Spelling suggestions: "subject:"bifurcaciones"" "subject:"bifurcations""
1 |
On the quasiperiodic hamiltonian andronov-hopf bifurcationPacha Andújar, Juan Ramón 21 October 2002 (has links)
Aquest treball es situa dintre del marc dels sistemes dinàmics hamiltonians de tres graus de llibertat. Allà considerem famílies d'òrbites periòdiques amb una transició estable-complex inestable: sigui L el paràmetre que descriu la família i suposarem que per a valors del paràmetre més petits que un cert valor crític, L', els multiplicadors característics de les òrbites periòdiques corresponents hi són sobre el cercle unitat, quan L=L' aquests col·lisionen per parelles conjugades (òrbita ressonant o crítica) i per L > L', abandonen el cercle unitat cap al pla complex (col·lisió de Krein amb signatura oposada). El canvi d'estabilitat subseqüent es descriu a la literatura com "transició estable a complex inestable". Tanmateix, a partir d'estudis numèrics sobre certes aplicacions simplèctiques (n'esmentarem D. Pfenniger, Astron. Astrophys. 150, 97-111, 1985), és coneguda l'aparició (sota condicions d'incommensurabilitat) de fenòmens de bifurcació quasi-periòdica, en particular, el desplegament de famílies de tors 2-dimensionals. A més aquesta bifurcació s'assembla a la (clàssica) bifurcació d'Andronov-Hopf, en el sentit de què hi sorgeixen objectes linealment estables (tors-2D el·líptics) "al voltant" d'objectes inestables de dimensionalitat més baixa (òrbites periòdiques), i recíprocament, n'apareixen tors inestables (hiperbòlics) "al voltant" d'òrbites periòdiques linealment estables. Nostre objectiu és entendre la dinàmica local en un entorn de l'òrbita periòdica ressonant per tal de provar, analíticament, l'existència dels tors invariants bifurcats segons l'esquema descrit dalt. Això el portem a terme mitjançant l'anàlisi següent: (i) Primer de tot obtenim d'una manera constructiva (això és, donant algorismes) una forma normal ressonant en un entorn de l'òrbita periòdica crítica. Aquesta forma normal la portem fins a qualsevol ordre arbitrari r. Així doncs, mostrem que el hamiltonià inicial es pot posar com la suma de la forma normal (integrable) més una resta no integrable. A partir d'aquí, podem estudiar la dinàmica de la forma normal, prescindint dels altres termes i, amb aquest tractament (formal) del problema, som capaços d'identificar els paràmetres que governen tant l'existència de la bifurcació com la seva tipologia (directa, inversa). Cal, remarcar que el que es fa fins aquí, no és només un procés qualitatiu, ja que a més ens permet derivar parametritzacions molt acurades dels tors no pertorbats. (ii) A continuació, calculem acotacions "òptimes" per a la resta. D'aquesta manera, esperem provar que un bon nombre de tors (en sentit de la mesura) es preserven quan s'afegeix la pertorbació. (iii) Finalment, apliquem mètodes KAM per establir que la majoria (veure comentari dalt) dels tors bifurcats sobreviuen. Aquests mètodes es basen en la construcció d'un esquema de convergència quadràtica capaç de contrarestar l'efecte dels petits divisors que apareixen quan s'aplica teoria de pertorbacions per trobar solucions quasi-periòdiques. En el nostre cas, a més, resulta que alguna de les condicions "típiques" que s'imposen sobre les freqüències (intrínseques i normals) dels tors no pertorbats, no estan ben definides per als tors bifurcats, de manera que ens ha calgut desenvolupar un tractament més específic. keywords: Bifurcation problems, perturbations, normal forms, small divisors, KAM theory. Classificació AMS: 37J20, 37J25, 37J40 / This work is placed into the context of the three-degree of freedom Hamiltonian systems, where we consider families of periodic orbits undergoing transitions stable-complex unstable. More precisely: Let L be the parameter of the family and assuming that, for values of L smaller than some critical value say, L', the characteristic multipliers of the periodic orbits lie on the unit circle, when L=L' they colllide pairwise (critical or resonant periodic orbit) and, for L > L' leave the unit circle towards the complex plane (Krein collision with opposite signature). From numerical studies on some concrete symplectic maps (for instance, D. Pfennniger, Astron. Astrophys. 