41 |
Supramolecular Ruthenium(II) and Osmium(II) Complexes: Synthesis, Characterization, DNA Binding and DNA PhotocleavageLi, Kaiyu January 2017 (has links)
No description available.
|
42 |
Cyanide Bridged Multimetallics Derived From Extended Arrays of Alkaline Earth, Rare Earth, and Transition Metals: A Study From Complexes To CatalystsSturgeon, Matthew Robert 16 September 2009 (has links)
No description available.
|
43 |
Studies on Functionalization of Carbon-Fluorine Bonds Catalyzed by Aluminum-Rhodium Complexes / アルミニウム-ロジウム錯体による炭素-フッ素結合の触媒的変換に関する研究Fujii, Ikuya 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24627号 / 工博第5133号 / 新制||工||1981(附属図書館) / 京都大学大学院工学研究科材料化学専攻 / (主査)教授 中尾 佳亮, 教授 松原 誠二郎, 教授 杉野目 道紀 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
44 |
Catalytic Hydrogenation and Hydrodesulfurization of Model CompoundsZhao, Haiyan 06 May 2009 (has links)
This dissertation describes two related studies on hydrogenation and hydrodesulfurization of heterocyclic S-containing compounds.
Alkyl substituted thiophenes are promising candidates for hydrogen carriers as the dehydrogenation reactions are known to occur under mild conditions. Four types of catalysts including supported noble metals, bimetallic noble metals, transition metal phosphides and transition metal sulfides have been investigated for 2-methylthiophene (2MT) hydrogenation and ring opening. The major products were tetrahydro-2-methylthiophene (TH2MT), pentenes and pentane, with very little C5-thiols observed. The selectivity towards the desired product TH2MT follows the order: noble metals > bimetallics > phosphides > sulfides. The best hydrogenation catalyst was 2% Pt/Al2O3 which exhibited relatively high reactivity and selectivity towards TH2MT at moderate temperatures. Temperature-programmed desorption (TPD) of hydrogen indicated that the H2 desorption amount was inversely related to the rate of TH2MT formation. Temperature programmed reaction (TPR) experiments revealed that pentanethiol became the major product, especially with HDS catalysts like CoMoS/Al2O3 and WP/SiO2, which indicates that poisoned or modified conventional HDS catalysts would be good candidates for further 2MT hydrogenation studies.
The role of tetrahedral Ni(1) sites and square pyramidal Ni(2) sites in Ni2P hydrotreating catalysts was studied by substitution of Ni with Fe. The Fe component was deemed as a good probe because Ni2P and Fe2P adopt the same hexagonal crystal structure, yet Fe2P is completely inactive for hydrodesulfurization (HDS). For this purpose a series of NiFeP/SiO2 catalysts were prepared with different Ni:Fe molar ratios (1:0, 3:1, 1:1, 1:3, and 0:1) and investigated in the HDS of 4,6-dimethyldibenzothiophene at 300 and 340 oC. The uniformity of the NiFe series was demonstrated by x-ray diffraction analysis and by Fourier transform infrared (FTIR) spectroscopy of adsorbed CO. The position of substitution of Fe was determined by extended X-ray absorption fine structure (EXAFS) analysis. It was found that at 300 oC the HDS activity of the catalysts decreased with increasing Fe content and that this could be explained by the substitution of Fe at the more active Ni(2) sites. As temperature was raised to 340 oC, the activity of the Fe-containing samples increased, although not to the level of Ni2P, and this could be understood from a reconstruction of the NiFe phase to expose more Ni(2) sites. This was likely driven by the formation of surface Ni-S bonds, which could be observed by EXAFS in spent samples. / Ph. D.
