51 |
[en] PORTFOLIO SELECTION USING ROBUST OPTIMIZATION AND SUPPORT VECTOR MACHINE (SVM) / [pt] SELEÇÃO DE PORTFÓLIO USANDO OTIMIZAÇÃO ROBUSTA E MÁQUINAS DE SUPORTE VETORIALROBERTO PEREIRA GARCIA JUNIOR 26 October 2021 (has links)
[pt] A dificuldade de se prever movimento de ativos financeiros é objeto
de estudo de diversos autores. A fim de se obter ganhos, se faz necessário
estimar a direção (subida ou descida) e a magnitude do retorno do ativo
no qual pretende-se comprar ou vender. A proposta desse trabalho consiste
em desenvolver um modelo de otimização matemática com variáveis
binárias capaz de prever movimentos de subidas e descidas de ativos financeiros
e utilizar um modelo de otimização de portfólio para avaliar os
resultados obtidos. O modelo de previsão será baseado no Support Vector
Machine (SVM), no qual faremos modificações na regularização do modelo
tradicional. Para o gerenciamento de portfólio será utilizada otimização robusta.
As técnicas de otimização estão sendo cada vez mais aplicadas no
gerenciamento de portfólio, pois são capazes de lidar com os problemas das
incertezas introduzidas na estimativa dos parâmetros. Vale ressaltar que o
modelo desenvolvido é data-driven, i.e, as previsões são feitas utilizando sinais
não-lineares baseados em dados de retorno/preço histórico passado sem
ter nenhum tipo de intervenção humana.
Como os preços dependem de muitos fatores é de se esperar que um
conjunto de parâmetros só consiga descrever a dinâmica dos preços dos
ativos financeiros por um pequeno intervalo de dias. Para capturar de forma
mais precisa essa mudança na dinâmica, a estimação dos parâmetros dos
modelos é feita em janela móvel.
Para testar a acurácia dos modelos e os ganhos obtidos foi feito um estudo de
caso utilizando 6 ativos financeiros das classes de moedas, renda fixa, renda
variável e commodities. Os dados abrangem o período de 01/01/2004 até
30/05/2018 totalizando um total de 3623 cotações diárias. Considerando
os custos de transações e os resultados out-of-sample obtidos no período
analisado percebe-se que a carteira de investimentos desenvolvida neste
trabalho exibe resultados superiores aos dos índices tradicionais com risco
limitado. / [en] The difficulty of predicting the movement of financial assets is the
subject of study by several authors. In order to obtain gains, it is necessary
to estimate the direction (rise or fall) and the magnitude of the return on
the asset in which it is intended to be bought or sold. The purpose of this
work is to develop a mathematical optimization model with binary variables
capable of predicting up and down movements of financial assets and using
a portfolio optimization model to evaluate the results obtained. The prediction
model will be based on the textit Support Vector Machine (SVM),
in which we will make modifications in the regularization of the traditional
model. For the portfolio management will be used robust optimization. The
robust optimization techniques are being increasingly applied in portfolio
management, since they are able to deal with the problems of the uncertainties
introduced in the estimation of the parameters. It is noteworthy that
the developed model is data-driven, i.e., the predictions are made using
nonlinear signals based on past historical price / return data without any
human intervention. As prices depend on many factors it is to be expected that a set of
parameters can only describe the dynamics of the prices of financial assets
for a small interval of days. In order to more accurately capture this change
in dynamics, the estimation of model parameters is done in a moving window
To test the accuracy of the models and the gains obtained, a case study
was made using 6 financial assets of the currencies, fixed income, variable
income and commodities classes. The data cover the period from 01/01/2004
until 05/30/2018 totaling a total of 3623 daily quotations. Considering the
transaction costs and out-of-sample results obtained in the analyzed period,
it can be seen that the investment portfolio developed in this work shows
higher results than the traditional indexes with limited risk.