150, 97-111, 1985) it is known the rising (under certain irrationality conditions), of quasi-periodic bifurcation phenomena, in particular, the appearance of unfolded 2D invariant tori families. Moreover, the bifurcation takes place in a way that resembles the classical Andronov-Hopf one, in the sense that either stable invariant objects (elliptic tori) unfold "around" linear unstable periodic orbits, or conversely, unstable invariant structures (hyperbolic tori) appear "surrounding" stable periodic orbits. Our objective is, thus, to understand the (local) dynamics in a neighbourhood of the critical periodic orbit well enough to prove analytically, the existence of such quasi-periodic solutions together with the bifurcation pattern described above. This is carried out through three steps: (i) First, we derive, in a constructive way (i. e., giving algorithms), a resonant normal form around the critical periodic orbit up to any arbitrary order r. Whence, we show that the initial raw Hamiltonian can be casted --through a symplectic change--, into an integrable part, the normal form itself, plus a (non-integrable) remainder. From here, one can study the dynamics of the normal form, skipping the remainder off. As a result of this (formal) approach, we are able to indentify the parameters governing both, the presence of the bifurcation and its type (direct, inverse). We remark that this is not a merely qualitative process for, in addition, accurate parametrizations of the bifurcated families of invariant tori are derived in this way. (ii) Beyond the formal approach, we compute "optimal" bounds for the remainder of the normal form, so one expects to prove the preservation of a higher (in the measure sense) number of invariant tori --than, indeed, with a less sharp estimates--. (iii) Finally, we apply KAM methods to establish the persistence of (most, in the measure sense) of the bifurcated invariant tori. These methods involve the design of a suitable quadratic convergent scheme, able to overcome the effect of the small divisors appearing in perturbation techniques when one looks for quasi-periodic solutions. In this case though, some of the "typical" conditions that one imposes on the frequencies (intrinsic and normal) of the unperturbed invariant tori do not work, due to the proximity to parabolic tori, so one is bound to sketch specific tricks. keywords: Bifurcation problems, perturbations, normal forms, small divisors, KAM theory AMS classification: 37J20, 37J25, 37J40
|
2 |
Chaos in the buck converterOlivar, Gerard 01 July 1997 (has links)
Esta tesis estudia el fenómeno del caos en las ecuaciones que modelan un convertidor buck con control PWM. Desde el punto de vista matemático, contribuye al estudio de los sistemas lineales a trozos tridimensionales, con émfasis en las perspectivas geométrica y de cálculo numérico. Se consiguen resultados analíticos pero, finalmente, deben emplearse métodos numéricos para calcular efectivamente las órbitas periódicas, bifurcaciones, variedades invariantes y cuencas de atracción. Desde el punto de vista de la ingeniería, esta tesis contribuye, por una parte, a dilucidar ciertas cuestiones acerca del comportamiento observado en el circuito electrónico experimental, y por otra parte, plantea nuevas preguntas que debe responder la comunidad científica dedicada a la ingeniería. Entre ellas, la búsqueda experimental de fenómenos secundarios detectados en las simulaciones numéricas y la posibilidad de implementar algunos de los métodos de control de caos deducidos en un prototipo experimental.El capítulo 2 resume la información básica sobre convertidores conmutados de corriente contínua, y también sobre qué tipo de comportamiento cabe esperar de un sistema dinámico no lineal. Se discuten las referencias más relevantes sobre circuitos no lineales, y en concreto, las que atañen a circuitos caóticos en electrónica de potencia.Los sistemas de ecuaciones diferenciales lineales a trozos con dos topologías se introducen en el capítulo 3. Como caso particular, se dan las ecuaciones que rigen la dinámica del convertidor buck con control PWM, y se establecen algunas propiedades básicas de las soluciones. La técnica general para obtener órbitas periódicas se particulariza para las soluciones T-periódicas y 2T-periódicas, y se establecen resultados para algunos tipos específicos de las nT-periódicas. En el capítulo 4 se detalla el análisis de la aplicación estroboscópica. Este capítulo está orientado geométricamente, aunque el cálculo numérico es también imprescindible para obtener