31 |
Hydroxylation microbienne du méthane au sein d'une nouvelle configuration de bioréacteur à membranes. / Microbial hydroxylation of methane within a new configuration of membrane bioreactor.Pen, Nakry 26 November 2014 (has links)
Ce travail de thèse a pour objectif le développement et l'optimisation d'une nouvelle configuration de bioréacteur à membranes (BRM) pour l'hydroxylation efficace et sûre du méthane par la bactérie Methylosinus trichosporium OB3b. Ce BRM couple un bioréacteur à deux contacteurs membranaires gaz/liquide macroporeux qui alimentent en continu chaque substrat gazeux (méthane et air) sans générer de bulle dans la suspension bactérienne, évitant ainsi la formation d'un mélange gazeux méthane/air explosif. Dans un premier temps, la faisabilité et la reproductibilité de ce nouveau bioprocédé de conversion du méthane en méthanol ont été démontrées. D'une part, la productivité moyenne obtenue dans ce BRM (75 ± 25 mg méthanol.(g cellules sèches)-1.h-1) est près de deux fois meilleure que celle obtenue dans un réacteur fermé conduit dans les mêmes conditions que le BRM, traduisant un transfert de masse gaz-liquide accru dans le BRM. D'autre part, la productivité obtenue dans ce nouveau BRM est similaire aux meilleures productivités reportées dans la littérature pour des réacteurs alimentés avec un distributeur de gaz à bulles et près de 35 fois meilleure que celle reportée pour le seul autre BRM (à membranes denses) présent dans la littérature. Dans un second temps, le suivi cinétique de l'activité intrinsèque hydroxylante du biocatalyseur a permis de vérifier que l'arrêt de production du méthanol qui est observé après 14 h de réaction correspond à une perte quasi-totale de l'activité du biocatalyseur. Plusieurs essais ont été réalisés pour appréhender les facteurs pouvant avoir une influence sur l'activité hydroxylante de la bactérie, en vue de trouver le moyen d'augmenter le temps de production. Ces essais ont mis en évidence que l'arrêt de production est dû à la fin de vie du biocatalyseur. En parallèle à ces études, dans l'objectif de régénérer le cofacteur NAD nécessaire à la réaction d'hydroxylation de manière économique et in situ, des essais ont été conduits avec un système bio-électrochimique innovant (biocathode) visant à remplacer les électrons d'un donneur d'électrons (formiate) par ceux d'un métal faiblement polarisé. Ces essais ont montré l'incapacité de ces bactéries à utiliser les électrons d'une électrode dans les conditions de la réaction. / This work aimed to develop and optimize a new configuration of membrane bioreactor (MBR) for an efficient and safe methane hydroxylation by the Methylosinus trichosporium OB3b bacterium. This BRM couples a bioreactor with two gas/liquid macroporous membrane contactors supplying continuously each gaseous substrate (methane and air) without generating any bubble in the bacterial suspension, avoiding thus the formation of an explosive methane/air gas mixture. In the first step, the feasibility and the reproducibility of this new bioprocess for the conversion of methane into methanol was demonstrated. In the one hand, the average productivity achieved in the MBR (75 ± 25 mg methanol.(g dry cell)-1.h-1) is twice higher than that obtained in a batch reactor operated with the same conditions, highlighting an increased mass transfer in the MBR. In the other hand, productivity obtained in this MBR is similar to the best productivities reported in the literature for reactors (either fed-batch or continuous) using gas bubble spargers and about 35-times better than the one reported for the only other MBR (with dense membranes) present in the literature. Secondly, a kinetic monitoring of the intrinsic hydroxylating activity of the biocatalyst confirmed that the methanol production stop observed after 14 hours of reaction matched a quasi-total loss of the biocatalyst activity. Several trials were conducted to understand the factors which may influence the bacterial hydroxylating activity, in order to find a way to increase the production time. These trials put in evidence that the production stop is caused by the end of life of the biocatalyst. In parallel to these studies, aiming to regenerate the NAD cofactor required for the reaction by a cheap and in situ way, several tests were conducted with an innovative bio-electrochemical device (biocathode) to replace the electrons from an electron donor (formate) by those from a weakly polarized metal. These trials showed the inability of this bacterium strain to use electrons from an electrode in the conditions of the reaction.
