)). We prove that, if the crystal is an insulator or a semi-conductor, then supercell calculations converge to the exact solution with an exponential rate of convergence with respect to the size of the supercell. This is joint work with Salma Lahbabi. In the last chapter, we provide a new numerical method to calculate the band diagram of a crystal (which can be either an insulator or a conductor). This method, based on reduced basis techniques, speeds up traditional calculations. This is joint work with Eric Cancès, Virginie Ehrlacher, and Damiano Lombardi
3

Quelques contributions vers la simulation parallèle de la cinétique neutronique et la prise en compte de données observées en temps réel / Some contributions towards the parallel simulation of time dependent neutron transport and the integration of observed data in real time

Mula Hernandez, Olga 24 September 2014 (has links)
Dans cette thèse nous avons tout d'abord développé un solveur neutronique de cinétique transport 3D en géométrie déstructurée avec une discrétisation spatiale par éléments finis discontinus (solveur MINARET). L'écriture d'un tel code représente en soi une contribution importante dans la physique des réacteurs car il permettra de connaître de façon très précise l'état du c¿ur au cours d'accidents graves. Il jouera aussi un rôle important pour des études de fluence de la cuve des réacteurs. D'un point de vue mathématique, l'apport le plus important a consisté en l'implémentation d'algorithmes adaptés aux architectures de calcul parallèle, permettant de réduire de façon significative les temps de calcul. Un effort particulier a été mené pour paralléliser de façon efficace la variable temporelle par l'algorithme pararéel en temps. Nous avons ensuite cherché à développer une méthode qui permettrait d'utiliser MINARET comme outil de surveillance pendant l'opération d'un réacteur nucléaire. Une des difficultés majeures de ce problème réside dans le besoin de fournir les simulations en temps réel. La question a été abordée en développant tout d'abord une généralisation de la méthode Empirical Interpolation (EIM) grâce à laquelle on a pu définir un processus d'interpolation bien posé pour des fonctions appartenant à des espaces de Banach. Ceci est rendu possible par l'utilisation de formes linéaires d'interpolation au lieu des traditionnels points d'interpolation et une partie de cette thèse a été consacrée à la compréhension des propriétés théoriques de cette méthode (analyse de convergence sous hypothèse d'ensemble de petite dimension de Kolmogorov et étude de sa stabilité). / In this thesis, we have first developed a time dependent 3D neutron transport solver on unstructured meshes with discontinuous Galerkin finite elements spatial discretization. The solver (called MINARET) represents in itself an important contribution in reactor physics thanks to the accuracy that it can provide in the knowledge of the state of the core during severe accidents. It will also play an important role on vessel fluence calculations. From a mathematical point of view, the most important contribution has consisted in the implementation of algorithms that are well adapted for modern parallel architectures and that significantly decrease the computing times. A special effort has been done in order to efficiently parallelize the time variable by the use of the parareal in time algorithm. On a second stage, we have developed the foundations of a method with which we could use MINARET to monitor in real time the population of neutrons during the operation of the reactor. One of the major difficulties relies in the necessity of providing computations in real time. This question has been addressed by proposing an extension of the Empirical Interpolation Method (EIM) thanks to which a well-posed interpolation procedure has been defined for functions belonging to Banach spaces. This is possible thanks to the use of interpolating linear forms instead of the traditional interpolation points and a part of this thesis has been devoted to the understanding of the theoretical properties of this method (convergence analysis under the hypothesis of small Kolmogorov n-width and stability of the procedure).
4

Quelques contributions vers la simulation parallèle de la cinétique neutronique et la prise en compte de données observées en temps réel