|
52 |
Early Warning System of Students Failing a Course : A Binary Classification Modelling Approach at Upper Secondary School Level / lFörebyggande Varningssystem av elever med icke godkänt betyg : Genom applicering av binär klassificeringsmodell inom gymnasieskolanKarlsson, Niklas, Lundell, Albin January 2022 (has links)
Only 70% of the Swedish students graduate from upper secondary school within the given time frame. Earlier research has shown that unfinished degrees disadvantage the individual student, policy makers and society. A first step for preventing dropouts is to indicate students about to fail courses. Thus the purpose is to identify tendencies whether a student will pass or not pass a course. In addition, the thesis accounts for the development of an Early Warning System to be applied to signal which students need additional support from a professional teacher. The used algorithm Random Forest functioned as a binary classification model of a failed grade against a passing grade. Data in the study are in samples of approximately 700 students from an upper secondary school within the Stockholm municipality. The chosen method originates from a Design Science Research Methodology that allows the stakeholders to be involved in the process. The results showed that the most dominant indicators for classifying correct were Absence, Previous grades and Mathematics diagnosis. Furthermore, were variables from the Learning Management System predominant indicators when the system also was utilised by teachers. The prediction accuracy of the algorithm indicates a positive tendency for classifying correctly. On the other hand, the small number of data points imply doubt if an Early Warning System can be applied in its current state. Thus, one conclusion is in further studies, it is necessary to increase the number of data points. Suggestions to address the problem are mentioned in the Discussion. Moreover, the results are analysed together with a review of the potential Early Warning Systemfrom a didactic perspective. Furthermore, the ethical aspects of the thesis are discussed thoroughly. / Endast 70% av svenska gymnasieelever tar examen inom den givna tidsramen. Tidigare forskning har visat att en oavslutad gymnasieutbildning missgynnar både eleven och samhället i stort. Ett första steg mot att förebygga att elever avviker från gymnasiet är att indikera vilka studenter som är på väg mot ett underkänt betyg i kurser. Därmed är syftet med rapporten att identifiera vilka trender som bäst indikerar att en elev kommer klara en kurs eller inte. Dessutom redogör rapporten för utvecklandet av ett förebyggande varningssystem som kan appliceras för att signalera vilka studenter som behöver ytterligare stöd från läraren och skolan. Algoritmen som användes var Random Forest och fungerar som en binär klassificeringsmodell av ett underkänt betyg mot ett godkänt. Den data som använts i studien är datapunkter för ungefär 700 elever från en gymnasieskola i Stockholmsområdet. Den valda metoden utgår från en Design Science Researchmetodik vilket möjliggör för intressenter att vara involverade i processen. Resultaten visade att de viktigaste variablerna var frånvaro, tidigare betyg och resultat från Stockholmsprovet (kommunal matematikdiagnos). Vidare var variabler från lärplattformen en viktig indikator ifall lärplattformen användes av läraren. Algoritmens noggrannhet indikerade en positiv trend för att klassificeringen gjordes korrekt. Å andra sidan är det tveksamt ifall det förebyggande systemet kan användas i sitt nuvarande tillstånd då mängden data som användes för att träna algoritmen var liten. Därav är en slutsats att det är nödvändigt för vidare studier att öka mängden datapunkter som används. I Diskussionen nämns förslag på hur problemet ska åtgärdas. Dessutom analyseras resultaten tillsammans med en utvärdering av systemet från ett didaktiskt perspektiv. Vidare diskuteras rapportens etiska aspekter genomgående.
|
53 |
Further development and optimisation of the CNN-classicification algorithm of Alfrödull for more accurate aerial image detection of decentralised solar energy systems : A study on how the performance of neural networks can beimproved through additional training data, image preprocessing, class balancing and sliding windowclassificationLindvall, Erik January 2024 (has links)
The global use of solar power is growing at an unprecedented rate, making the need toaccurately track the energy generation of decentralised solar energy systems (SES) more andmore relevant. The purpose of this thesis is to further develop a binary image classifier for thesimulation system framework known as Alfrödull, which will be used to detect and segment SESfrom aerial images to simulate the energy generation within a given Swedish municipality on anhourly basis. This project focuses on improving the Alfrödull classifier through four differentanalyses. the first focusing on examining how additional training data from publicly availabledatasets affects the model performance. The second on how the model can be improvedthrough the use of various image pre-processing techniques. The third on how the model canbe improved through balancing the training datasets to make up for the low amount of positiveimages as well as utilising model ensembles for joint classification. Finally, the fourth analysisemploys a sliding window approach to classify overlapping image tiles. The results show thathaving training data that is a good representation of the environment the model will be used in iscrucial, that the use of image augmentation policies can significantly improve modelperformance, that compensating for class imbalance as well as utilising ensemble methodspositively impacts model performance and that a sliding window approach to classifyingoverlapping images significantly decreases the amount of missed SES at the cost of clusters offalsely classified negative images (false positives). In conclusion, this thesis serves as animportant stepping stone in the practical implementation of the Alfrödull framework, showcasingthe key aspects in making a well performing binary image classifier of SES in Sweden.