|
32 |
Nouveaux procédés de bioremédiation pour le traitement des sols et des sédiments sélénifères / Novel bioremediation processes for treatment of seleniferous soils and sedimentWadgaonkar, Shrutika 18 December 2017 (has links)
L'objectif de cette thèse a été de développer une technologie pour l'assainissement des sols / sédiments sélénifères et d’étudier la réduction microbienne des oxy-anions de sélénium dans différentes conditions de respiration et de configurations du bioréacteur.Le sol sélénifère prélevé, dans les terres agricoles cultivées de blé au Pendjab (Inde), a été caractérisé et son lavage a été optimisé en faisant varier les paramètres tels que le temps de réaction, la température, le pH et le rapport liquide / solide. Afin de maximiser l'élimination et la récupération du sélénium à partir de ce sol, l'effet des ions compétiteurs et les composés oxydants comme les agents d'extraction pour le lavage du sol, ont également été étudiés. Bien que les agents oxydants aient montré une efficacité maximale d'élimination du sélénium (39%), la présence d'agents oxydants dans le lixiviat et le sol agricole peut augmenter le coût de leur post-traitement. Les plantes aquatiques, Lemma minor et Egeria densa ont été utilisées pour étudier la phyto-remédiation du lixiviat du sol contenant des agents oxydants. Cependant, l'efficacité d'élimination du sélénium par les plantes aquatiques a été significativement affectée par les fortes concentrations de ces agents oxydants dans le lixiviat du sol.Le rinçage du sol sélénifère a révélé un motif de migration du sélénium à travers la colonne du sol. La migration de la fraction de sélénium soluble de la couche supérieure vers la couche inférieure et sa réduction et son accumulation subséquentes dans les couches inférieures de la colonne de sol, ont été observées pendant le rinçage du sol. L'efficacité d'élimination du sélénium par la méthode de rinçage du sol a diminué avec une augmentation de la hauteur de la colonne. De plus, le lixiviat contenant des oxy-anions de sélénium obtenus à partir du lavage du sol, a été traité dans un réacteur UASB en faisant varier l'alimentation organique. Des effluents contenant moins de 5 μg de sélénium L-1 ont été obtenus, ce qui est conforme aux normes de l'USEPA pour la limite de rejet de sélénium dans les eaux usées.De plus, la bio-remédiation ex situ des oxy-anions de sélénium a été étudiée dans des conditions variables. Une bactérie aérobie (Delftia lacustris) capable de transformer le sélénate et le sélénite en sélénium élémentaire, mais aussi en composés d'ester de sélénium solubles jusque-là inconnus, a été isolée et caractérisée de manière fortuite. Alternativement, la bio-réduction anaérobie du sélénate couplé au méthane en tant que donneur d'électrons, a été étudiée dans des bouteilles de sérum et un filtre percolateur en utilisant des sédiments marins comme inoculum. Enfin, l'effet de la contamination d'autres oxy-anions chalcogènes, en plus du sélénium, a été étudié. La réduction simultanée de la sélénite et de la tellurite par un consortium microbien mixte ainsi que la rétention des nanostructures de Se et de Te biogènes dans l'EPS, ont été réalisées durant une opération de 120 jours dans un bioréacteur UASB / The aim of this Ph.D. was to develop a technology for the remediation of seleniferous soils/sediments and to explore microbial reduction of selenium oxyanions under different respiration conditions and bioreactor configurations.Seleniferous soil collected from the wheat-grown agricultural land in Punjab (India) was characterized and its soil washing was optimized by varying parameters such as reaction time, temperature, pH and liquid to solid ratio. In order to maximize selenium removal and recovery from this soil, effect of competing ions and oxidizing agents as chemical extractants for soil washing were also studied. Although oxidizing agents showed a maximum selenium removal efficiency (39%), the presence of oxidizing agents in the leachate and the agricultural soil may increase the cost of their post-treatment. Aquatic plants, Lemma minor and Egeria densa were used to study phytoremediation of the soil leachate containing oxidizing agents. However, the selenium removal efficiency by aquatic weeds was significantly affected by the high concentrations of these oxidizing agents in the soil leachate.Seleniferous soil flushing revealed the selenium migration pattern across the soil column. Migration of soluble selenium fraction from the upper to the lower layers and its subsequent reduction and accumulation in the lower layers of the soil column was observed during soil flushing. The selenium removal efficiency by the soil flushing method decreased with an increase in the