resultados específicos. Se halla también una región de atrapamiento para el sistema, en la cual se encuentra una aplicación de tipo horseshoe. La herramienta principal de este capítulo es la continuidad de la aplicación de Poincaré asociada, que permite deducir analíticamente como se transforman las diferentes regiones del espacio de fases. El capítulo 5 está dedicado a las bifurcaciones secundarias halladas conjuntamente con el atractor principal. En este capítulo, el cálculo numérico es esencial para hallar los diagramas de bifurcaciones, las variedades invariantes y las cuencas de atracción. Como las soluciones son conocidas analíticamente a trozos, los algoritmos se benefician de ello en rapidez y sencillez. Se encuentran bifurcaciones suaves y no suaves. Se dan también expresiones exactas para los multiplicadores característicos, lo cual representa una gran ventaja cuando se calculan las bifurcaciones.El capítulo 6 se aparta ligeramente del espíritu general de la tesis. En lugar de describir el comportamiento caótico del sistema, se sugieren algunos métodos de control de caos y se simulan éstos para comprobar si producen los efectos deseados. En concreto, se dan tres opciones: primero, se concreta el método OGY para las ecuaciones del convertidor buck ; segundo, se sugieren varios esquemas de control de realimentación con retardos, y tercero, se propone un método de control de lazo abierto. El control del comportamiento caótico en este circuito es importante, puesto que reduce el rizado de salida y por tanto, amplia el rango operacional del convertidor.Algunas sugerencias para seguir el estudio de estos sistemas dinámicos se dan en el capítulo 7. Algunas simulaciones se han hecho con una versión suavizada del sistema de ecuaciones diferenciales con el software standard AUTO. También se proponen aproximaciones de la aplicación de Poincaré, que pueden proporcionar un tratamiento más analítico y simulaciones más rápidas.
|
3 |
Contribució a l'estudi dels exponents de Lyapunov per a sistemes bilineals i a l'analisi de les bifurcacions en el convertidor boost controlat amb superficies de lliscamente i histèresi.Massana Hugas, Immaculada 31 October 2006 (has links)
Després d'un capítol d'introducció (capítol 2) on es definieixen i s'expliquen les característiques i els fenòmens més importants dels sistemes dinàmics, aquest treball el podríem dividir bàsicament en dues parts. La primera d'elles és la que està desenvolupada en el capítol 3. En aquest capítol es recorda un dels mètodes numèrics més interessant, tan des del punt de vista numèric com des del punt de vista teòric, per calcular els exponents de Lyapunov. És el mètode que està basat en la descomposició QR de l'aplicació tangent que s'obté a l'estudiar l'evolució dinàmica de la diferència entre dues òrbites inicialment properes. S'ha aplicat el mètode als sistemes bilineals en general i s'han obtingut resultats específics pel convertidor buck. En concret, s'han escrit les equacions diferencials que han de complir els exponents de Lyapunov del convertidor buck, a partir de la descomposició QR de l'aplicació tangent obtinguda a partir d'una trajectòria de referència. S'han resolt numèricament les esmentades equacions i s'ha calculat l'exponent de Lyapunov més gran (LLE) per a un rang de valors del paràmetre de bifurcació i s'han resolt analíticament quan la trajectòria de referència és periòdica, tan si és estable com si és inestable. Quan l'òrbita periòdica és l'atractor dominant, el resultat analític coincideix amb el valor obtingut per integració numèrica. Els resultats també es corresponen amb el què prèviament es coneix a la literatura sobre la part real dels exponents de Floquet de les òrbites periòdiques del convertidor buck.La segona part del treball és la que està desenvolupada en els capítols 4 i 5. En ells s'ha estudiat la dinàmica del convertidor boost controlat amb una superfície de lliscament. En el capítol 4 s'ha estudiat la dinàmica de lliscament ideal del convertidor boost. S'han trobat les regions de lliscament en funció del paràmetre Vref i s'ha estudiat el caràcter del punt d'equilibri d'aquesta dinàmica ideal en funció també d'aquest paràmetre. Ja que aquest control significaria que el sistema commuta amb freqüència infinita, a efectes pràctics, s'haintroduït una banda d'histèresi. Aleshores s'ha analitzat la dinàmica del sistema en funció d'un altre paràmetre, Vg, el qual