|
45 |
Investigation of Cu-Al Bonding Interface: Eliminating Bimetallic Corrosion Failures, and Enabling Next-Gen Cu-Cu Wire-Bonding by Nanometer Interfacial Chemistry ControlAlptekin, John Faruk 05 1900 (has links)
The first part of this dissertation explores the chemistry of an inhibitor complexation with Cu. First, the Cu oxidation state of the complex was +1. Second, identified by differential RAIRS, one source of Cu(I) for the Cu(I)-inhibitor complex could be Cu(I) oxide. The characteristic Cu(I) oxide peak at 650 cm⁻¹ was observed to decrease after CVD coating process was applied. This led to a major hypothesis that in order for the reaction between Cu(I) oxide and the inhibitor to proceed, protons from the inhibitor and oxygen from Cu₂O are stabilized by reacting to form water. The applicability of the passivation nature of Cu(I)-inhibitor films was explored for Cu-Al wire-bonded devices in its ability to protect from Cu-Al peripheral galvanic corrosion and the galvanic corrosion of the Cu-Al intermetallic compounds in their roles for corrosion-induced liftoff. The second part of this work studied the effect of replacing Al bond pad with Cu on the corrosion induced liftoff of wire-bonds when exposed to low ppm levels of chloride contamination. Applying protective coating to the Cu pad surface before wire-bonding was found to suppress the thermally induced oxidation of Cu in air, helping to enable successful Cu-Cu direct wire-bonding. Compared to Cu-Al devices with passivation coating, which has a few wires liftoff with 6 hours, the Cu-Cu bonded devices survived much longer, over 40 days, with almost no liftoff observed. This demonstrates that removing the galvanic contact, the root cause of the corrosion induced failure, is a more robust and permanent solution to the corrosion experienced by these devices.
|
46 |
Light Alkanes to Higher Molecular Weight Olefins: Catalysits for Propane Dehydrogenation and Ethylene OligomerizationLaryssa Goncalves Cesar (7022285) 16 December 2020 (has links)
<p>The
increase in shale gas exploitation has motivated the studies towards new
processes for converting light alkanes into higher valuable chemicals,
including fuels. The works in this dissertation focuses on two processes:
propane dehydrogenation and ethylene oligomerization. The former involves the
conversion of propane into propylene and hydrogen, while the latter converts
light alkenes into higher molecular weight products, such as butylene and
hexene. </p>
<p>The
thesis project focuses on understanding the effect of geometric effects of Pt
alloy catalysts for propane dehydrogenation and the methodologies for their
characterization. Pt-Co bimetallic catalysts were synthesized with increasing
Co loadings, characterized and evaluated for its propane dehydrogenation
performance. In-situ synchrotron X-Ray Powder Diffraction (XRD) and X-Ray
Absorption (XAS) were used to identify and differentiate between the
intermetallic compound phases in the nanoparticle surface and core. Difference
spectra between oxidized and reduced catalysts suggested that, despite the
increase in Co loading, the catalytic surface remained the same, Pt<sub>3</sub>Co
in a Au<sub>3</sub>Cu structure, while the core became richer in Co, changing
from a monometallic Pt fcc core at the lowest Co loading to a PtCo phase in a
AuCu structure at the highest loading. Co<sup>II</sup> single sites were also
observed on the surface, due to non-reduced Co species. The catalytic
performance towards propane dehydrogenation reinforced this structure, as propylene
selectivity was around 96% for all catalysts, albeit the difference in
composition. The Turnover Rate (TOR) of these catalysts was also similar to
that of monometallic Pt catalysts, around 0.9 s<sup>-1</sup>, suggesting Pt was
the active site, while Co atoms behaved as non-active, despite both atoms being
active in their monometallic counterparts.</p>
<p>In
the second project, a single site Co<sup>II</sup> catalyst supported on SiO<sub>2</sub>
was evaluated for ethylene oligomerization activity. The catalyst was
synthesized, evaluated for propane dehydrogenation, propylene hydrogenation and
ethylene oligomerization activities and characterized <i>in-situ</i> by XAS and EXAFS and H<sub>2</sub>/D<sub>2</sub> exchange
experiments. The catalysts have shown negligible conversion at 250<sup>o</sup>C