Mula, Olga 24 September 2014 (has links) (PDF)
Dans cette thèse nous avons tout d'abord développé un solveur neutronique de cinétique transport 3D en géométrie déstructurée avec une discrétisation spatiale par éléments finis (solveur MINARET). L'écriture d'un tel code représente en soi une contribution importante dans la physique des réacteurs car il permettra de connaître de façon très précise l'état du coeur au cours d'accidents graves. Il jouera aussi un rôle très important pour des études de fluence de la cuve des réacteurs. D'un point de vue mathématique, l'apport le plus important dans l'écriture de ce solveur a consisté en l'implémentation d'algorithmes modernes adaptés aux architectures actuelles et à venir de calcul parallèle, permettant de réduire de façon significative les temps de calcul. Un effort particulier a été mené pour paralléliser de façon efficace la variable temporelle par l'algorithme pararéel en temps. Ce travail a consisté dans un premier temps à analyser les performances que le schéma classique de pararéel apporte dans la résolution de l'équation de transport de neutrons. Ensuite, nous avons cherché à améliorer ces performances en proposant un schéma de pararéel qui intègre de façon plus optimisée la présence de schémas itératifs autres que le pararéel dans la résolution de chaque pas de temps de l'équation du transport. L'idée principale de ce nouveau schéma consiste à limiter le nombre d'itérations internes pour chaque pas de temps du solveur fin et d'atteindre la convergence au cours des itérations pararéelles. Dans un second temps, une réflexion a été entamée autour de la question suivante: étant donné le haut degré de précision que MINARET fournit dans la connaissance de la population neutronique, serait-il possible de l'utiliser en tant qu'outil de surveillance pendant l'opération d'un réacteur nucléaire? Et, qui plus est, comment rendre un tel outil à la fois cohérent et complémentaire par rapport aux mesures prises \textit{in situ}? Une des difficultés majeures de ce problème réside dans le besoin de fournir les simulations en temps réel alors que, malgré nos efforts pour accélérer les calculs, les méthodes de discrétisation utilisées dans MINARET ne permettent pas des calculs de coeur à une telle vitesse. Cette question a été abordée en développant tout d'abord une généralisation de la méthode Empirical Interpolation (EIM) grâce à laquelle on a pu définir un processus d'interpolation bien posé pour des fonctions appartenant à des espaces de Banach. Ceci est rendu possible par l'utilisation de formes linéaires d'interpolation au lieu des traditionnels points d'interpolation et une partie de cette thèse a été consacrée à la compréhension des propriétés théoriques de cette méthode (analyse de convergence sous hypothèse d'ensemble de petite dimension de Kolmogorov et étude de sa stabilité). Ce processus d'interpolation (appelé Generalized EIM) permet de reconstruire en temps réel des processus physiques de la façon suivante: étant donné un système pouvant être décrit par une EDP paramétrée et sur lequel des mesures peuvent être prises \textit{in situ}, on construit d'abord une base d'interpolation constituée de solutions de cette EDP pour différentes valeurs du paramètre grâce à GEIM (ceci est fait par un algorithme greedy). On donne ensuite une approximation en temps réel de l'état du système via une fonction interpolée exprimée dans la base calculée et qui utilise des mesures acquises \textit{in situ} comme données d'entrée (et modélisées mathématiquement par les formes linéaires). La méthode a été appliquée avec succès dans des exemples simples (équations de Laplace et de Stokes) et nous espérons que les développements actuels et à venir pourront mener à son emploi dans des cas réels plus complexes comme celui de la reconstruction de la population neutronique dans un coeur de réacteur avec MINARET.
5

Méthodes de réduction de modèles appliquées à des problèmes d'aéroacoustique résolus par équations intégrales

Casenave, Fabien, Casenave, Fabien 05 December 2013 (has links) (PDF)
Cette thèse s'articule autour de deux thématiques : les méthodes numériques pour la propagation d'ondes acoustiques sous écoulement et les méthodes de réduction de modèles. Dans la première thématique, nous développons une méthode de couplage d'éléments finis et d'éléments de frontière pour résoudre l'équation d'Helmholtz convectée, lorsque l'écoulement est uniforme à l'extérieur d'un domaine borné. En particulier, nous proposons une formulation bien posée à toutes les fréquences de la source. Dans la deuxième thématique, nous proposons une solution au problème classique d'accumulation d'arrondis machine qui survient en calculant l'estimateur d'erreur a posteriori dans la méthode des bases réduites. Par ailleurs, nous proposons une méthode non intrusive pour calculer une approximation sous forme séparée des systèmes linéaires résultant de l'approximation en dimension finie de problèmes aux limites dépendant d'un ou plusieurs paramètres
6