forma part de l'expressió del punt d'equilibri que presenta el convertidor en una de les seves configuracions quan aquest treballa en mode de conducció contínua (MCC). S'ha comprovat que en funció de la posició d'aquest punt d'equilibri, PE=(V_g,V_g/R), respecte la banda d'histèresi, la dinàmica o bé té un cicle límit que pot ser o no atractor, o un punt d'equilibri globalment estable o ambdues coses alhora.Finalment, en el capítol 5, s'ha intoduït un control integral i una tercera variable (variable error) al convertidor boost amb control de lliscament i amb banda d'histèresi. Les trajectòries són ara de $R^3$ i la dinàmica resultant és molt més complicada, havent-hi la possibilitat de la presència de caos. S'han trobat numèricament òrbites 1 i 2 periòdiques en funció del paràmetre de bifurcació $V_{ref}$ tan en MCC com en MCD i s'han trobat exemples de bifurcacions típiques dels sistemes suficientment diferenciables, com el desdoblament de període, i d'altres bifurcacions relativament noves a la literatura com són les que es produeixen per un canvi de mode de conducció, de MCC a MCD o a la inversa, o les que es presenten en sistemes non-smooth (que no són infinitament diferenciables a tot l'espai d'estats) com són les bifurcacions "border collision", etc. / After an introductory chapter (Chapter 2), where we define and explain the concepts and characteristics of dynamical systems relevant to our work, the rest of the thesis can be divided into two parts. The first part comprises Chapter 3, where we review the most interesting, both from the computational and theoretical points ofview, numerical method to compute the Lyapunov exponents, based on the QR decomposition of the tangent map with respect to a reference trajectory. We apply it to a general class of bilinear systems.Specific results have been obtained for the buck converter. Indeed, we have written the diferential equations for the Lyapunov exponents of the buck converter which arise from the QR decomposition, and we have numerically solved the equations and computed the largest Lyapunov exponent for a range of values of the bifurcation parameter; analytical results have been obtained when the reference trajectory is a periodic one, either stable or unstable. When a periodic orbit is the dominant attractor, the analytical result coincides with the value obtained by numerical integration. The results also agree with what was previously known in the literature about the real part of the Floquet exponents of the periodics orbits of the buck converter. The second part of this work is developed in chapters 4 and 5. We have studied the dynamics of the boost converter with a sliding surface control. In Chapter 4, we have studied the dynamics of ideal sliding of the boost converter, and described the sliding regions as a function of the parameter /Vref/, and the character (stable or unstable) of the equilibrium poin of the ideal sliding dynamics with respect the same parameter has been determined. Because the chosen control implies that the dynamics of the system switches with infinity frequency, we have introduced a hysteris band for numericalcomputation purposes. We have also analysed the dynamics of the system with respect another parameter, /Vg/, which sets one of the coordinates of the equilibrium point of the boost converter in one of its configurations, when working in continuous conduction mode (CCM). It is found out that the position of this equilibrium point, /PE=(Vg,Vg/R),/ with respect to the hysteresis band, determines whether the dynamics develops a limit cicle, attractive or not, or a global equilibrium, or both. Finally, in Chapter 5, we have introduced an integral control and a third variable (an error variable) into the system described in the previous chapter. Due to the extra dimension, the resulting dynamic is more complicated. In particular, the possibility of chaotic phenomena now arises. We have computed numerically trajectories of period one and two while varying the parameter /Vref/, either in CCM or in discontinuous conduction mode (DCM). We have also found examples of a known class of bifurcations for smooth systems, namely period doubling bifurcation, although some examples of new types ofbifurcations related to the transition from CCM to DCM or vice versa, like those which happen in non-smooth systems, as border collision bifurcations, have also been observed.