|
54 |
Les crises économiques et financières et les facteurs favorisant leur occurrence / Empirical varieties and leading contexts of economic and financial crisesCabrol, Sébastien 31 May 2013 (has links)
Cette étude vise à mettre en lumière les différences et similarités existant entre les principales crises économiques et financières ayant frappé un échantillon de 21 pays avancés depuis 1981. Nous analyserons plus particulièrement la crise des subprimes que nous rapprocherons avec des épisodes antérieurs. Nous étudierons à la fois les années du déclenchement des turbulences (analyse typologique) ainsi que celles les précédant (prévision). Cette analyse sera fondée sur l’utilisation de la méthode CART (Classification And Regression Trees). Cette technique non linéaire et non paramétrique permet de prendre en compte les effets de seuil et les interactions entre variables explicatives de façon à révéler plusieurs contextes distincts explicatifs d’un même événement. Dans le cadre d‘un modèle de prévision, l’analyse des années précédant les crises nous indique que les variables à surveiller sont : la variation et la volatilité du cours de l’once d’or, le déficit du compte courant en pourcentage du PIB et la variation de l’openness ratio et enfin la variation et la volatilité du taux de change. Dans le cadre de l’analyse typologique, l’étude des différentes variétés de crise (année du déclenchement de la crise) nous permettra d’identifier deux principaux types de turbulence d’un point de vue empirique. En premier lieu, nous retiendrons les crises globales caractérisées par un fort ralentissement ou une baisse de l’activité aux Etats-Unis et une faible croissance du PIB dans les pays touchés. D’autre part, nous mettrons en évidence des crises idiosyncratiques propres à un pays donné et caractérisées par une inflation et une volatilité du taux de change élevées. / The aim of this thesis is to analyze, from an empirical point of view, both the different varieties of economic and financial crises (typological analysis) and the context’s characteristics, which could be associated with a likely occurrence of such events. Consequently, we analyze both: years seeing a crisis occurring and years preceding such events (leading contexts analysis, forecasting). This study contributes to the empirical literature by focusing exclusively on the crises in advanced economies over the last 30 years, by considering several theoretical types of crises and by taking into account a large number of both economic and financial explanatory variables. As part of this research, we also analyze stylized facts related to the 2007/2008 subprimes turmoil and our ability to foresee crises from an epistemological perspective. Our empirical results are based on the use of binary classification trees through CART (Classification And Regression Trees) methodology. This nonparametric and nonlinear statistical technique allows us to manage large data set and is suitable to identify threshold effects and complex interactions among variables. Furthermore, this methodology leads to characterize crises (or context preceding a crisis) by several distinct sets of independent variables. Thus, we identify as leading indicators of economic and financial crises: variation and volatility of both gold prices and nominal exchange rates, as well as current account balance (as % of GDP) and change in openness ratio. Regarding the typological analysis, we figure out two main different empirical varieties of crises. First, we highlight « global type » crises characterized by a slowdown in US economic activity (stressing the role and influence of the USA in global economic conditions) and low GDP growth in the countries affected by the turmoil. Second, we find that country-specific high level of both inflation and exchange rates volatility could be considered as evidence of « idiosyncratic type » crises.
|
55 |
Detekce hran pomocí neuronové sítě / Neural Network Based Edge DetectionJanda, Miloš January 2010 (has links)
Aim of this thesis is description of neural network based edge detection methods that are substitute for classic methods of detection using edge operators. First chapters generally discussed the issues of image processing, edge detection and neural networks. The objective of the main part is to show process of generating synthetic images, extracting training datasets and discussing variants of suitable topologies of neural networks for purpose of edge detection. The last part of the thesis is dedicated to evaluating and measuring accuracy values of neural network.
|
Page generated in 0.109 seconds