column height. Furthermore, the soil leachate containing selenium oxyanions obtained from soil washing was treated in a UASB reactor by varying the organic feed. Effluent containing less than 5 μg L-1 selenium was achieved, which is in accordance with the USEPA guidelines for selenium wastewater discharge limit.Moreover, ex situ bioremediation of selenium oxyanions was studied under variable conditions. An aerobic bacterium (Delftia lacustris) capable of transforming selenate and selenite to elemental selenium, but also to hitherto unknown soluble selenium ester compounds was serendipitously isolated and characterized. Alternatively, anaerobic bioreduction of selenate coupled to methane as electron donor was investigated in serum bottles and a biotrickling filter using marine sediment as inoculum. Finally, the effect of contamination of other chalcogen oxyanions in addition to selenium was studied. Simultaneous reduction of selenite and tellurite by a mixed microbial consortium along with the retention of biogenic Se and Te nanostructures in the EPS was achieved during a 120-day UASB bioreactor operation
|
33 |
Rôle des phénomènes de transport dans la mise au point de stratégies thérapeutiques de réparation osseuse / Role of transport phenomena in the development of new therapeutic protocols for bone reconstructionLemonnier, Sarah 08 April 2014 (has links)
L'objectif de ce travail de thèse est de dégager des méthodes et des outils permettant de mieux comprendre le rôle joué par les phénomènes de transport (cellulaire, hydraulique et chimique) dans la mise au point de stratégies thérapeutiques de réparation osseuse. Pour cela, nous avons choisi d'associer deux approches : la réalisation d'études expérimentales et la mise au point de modèles numériques. Nous avons ainsi pu, lors d'une première étude présentée dans le chapitre 2 de ce document, relier la perméabilité intrinsèque d'un milieu poreux, paramètre déterminant dans l'étude du transport de fluide en son sein, à la structure géométrique de ses pores. Nous avons également mis en évidence l'importance des interactions électrochimiques lors de la progression d'une solution ionique (telle que les fluides physiologiques) à travers le tissu osseux, en raison de la structure poreuse et de la composition chimique (présence de fibres de collagènes chargées par exemple) de ce dernier. Ces outils ont ensuite permis d'analyser, en première approche, les résultats expérimentaux obtenus lors de la réalisation de tests de perméabilité sur des échantillons de périoste fémoral ovin, dans le but d'identifier les phénomènes physico-chimiques à l'origine du comportement particulier de cette membrane (chapitre 5). Nous nous sommes par ailleurs intéressés au développement d'implants osseux associant un substrat minéral biocompatible et des cellules souches mésenchymateuses, afin de favoriser une reconstruction tissulaire en volume des lésions de grande taille. Nous avons ainsi pu mettre en place, dans le chapitre 3, un dispositif expérimental permettant de réaliser de manière reproductible un test d'ensemencement cellulaire et d'évaluer le nombre, la répartition et le taux de viabilité des cellules greffées sur le biomatériau utilisé. A partir des résultats expérimentaux issus des tests d'ensemencement cellulaire, nous avons ensuite développé un modèle numérique dans le chapitre 4, pour dégager un ensemble de critères à respecter dans l'élaboration d'un substitut osseux qui favoriserait un développement tissulaire homogène contrôlé lors des premières étapes de la culture in vitro de ce type d'implants. Ce modèle constitue une première étape dans la détermination d'un cahier des charges géométrique de tels substrats / This study aims to set up methods and tools to improve our understanding of the role played by transport phenomena (transport of cells, fluid and chemical species) in the development of new therapeutic protocols for bone reconstruction, using a double approach: experimental studies and numerical simulations. Hence, in the second chapter of this document, we have been able to link the intrinsic permeability of a porous medium – a key parameter regarding fluid transport through porous media – to the geometric structure of its pores. We have also highlighted the influence of electrochemical interactions on the flow of an ionic solution (such as physiologic fluids) through cortical bone, due to its porous structure and its chemical composition (presence of electrically charged fibers). These tools have then enabled us to analyze, at first glance, the experimental results of permeability tests conducted on ovin femoral periosteum, to identify the chemical-physical phenomena responsible for the specific behavior of this