for ethylene oligomerization, while a benchmark Ni/SiO<sub>2</sub> catalyst had
about 20% conversion and TOR of 2.3x10<sup>-1</sup> s<sup>-1</sup>. However, as
the temperature increased to above 300<sup>o</sup>C, ethylene conversion
increased significantly, reaching about 98% above 425<sup>o</sup>C. <i>In-situ</i> XANES and EXAFS characterization
suggested that H<sub>2</sub> uptake under pure H<sub>2</sub> increased in about
two-fold from 200<sup>o</sup>C to 500<sup>o</sup>C, due to the loss of
coordination of Co-O bonds and formation of Co-H bonds. This was further
confirmed by H<sub>2</sub>/D<sub>2</sub> experiments with a two-fold increase
in HD formation per mole of Co. <i>In-situ</i>
XAS characterization was also performed with pure C<sub>2</sub>H<sub>4</sub>
at 200<sup>o</sup>C showed a similar trend in Co-O bond loss, suggesting the
formation of Co-alkyl, similarly to that of Co-H. The <i>in-situ</i> XANES spectra showed that the oxidation state remained
stable as a Co<sup>2+</sup> despite the change in the coordination environment,
suggesting that the reactions occurs through a non-redox mechanism. These
combined results allowed the proposition of a reaction pathway for dehydrogenation
and oligomerization reactions, which undergo a similar reaction intermediate, a
Metal-alkyl or Metal-Hydride intermediates, activating C-H bonds at high
temperatures.</p>
|
47 |
Atomic and Electronic Structure of a Ligand-Protected Bimetallic Nanocluster, Ag4Ni2(DMSA)4Pedicini, Anthony F. 01 May 2013 (has links)
An important direction in nanoscale science is to synthesize materials whereby atomic clusters serve as the building blocks. Properties of these clusters can be controlled through size and composition, and such an approach offers a pathway toward designing larger, customized materials. One way to stabilize such materials is through the use of ligated clusters. Ag4Ni2(DMSA)4 is one such cluster, the first with a bimetallic core, and has been stabilized by the experimental group of A. Sen at The Pennsylvania State University. The theoretical studies undertaken in this thesis were directed toward providing information on the atomic structure, nature of electronic states, optical spectra, and any magnetic information of this new species. Theoretical studies have also been carried out on various clusters to provide input into the fragmentation data obtained through MS/MS experiments.
|
48 |
Sélectivation de catalyseurs au nickel : modification et caractérisation contrôlées par site / Selectivation of nickel catalysts : controlled-site modification and characterizationDeghedi, Layane 08 December 2009 (has links)
L’objectif de cette étude est de préparer des catalyseurs bimétalliques Ni-X/SiO2, de les caractériser, et de comparer leur activité en hydrogénation du styrène en éthylbenzène,ainsi que leur sélectivité en hydrogénation de la double liaison oléfinique du styrène, par rapport à l’hydrogénation du noyau benzénique. L’élément X est greffé de manière contrôlée sur le nickel, et est choisi selon son électronégativité, soit inférieure (Zr), soit égale (Sn), soit supérieure (Au) à celle du nickel, dans le but d’étudier les effets géométriques et/ou électroniques qu'il pourrait induire. Parmi les échantillons préparés, le catalyseur Ni-Au/SiO2s’est révélé presque aussi actif que le catalyseur non dopé et nettement plus sélectif dans l’hydrogénation du styrène en éthylbenzène. / The aim of the present study is to prepare silica-supported Ni-X bimetallic catalysts, tocharacterize them, and to compare their catalytic activity in the hydrogenation of styrene, as well as their selectivity in the hydrogenation of the styrene’s olefinic double bond instead of the hydrogenation of the aromatic ring. The element X is grafted in a controlled way on the supported nickel particles, and is chosen according to its electronegativity, which is eitherlower (Zr), or equivalent (Sn), or higher (Au) than the electronegativity of Ni, in order to study the geometrical and/or electronic effects due to the doping of Nickel. Among the prepared samples, the Ni-Au/SiO2 catalyst has exhibited high activity and high selectivity in the hydrogenation of styrene into ethylbenzene, which makes the doping of Ni by Au apromising alternative for PyGas selective hydrogenation catalysts.