|
4 |
Análisis del régimen permanente y la estabilidad de circuitos no lineales con parámetros distribuidos mediante técnicas de tiempo discretoBonet Dalmau, Jordi 05 July 1999 (has links)
En esta tesis se ha abordado el problema de la determinación directa del régimen permanente de circuitos no lineales autónomos con parámetros distribuidos en el dominio temporal. Con la obtención de las ecuaciones de equilibrio en el dominio transformado de Laplace, es posible escribir directamente el sistema de ecuaciones discretizado en el dominio temporal, donde las incógnitas son el periodo de oscilación y las muestras de las variables de control. Así, toda variable genérica V(s) es transformada en un vector de muestras equiespaciadas de v(t), y cada uno de los operadores, derivada y retardo, en una matriz circulante. La formulación obtenida es tal que posibilita el posterior desarrollo analítico de la sensibilidad del sistema de ecuaciones discretizado respecto al periodo de oscilación y las muestras de las variables de control, permitiendo una eficaz resolución del sistema de ecuaciones utilizando métodos globalmente convergentes basados en modificaciones del método de Newton. Además, con el método de análisis propuesto, es posible reconvertir un problema de optimización en un problema de análisis y, en consecuencia, de menor complejidad. La utilización de los aproximantes de Padé multipunto, para aproximar una línea de transmisión RLCG con elementos de parámetros concentrados y una línea de transmisión ideal, permite extender el método propuesto a los circuitos que incorporan líneas RLCG.Una vez determinadas las soluciones en régimen permanente, el siguiente problema a abordar es el estudio de la estabilidad de estas soluciones, utilizándose los resultados de este estudio para detectar bifurcaciones de Hopf, de desdoblamiento de órbitas y puntos límite. En esta tesis se describe una técnica que permite seguir a) la rama que continua tras la aparición de un punto límite y b) la rama de periodo doble existente en una bifurcación de desdoblamiento de órbitas, como se comprueba sobre el circuito de Chua retardado (TDCC),Otra aportación de esta tesis, desarrollada íntegramente en el plano teórico, ha consistido en estrechar los lazos existentes entre el estudio de la estabilidad en el dominio temporal y el dominio frecuencial. El punto de partida se encuentra en la obtención de una transformación que permite trasladar cualquier formulación de análisis del dominio frecuencial al temporal y viceversa. La extensión de estos vínculos al estudio de la estabilidad deriva en la obtención de importantes resultados. Destaca, entre éstos, la obtención de la formulación de estabilidad utilizada por el método de balance armónico (HB), partiendo de un estudio de la estabilidad realizado en el dominio temporal. Estos resultados se complementan con los obtenidos por otros autores que, partiendo de una formulación en el dominio temporal con variables de estado, obtienen una formulación en el dominio frecuencial. Con la finalidad de no avanzar en el vacío, las ideas que aparecen en esta tesis han sido siempre contrastadas, en algunos casos por más de una vía. Así, el circuito de Van der Pol se analiza con el método de HB y con el método propuesto utilizando tres formulaciones distintas. El estudio de la estabilidad de los puntos de equilibrio del TDCC se contrasta con resultados analíticos. La determinación de las regiones de funcionamiento del circuito de Van der Pol excitado y la construcción de su curva solución se comparan con los resultados obtenidos usando HB. Los resultados de análisis del TDCC con línea RLCG son contrastados con los resultados obtenidos utilizando métodos de integración. Finalmente, se realiza una validación experimental del oscilador con línea de transmisión, sobre el cual se resuelve un problema de análisis y otro de optimización. / This thesis has tackled the problem of the direct determination of the steady state analysis of autonomous circuits with transmission lines and generic nonlinear elements. With the equilibrium equations obtained in the Laplace transformed domain, it is possible to directly write the discretized system of equations in the temporal domain where the unknowns to determine are the samples of the control variables, directly in the steady state, along with the oscillation period. Thus, every generic variable V(s) is converted into a vector of equally spaced samples of v(t) and each one of the operators, derivative and delay, into a circulant matrix. The formulation obtained is such that makes it possible the subsequent analytic development of the sensibility of the system of equations discretized with respect to the oscillation period and the samples of the control variables, allowing to solve the system of equations effectively using globally convergent techniques based on modifications of the Newton method. Moreover, with the analysis method suggested here, it is possible to turn a problem of optimization into a problem of analysis and, subsequently, of a lesser complexity. Besides, the use of the multipoint Padé approximants, to approximate an RLCG transmission line with lumped elements and an ideal transmission line, makes it possible to extend the suggested method to the