Réduction de modèles en thermo-mécanique / Reduced order modeling in thermo-mechanics

Benaceur, Amina 21 December 2018 (has links)
Cette thèse propose trois nouveaux développements de la méthode des bases réduites (RB) et de la méthode d'interpolation empirique (EIM) pour des problèmes non-linéaires. La première contribution est une nouvelle méthodologie, la méthode progressive RB-EIM (PREIM) dont l'objectif est de réduire le coût de la phase de construction du modèle réduit tout en maintenant une bonne approximation RB finale. L'idée est d'enrichir progressivement l'approximation EIM et l'espace RB, contrairement à l'approche standard où leurs constructions sont disjointes. La deuxième contribution concerne la RB pour les inéquations variationnelles avec contraintes non-linéaires. Nous proposons une combinaison RB-EIM pour traiter la contrainte. En outre, nous construisons une base réduite pour les multiplicateurs de Lagrange via un algorithme hiérarchique qui conserve la positivité des vecteurs cette base. Nous appliquons cette stratégie aux problèmes de contact élastique sans frottement pour les maillages non-coïncidents. La troisième contribution concerne la réduction de modèles avec assimilation de données. Une méthode dédiée a été introduite dans la littérature pour combiner un modèle numérique avec des mesures expérimentales. Nous élargissons son cadre d'application aux problèmes instationnaires en exploitant la méthode POD-greedy afin de construire des espaces réduits pour tout le transitoire temporel. Enfin, nous proposons un nouvel algorithme qui produit des espaces réduits plus représentatifs de la solution recherchée tout en minimisant le nombre de mesures nécessaires pour le problème réduit final / This thesis introduces three new developments of the reduced basis method (RB) and the empirical interpolation method (EIM) for nonlinear problems. The first contribution is a new methodology, the Progressive RB-EIM (PREIM) which aims at reducing the cost of the phase during which the reduced model is constructed without compromising the accuracy of the final RB approximation. The idea is to gradually enrich the EIM approximation and the RB space, in contrast to the standard approach where both constructions are separate. The second contribution is related to the RB for variational inequalities with nonlinear constraints. We employ an RB-EIM combination to treat the nonlinear constraint. Also, we build a reduced basis for the Lagrange multipliers via a hierarchical algorithm that preserves the non-negativity of the basis vectors. We apply this strategy to elastic frictionless contact for non-matching meshes. Finally, the third contribution focuses on model reduction with data assimilation. A dedicated method has been introduced in the literature so as to combine numerical models with experimental measurements. We extend the method to a time-dependent framework using a POD-greedy algorithm in order to build accurate reduced spaces for all the time steps. Besides, we devise a new algorithm that produces better reduced spaces while minimizing the number of measurements required for the final reduced problem
7

Contributions aux simulations temps réel fiables et certains aspects du calcul scientifique

Prud'Homme, Christophe 09 December 2005 (has links) (PDF)
Ce document présente une synthèse des travaux de recherche effectués par l'auteur depuis 2000 au Massachusetts Institute Of Technology(MIT) puis à l'École Polytechnique Fédérale de Lausanne(EPFL). Ces travaux sont essentiellement axés sur les méthodes de bases réduites avec bornes d'erreur permettant la prédiction rapide et fiable de quantités issues de solutions d'équations aux dérivées partielles. L'implémentation de ces méthodes est complexe et l'auteur a également proposé et développé des outils innovants afin de tirer profit de celles-ci à moindre coût en termes de développement. cours et perspectives de recherche. Par ailleurs, ce document présente quelques travaux en cours et perspectives de recherche.
8

Contribution à l'analyse numérique de quelques problèmes en chimie quantique et mécanique.