|
49 |
Hydrogen production on bimetallic catalysts and local acidity investigation of aluminosilicates and mesoporous silica via single molecule spectroscopyXie, Jingyi January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Keith L. Hohn / The autothermal reforming and partial oxidation of hexadecane via Pt/Ni bimetallic nanoparticles on various ceria-based supports were investigated. Nanoparticles with Pt/Ni molar ratios ranging from 0/100 to 10/90 were loaded on ceria-based supports including cerium oxide, gadolinium-doped cerium oxide and cerium-doped zirconium oxide. The effect of the Pt/Ni molar ratio and the promotional effect of the support were studied by comparing the hydrogen yield. TPR and XPS analysis showed that there was a strong interaction between Ni and the CeO₂-ZrO₂ support, which led to enhancement of catalyst performance when the Pt/Ni ratio was low. The strong interaction between Ni and CeO₂-ZrO₂ support was induced by the formation of a solid solution between NiO and ZrO₂. In the case of bimetallic catalysts loaded on Gd₂O₃-CeO₂, no significant improvement in the catalytic activity of autothermal reforming was achieved until the Pt/Ni ratio reached 10/90.
With C-snarf-1 as a pH-sensitive fluorescent probe, the local acidity on the surface of gradient aluminosilicate thin films and in the pore structure of mesoporous silicate films was explored. The single molecule emission ratio (I₅₈₀/I₆₄₀) of C-snarf-1 on the gradient aluminosilicate films showed similar results as previously reported for aluminosilicate mesoporous films. As the Al/Si ratio increases, the emission ratio declines, indicative of increased material acidity. In the case the mesoporous silicate films, much broader distributions of emission ratios were observed and are suggestive of significant heterogeneity in the pore structure of these films. The average emission ratio increased with a rise in pH until pH 6 or 7. A further rise in pH leads to a decline in emission ratio. Molecules with high mobility showed a narrow distribution and slightly lower average emission ratio when compared to data from all detected molecules. This observation implies a reduced heterogeneity for mesopores in which the molecules rapidly diffuse. The narrow distribution and lower average value of emission ratio at low pH, combined with the decrease in emission ratio induced by an increase in ionic strength may further indicate that the interaction between dye molecules and the pore surface impacts the emission ratio of the dye molecules.
|
50 |
Theoretical investigation of the hydrogen electrocatalysis in alkaline media on bimetallic Ni-based electrodes / Etude théorique de l'électrocatalyse des réactions de l'hydrogène en milieu alcalin sur des électrodes bimétalliques à base de NiCapella Salmazo, Debora Heloisa 07 December 2018 (has links)
Le mécanisme de la réaction d’oxydation de l’hydrogène (HOR) dans Ni (111) est bien connu et se fait par étapes de Volmer-Heyrovsky, en milieu alcalin. Il a été proposé que la formation d'eau puisse jouer un rôle important. Dans cette thèse, j'ai étudié les surfaces de nickel et de nickel bimétallique en utilisant la théorie de la densité fonctionnelle (DFT). J'ai calculé des magnitudes thermodynamiques (comme les énergies libres d'adsorption de Gibbs) et des propriétés cinétiques (comme des barrières d'activation pour la formation d'eau). Plusieurs surfaces Ni / Cu ont été analysées. Celle qui contient 25% de Cu (sur la couche supérieure) a les meilleures performances: 1) l’énergie d’activation est de 0,2 eV, et 2) OH et H ne doivent pas être fortement adsorbés dans la plage de potentiel HOR. / The mechanism of hydrogen oxidation reaction (HOR) in Ni(111) is well-known and it happens through Volmer-Heyrovsky steps, in alkaline media. However it was proposed that water formation could play an important role. In this thesis, I have studied nickel and bimetallic nickel surfaces using density functional theory (DFT). I calculated thermodynamical magnitudes (like Gibbs energies of adsorption) and kinetic properties (like activation barriers for water formation). Several Ni/Cu surfaces were analyzed. The one with 25% of Cu (on top layer) has the best performance because: 1) the activation energy is 0.2 eV, and 2) OH and H are not to strongly adsorbed on the HOR potential range.
|
Page generated in 0.0404 seconds