membrane (chapter 5). We also focused on the development of large bone implants coupling a mineral substitute and mesenchymal stem cells to enhance a volumic reconstruction of critical-sized bone defects. We have therefore designed, in chapter 3, a custom experimental set up that allows one to perform a reproducible cell seeding test on a porous scaffold and quantify the number of seeded cells as well as their viability rate. The experimental results provided by these tests have then initiated the numerical model exposed in chapter 4, that aims to highlight criteria to meet regarding the design of new bone substitutes that would enhance a homogeneous volumic tissue growth during the first stages of the extit [in vitro} development of coupled implants
|
34 |
Characterization and impact of the hydrodynamics on the performance of umbilical-cord derived stem cells culture in stirred tank bioreactors / Caractérisation et impact de l’hydrodynamique sur les performances de procédés de culture de cellules souches issues de cordons ombilicaux en réacteur agitéLoubière, Céline 10 December 2018 (has links)
Les cellules souches mésenchymateuses (CSM) interviennent de plus en plus dans le domaine de la médecine régénérative, notamment pour traiter des maladies aujourd’hui difficilement curables avec les moyens actuels. Deux verrous scientifiques limitent pourtant leur utilisation et leur commercialisation. D’une part, de grandes quantités de cellules sont nécessaires pour répondre à la forte demande médicale. D’autre part, les cellules étant elles-mêmes le médicament final, délivré chez le patient, leur qualité doit être préservée (phénotype souche, capacité de différenciation). La mise en culture de ces cellules, sur des microporteurs, en bioréacteur agité, semble répondre à ces enjeux. Cependant, une connaissance plus précise de l’impact, sur la réponse physiologique des cellules, des technologies utilisées et de l’hydrodynamique générée est nécessaire pour améliorer les lois d’extrapolation des bioréacteurs de culture de CSM. Dans ce contexte, des travaux ont été mis en œuvre pour étudier l’influence du mode d’agitation (orbital ou mécanique) sur l’attachement, l’expansion et le détachement de CSM issues de la gelée de Wharton (GW-CSM) de cordons ombilicaux, sur des microporteurs de différentes compositions. Pour contribuer à la quantification de l’expansion cellulaire, une méthode de comptage automatique in situ a été développée pour estimer le nombre de cellules par microporteur, ainsi que leur répartition, sans avoir à procéder à leur détachement. Des microporteurs commerciaux ont ensuite pu être comparés à des microporteurs synthétisés dans un laboratoire partenaire, en termes d’attachement et expansion cellulaire, ainsi que de facilité de détachement. En parallèle de ces travaux, l’impact de la conception du mobile d’agitation, en bioréacteur mécaniquement agité, sur la mise en suspension de microporteurs a été analysé. A l’issue de cette étude, une analyse dimensionnelle et des simulations CFD ont été mises en place et deux modèles reliant la fréquence minimale de juste mise en suspension (Njs) avec la géométrie du mobile d’agitation (forme, taille, position dans la cuve) et les propriétés matérielles des particules et de la phase liquide ont été proposés. Une stratégie d’optimisation des paramètres géométriques d’un mobile en minibioréacteur, dédié à la culture de CSM sur microporteurs, a été mise en place, à partir de paramètres caractérisant les contraintes hydromécaniques perçues par la phase solide, judicieusement choisis et intégrés lors des simulations CFD. Selon un plan d’expérience, et les résultats extraits des simulations, des surfaces de réponse ont été construites et une optimisation multi-objective a été réalisée afin de déterminer la géométrie minimisant les contraintes perçues par les particules, et donc par les cellules adhérées. Des cultures de GW-CSM en minibioréacteurs équipés de différents mobiles ont finalement été validées, avec une comparaison préliminaire de l’impact de ces géométries sur l’expansion cellulaire / Mesenchymal stem cells (MSC) are becoming increasingly involved in the regenerative medicine field, particularly to treat diseases that are not effectively curable with the current therapies. Two scientific barriers are nevertheless responsible for MSC use and commercialization limitations. On one side, large amounts of cells are needed to reach the high cell dose requirements. On the other side, cells being the final product themselves, directly injected into the patient, their quality have to be controlled (stem cell phenotype, differentiation capability). MSC cultivation on microcarriers in a stirred bioreactor seems to meet these