circuits that include RLCG transmission lines.Once the steady state solutions have been determined, the next problem to deal with is the study of the stability of these solutions. The results of this study are used to detect Hopf bifurcations, period-doubling bifurcations and limit points. In this thesis a technique is described which allows us to follow a) the branch that follows after the appearance of a limit point and b) the branch of double period that exists in a period-doubling bifurcation point, as it can be proved in the time delayed Chua's circuit (TDCC).Another contribution of this thesis, totally developed at a theoretical level, has consisted in strengthening the existing bonds between the study of the stability both in the temporal and in the frequency domain. The starting point is a transformation that makes it possible to transfer any analysis formulation from the frequency domain to the temporal one and vice versa. The extension of these links to the study of the stability leads to important results. It stands out, among them, the obtained formulation of stability used by the harmonic balance (HB) method, starting from a stability study made in the temporal domain. These results complement each other with those obtained by other authors who, starting from a formulation in the temporal domain with state variables, obtain a formulation in the frequency domain. With the purpose of validating the ideas that appear in this thesis, these have always been contrasted, in some cases in more than one way. Thus, the Van der Pol oscillator is analyzed with the HB method and with the method suggested here using three different formulations. The study of the stability of the equilibrium points of the TDCC is contrasted with analytic results. The determination of the working regions of the excited Van der Pol oscillator and the construction of its solution curve is compared with the results obtained using HB. The results of the analysis of the TDCC with RLCG line are contrasted with those obtained using integration techniques. Finally, an experimental validation of an oscillator with transmission line is made, in which a problem of analysis and another one of optimization are solved.
|
5 |
Dinàmica no lineal de sistemes làsers: potencials de Lyapunov i diagrames de bifurcacionsMayol Serra, Catalina 04 March 2002 (has links)
En aquest treball s'ha estudiat la dinàmica dels làsers de classe A i de classe B en termes del potencial de Lyapunov. En el cas que s'injecti un senyal al làser o es modulin alguns dels paràmetres, apareix un comportament moltmés complex i s'estudia el conjunt de bifurcacions.1) Als làsers de classe A, la dinàmica determinista s'ha interpretat com el moviment damunt el potencial de Lyapunov. En la dinàmica estocàstica s'obté un flux sostingut per renou per a la fase del camp elèctric.2) Per als làsers de classe A amb senyal injectat, s'ha descrit el conjunt de bifurcacions complet i s'ha determinat el conjunt d'amplituds i freqüències en el quals el làser responajustant la seva freqüència a la del camp extern. 3) S'ha obtingut un potencial de Lyapunov pels làsers de classe B, només vàlid en el cas determinista, que inclou els termes de saturació de guany i d'emissió espontània.4) S'ha realitzat un estudi del conjunt de bifurcacions parcial al voltant del règim tipus II de la singularitat Hopf--sella--node en un làser de classe B amb senyal injectat.5) S'han identificat les respostes òptimes pels làsers de semiconductor sotmesos a modulació periòdica externa. S'han obtingut les corbes que donen la resposta màxima per cada tipus de resonància en el pla definit per l'amplitud relativa de modulació i la freqüència de modulació. / In this work we have studied the dynamics of both class A and class B lasers in terms of Lyapunov potentials. In the case of an injected signal or when some laser parameters are modulated, and more complex behaviour is expected, the bifurcation set is studied. The main results are the following:1) For class A lasers, the deterministic dynamics has been interpreted as a movement on the potential landscape. In the stochastic dynamics we have found a noise sustained flow for the phase of the electric field. 2) For class A lasers with an injected signal, we have been able to describe the whole bifurcation set of this system and to determine the set of amplitudes frequencies for which the laser responds adjusting its frequency to that of the external field. 3) In the case of class B lasers, we have obtained a Lyapunov potential only valid in the deterministic case, including spontaneous emission and gain saturation terms. The fixed point corresponding to the laser in the on state has been interpreted as a minimum in this potential. Relaxation to this minimum is reached through damped oscillations. 4) We have performed a study of the partial bifurcation set around the type II regime of the Hopf-saddle-node singularity in a class B laser with injected signal. 5) We have identified the optimal responses of a semiconductor laser subjected to an external periodic modulation. The lines that give a maximum response for each type of resonance are obtained in the plane defined by the relative amplitude modulation and frequency modulation.
|
Page generated in 0.0674 seconds