Chakir, Rachida 30 November 2009 (has links) (PDF)
Dans ce travail, nous nous intéressons à l'analyse numérique de problèmes aux valeurs propres non linéaires, comme on peut en trouver en chimie quantique ou en mécanique. La résolution de ces problèmes étant très coûteuse, l'idée est de proposer de nouvelles méthodes permettant de simplifier la résolution de ce type de problèmes et ainsi diminuer le coût de calcul. L'analyse numérique est nécessaire pour comprendre si l'impact positif sur le coût de calcul total n'a pas de mauvaise conséquence sur la précision des résultats. On propose un complément aux travaux existants sur les estimations d'erreur a priori, afin d'obtenir des résultats équivalents à ceux connus dans le cas de problèmes aux valeurs propres linéaires. Ces résultats ont été utilisés pour la mise en oeuvre et l'analyse numérique de nouveaux schémas à deux grilles pour l'approximation de problèmes aux valeurs propres non linéaires. Ensuite, on propose d'adapter ce type de méthode de sous-grilles, pour une utilisation associée à la méthode des bases réduites.
9

Résolution numérique d'équations aux dérivées partielles à coefficients variables / Numerical resolution of partial differential equations with variable coefficients

Aghili, Joubine 02 December 2016 (has links)
Cette thèse aborde différents aspects de la résolution numérique des Equations aux Dérivées Partielles.Le premier chapitre est consacré à l'étude de la méthode Mixed High-Order (MHO). Il s'agit d'une méthode mixte de dernière génération permettant d'obtenir des approximations d'ordre arbitraire sur maillages généraux. Le principal résultat obtenu est l'équivalence entre la méthode MHO et une méthode primale de type Hybrid High-Order (HHO).Dans le deuxième chapitre, nous appliquons la méthode MHO/HHO à des problèmes issus de la mécanique des fluides. Nous considérons d'abord le problème de Stokes, pour lequel nous obtenons une discrétisation d'ordre arbitraire inf-sup stable sur maillages généraux. Des estimations d'erreur optimales en normes d'énergie et L2 sont proposées. Ensuite, nous étudions l'extension au problème d'Oseen, pour lequel on propose une estimation d'erreur en norme d'énergie où on trace explicitement la dépendance du nombre de Péclet local.Dans le troisième chapitre, nous analysons la version hp de la méthode HHO pour le problème de Darcy. Le schéma proposé permet de traiter des maillages généraux ainsi que de faire varier le degré polynomial d'un élément à l'autre. La dépendance de l'anisotropie locale du coefficient de diffusion est tracée explicitement dans l'analyse d'erreur en normes d'énergie et L2.La thèse se clôture par une ouverture sur la réduction de problèmes de diffusion à coefficients variables. L'objectif consiste à comprendre l'impact du choix de la formulation (mixte ou primale) utilisée pour la projection sur l'espace réduit sur la qualité du modèle réduit. / This Ph.D. thesis deals with different aspects of the numerical resolution of Partial Differential Equations.The first chapter focuses on the Mixed High-Order method (MHO). It is a last generation mixed scheme capable of arbitrary order approximations on general meshes. The main result of this chapter is the equivalence between the MHO method and a Hybrid High-Order (HHO) primal method.In the second chapter, we apply the MHO/HHO method to problems in fluid mechanics. We first address the Stokes problem, for which a novel inf-sup stable, arbitrary-order discretization on general meshes is obtained. Optimal error estimates in both energy- and L2-norms are proved. Next, an extension to the Oseen problem is considered, for which we prove an error estimate in the energy norm where the dependence on the local Péclet number is explicitly tracked.In the third chapter, we analyse a hp version of the HHO method applied to the Darcy problem. The resulting scheme enables the use of general meshes, as well as varying polynomial orders on each face.The dependence with respect to the local anisotropy of the diffusion coefficient is explicitly tracked in both the energy- and L2-norms error estimates.In the fourth and last chapter, we address a perspective topic linked to model order reduction of diffusion problems with a parametric dependence. Our goal is in this case to understand the impact of the choice of the variational formulation (primal or mixed) used for the projection on the reduced space on the quality of the reduced model.
10

Méthodes des bases réduites pour la modélisation de la qualité de l'air urbaine / Reduced basis methods for urban air quality modeling