challenges. However, a precise knowledge about the impact of the technologies and the hydrodynamics generated, on the physiological cell response, is necessary to improve the scale-up of MSC cultures in bioreactors. In this context, present work is dedicated to the study of the impact of the agitation mode (orbital or mechanical) on the cell attachment, expansion and detachment on various microcarrier types, in the case of MSC derived from the Wharton’s jelly (WJ-MSC) of umbilical cords. To quantify more precisely cell distribution and expansion on microcarriers, an automatic and in situ counting method was developed, which need no detachment step. This allowed the identification of commercial microcarriers suitable for WJ-MSC cultures, which were then compared to home-made microcarriers, synthesized by a partner laboratory, in terms of cell attachment and expansion, and detachment efficiency. In parallel to these works, the impact of the impeller design on the microcarrier suspension in stirred tank bioreactors was investigated. Based on a dimensional analysis and CFD simulations, it resulted in the establishment of two models relating the minimal agitation rate to ensure all particle suspension (Njs) with the impeller geometrical characteristics (design, size, off-bottom clearance) and the material properties of both the solid and the liquid phases. CFD models validation allowed then to develop a strategy to optimize the geometrical configuration of an impeller, dedicated to MSC cultures on microcarriers in a minibioreactor. Parameters characterizing the hydromechanical stress encountered by the solid phase were wisely chosen and integrated into CFD simulations. Based on a design of experiments, and the hydrodynamics data recovered from simulations, response surfaces were built and a multiobjective optimization was achieved in order to determine the geometry minimizing the particle stress, and also by adhered cells. WJ-MSC cultures in minibioreactors equipped with impellers displaying various geometries were finally validated, with a preliminary comparison of the impact of these geometries on the cell expansion
|
35 |
Suivi in situ de cultures tridimensionnelles en bioréacteur à perfusion grâce à la tomographie d'émission par positronsChouinard, Julie January 2012 (has links)
Le suivi continu des substituts tissulaires en développement est crucial afin de comprendre leur évolution au fil du temps. Par contre, la tâche représente tout un défi quand vient le temps d'évaluer des échantillons de grande taille avec les techniques de microscopie. De plus, les méthodes de caractérisation les plus courantes sont fastidieuses et entraînent le sacrifice des cultures. Le développement d'approches de suivi in situ en temps réel, non invasives et non destructives, adaptées aux échantillons non transparents et de grandes tailles, est essentiel dans le domaine du génie tissulaire. Les techniques d'imagerie médicale peuvent répondre à ces besoins sans perturber ni interrompre les cultures en cours. L'hypoThèse de travail de cette Thèse était de démontrer la possibilité d'établir des méthodes d'imagerie in situ, non invasives, non destructives et en temps réel pour le suivi de la viabilité et du métabolisme de cultures tridimensionnelles (3D) de cellules endothéliales dans un gel de fibrine perfusé. Afin d'y arriver, une chambre de culture à perfusion munie de fibres creuses pour la croissance de cellules endothéliales à l'intérieur d'un gel de fibrine a d'abord été conçue. Ensuite, un bioréacteur pulsatif à perfusion apte à assurer la survie et la croissance de cultures 3D in vitro pour le génie tissulaire a été développé et validé. Dans un second temps, les protocoles d'imagerie par tomographie d'émission par positrons (TEP) n'étant pas adaptés aux systèmes de bioréacteurs, il a fallu en développer et valider un en utilisant un radiotraceur bien connu : le [indice supérieur 18]F-fluorodésoxyglucose ([indice supérieur 18]FDG) qui est un marqueur capable de détecter le métabolisme cellulaire. L'imagerie au [indice supérieur 18]FDG d'un bioréacteur permet d'évaluer la perfusion de la culture, de contrôler sa viabilité ainsi que d'estimer la densité cellulaire et le positionnement des structures tissulaires émergentes. Ainsi, les conditions optimales favorisant sa capture par les cellules ont été déterminées au préalable sur des monocouches afin d'optimiser le signal TEP correspondant. Enfin, les paramètres actifs identifiés précédemment ont été mis en application pour le suivi de cultures 3D où les densités cellulaires ont pu être estimées après seulement 12 heures de culture et des structures émergentes décelées dans les gels de fibrine au bout d'une à deux semaines. L'imagerie TEP au FDG est une approche très prometteuse pour effectuer le suivi non destructif de cultures tridimensionnelles en génie tissulaire et pour comprendre l'évolution des tissus en croissance in vitro.
|
36 |
Caractérisation et optimisation des phénomènes de transfert dans un double bioréacteur à membranes / Caracterisation and optimization of transfert phenomena in a double membrane bioreactorGünther, Jan 08 December 2009 (has links)
L'idée de base est de permettre à deux microorganismes de partager le même environnement tout en les maintenant séparées à l'aide d'une membrane perméable les retenant sélectivement. La principale contrainte résulte du transfert des composées d'intérêts limité par l'écoulement dans et autour des fibres ainsi que dans module et par le colmatage. Le double bioréacteur a membrane étudié dans cette thèse, de par son fonctionnement, alterne les cycles de filtration et rétrofiltration (ou rétrolavage), limitant ainsi en partie le colmatage. Ce travail de thèse s'est donc attaché à approfondir la connaissance des mécanismes de limitation au transfert mis en jeu lors de la filtration de fluide biologique complexes et évolutifs en fonction des conditions opératoires et des caractéristiques géométriques du module de filtration à fibres creuses. Dans cet objectif, sur la base des choix de configuration de module membranaire proposés dans cette étude, et afin de tendre vers une optimisation rationnelle de l'utilisation de ce dispositif, l'étude s'appuya sur l'utilisation d'outils de mécanique des fluides numériques, complétée par une approche expérimentale menée dans des conditions modèles. Les simulations réalisées par cette approche ont ainsi mis en évidence de grandes variations des vitesses de filtration le long de la fibre et ceci en lien direct avec une augmentation de la perte de charge à l'extérieur des fibres due au confinement induisant une baisse des performances de filtration. De manière similaire, un modèle numérique de formation de dépôt nous a permis d'évaluer l'effet du confinement de fibres. Il entraine une augmentation de pression dans la partie fluide externe induisant une forte variation de pertes de charges entrainant une répartition du dépôt le long de la fibre beaucoup plus inhomogène. Le retour du numérique à l'expérimental réalisé s'est attaché à décrire l'influence des conditions de mise oeuvre sur les performances de filtration du pilote. L'analyse méthodique de l'influence du sens de filtration et de la compacité dans le cas de fluides modèles (suspension de différents microorganismes / solutions de protéines modèles) et dans le cas de fluides biologiques évolutifs (milieux de fermentation + micro organismes) fut réalisée. L'ensemble de ces résultats nous permettent de donner des recommandations aux futurs utilisateurs du double bioréacteur à membranes. / This work presents a specific bioreactor previously designed to study microbial interactions. In this process, the microbial species in two tanks are physically separated by a microfiltration membrane. In order to give to the microorganisms a molecular environment in each compartment similar to the one that would be obtained if the microbial cells were cultivated in the same reactor, two criteria have to be considered: (i) the flow rates between compartments have to be sufficient with respect to the microbial kinetics and (ii) all the molecular compounds of the medium that have an effect on the microorganism behaviour must pass through the membrane. The main constrain is due to transfer of component limited by the fluid flow in and around the fiber of the filtration module. This thesis has therefore committed to deepening the understanding of the mechanisms limiting the transfer involved during the filtration of biological fluid complex according to operating conditions and geometric characteristics of the hollow fiber module of filtration. For this purpose, based on the choice of membrane module configuration proposed in this study, and to strive for a rational optimization of the use of this device, the study relied on the use of CFD tools, supplemented by an experimental approach conducted under models conditions. The numerical simulations of fluid flow have shown a modification of the axial filtration velocity profile with packing density. Similarly, a numerical model of cake deposit was developed and show difference of cake growth along the fiber with packing density. Two experimental hollow fiber modules with two packing densities were tested with clean water and biological fluid, and showed good agreement with the numerical data. These results underline the variations of filtration velocity along the fiber that will allow some predictions on fouling deposit to be done.