Hammond, Janelle K. 13 November 2017 (has links)
L'objectif principal de cette thèse est le développement d'outils numériques peu coûteux pour la cartographie de concentrations de polluants a partir de mesures et de modèles déterministes avancés. Le développement mondial et l'urbanisation des populations génèrent une hausse d’émissions et d'expositions. A n d'estimer les expositions individuelles et évaluer leur association à des pathologies diverses, les campagnes de mesure de qualité de l'air, et des études épidémiologiques sur les effets de santé de la pollution sont devenues plus courantes. Cependant, les concentrations de pollution de l'air sont très variables en temps et en espace. La sensibilité et la précision de ces études est souvent détériorée par de mauvais classements des expositions dus aux estimations grossières des expositions individuelles. Les méthodes d'assimilation de données intègrent des données de mesures et des modèles mathématiques a n de mieux approximer le champ de concentration. Quand ces méthodes sont basées sur un modèle de qualité de l'air (AQM) déterministe avancé, elles sont capables de fournir des approximations détaillées et de petite échelle. Ces informations précises permettront de meilleures estimations d'exposition. Néanmoins, ces méthodes sont souvent tr es coûteuses. Elles nécessitent la résolution a plusieurs reprises du modèle, qui peut être coûteux soi-même. Dans ce travail nous enquêtons sur la combinaison des méthodes des bases réduites (RB) et d'assimilation de données pour des AQM avancés a l'échelle urbaine. Nous souhaitons diminuer le coût de résolution en exploitant les RB, et incorporer des données de mesure a n d'améliorer la qualité de la solution. On étend la méthode de Parameterized-Background Data-Weak (PBDW) pour des AQMs basés sur la physique. Cette méthode est capable d'estimer de façon rapide et "online" des concentrations de polluants à l'échelle du quartier. Elle se sert des AQMs disponibles dans une procédure non intrusive et efficace par rapport aux temps de calculs pour réduire le coût de résolution par des centaines de fois. Les résultats de PBDW sont comparés à la méthode d'interpolation empirique généralisée (GEIM) et à une méthode inverse usuelle, la méthode adjointe, a n de mesurer l'efficacité de la PBDW. Cette comparaison montre la possibilité d'augmenter la précision de la solution, et d'une grande réduction en temps de calcul par rapport à des méthodes classiques. Dans nos applications sur un modèle imparfait, l'étude a fourni des estimations d'état avec erreur d'approximation de moins de 10% presque partout. Les résultats se montrent prometteurs pour la reconstruction en temps réel de champs de pollution sur de grands domaines par la PBDW / The principal objective of this thesis is the development of low-cost numerical tools for spatial mapping of pollutant concentrations from field observations and advanced deterministic models. With increased pollutant emissions and exposure due to mass urbanization and development worldwide, air quality measurement campaigns and epidemiology studies of the association between air pollution and adverse health effects have become increasingly common. However, as air pollution concentrations are highly variable spatially and temporally, the sensitivity and accuracy of these epidemiology studies is often deteriorated by exposure misclassi cation due to poor estimates of individual exposures. Data assimilation methods incorporate available measurement data and mathematical models to provide improved approximations of the concentration. These methods, when based on an advanced deterministic air quality models (AQMs), could provide spatially-rich small-scale approximations and can enable better estimates of effects and exposures. However, these methods can be computationally expensive. They require repeated solution of the model, which could itself be costly. In this work we investigate a combined reduced basis (RB) data assimilation method for use with advanced AQMs on urban scales. We want to diminish the cost of resolution, using RB arguments, and incorporate measurement data to improve the quality of the solution. We extend the Parameterized-Background Data-Weak (PBDW) method to physically-based AQMs. This method can rapidly estimate "online" pollutant concentrations at urban scale, using available AQMs in a non-intrusive and computationally effcient manner, reducing computation times by factors up to hundreds. We apply this method in case studies representing urban residential pollution of PM2.5, and we study the stability of the method depending on the placement or air quality sensors. Results from the PBDW are compared to the Generalized Empirical Interpolation Method (GEIM) and a standard inverse problem, the adjoint method, in order to measure effciency of the method. This comparison shows possible improvement in precision and great improvement in computation cost with respect to classical methods. We fi nd that the PBDW method shows promise for the real-time reconstruction of a pollution eld in large-scale problems, providing state estimation with approximation error generally under 10% when applied to an imperfect model

Page generated in 0.0439 seconds