|
37 |
Augmentation de la production d'hydrogène par l'expression hétérologue d'hydrogénase et la production d’hydrogène à partir de résidus organiquesSabourin, Guillaume P. 11 1900 (has links)
La recherche de sources d’énergie fiables ayant un faible coût environnemental est en plein essor. L’hydrogène, étant un transporteur d’énergie propre et simple, pourrait servir comme moyen de transport de l’énergie de l’avenir. Une solution idéale pour les besoins énergétiques implique une production renouvelable de l’hydrogène. Parmi les possibilités pour un tel processus, la production biologique de l’hydrogène, aussi appelée biohydrogène, est une excellente alternative. L’hydrogène est le produit de plusieurs voies métaboliques bactériennes mais le rendement de la conversion de substrat en hydrogène est généralement faible, empêchant ainsi le développement d’un processus pratique de production d’hydrogène. Par exemple, lorsque l’hydrogène est produit par la nitrogénase sous des conditions de photofermentation, chaque molécule d’hydrogène constituée requiert 4 ATP, ce qui rend le processus inefficace.
Les bactéries photosynthétiques non sulfureuses ont la capacité de croître sous différentes conditions. Selon des études génomiques, Rhodospirillum rubrum et Rhodopseudomonas palustris possèdent une hydrogénase FeFe qui leur permettrait de produire de l’hydrogène par fermentation anaérobie de manière très efficace. Il existe cependant très peu d’information sur la régulation de la synthèse de cette hydrogénase ainsi que sur les voies de fermentation dont elle fait partie. Une surexpression de cette enzyme permettrait potentiellement d’améliorer le rendement de production d’hydrogène.
Cette étude vise à en apprendre davantage sur cette enzyme en tentant la surexpression de cette dernière dans les conditions favorisant la production d’hydrogène. L’utilisation de résidus organiques comme substrat pour la production d’hydrogène sera aussi étudiée. / The search for alternative energy sources with low environmental impact is in
great expansion. Hydrogen, an elegant and simple energy transporter, could serve as
means of transporting energy in the future. An ideal solution to the increasing energy
needs would imply a renewable production of hydrogen. Out of all the existing
possibilities for such a process, the biological production of hydrogen, also called
biohydrogen, is an excellent alternative. Hydrogen is the end result or co-product of
many pathways in bacterial metabolism. However, such pathways usually show low
yields of substrate to hydrogen conversion, which prevents the development of
efficient production processes. For example, when hydrogen is produced via
nitrogenase under photofermentation conditions, each hydrogen molecule produced
requires 4 molecules of ATP, rendering the process very energetically inefficient.
Purple non-sulfur bacteria are highly adaptive organisms that can grow under
various conditions. According to recent genomic analyses, Rhodospirillum rubrum and
Rhodopseudomonas palustris possess, within their genome, an FeFe hydrogenase that
would allow them to produce hydrogen via dark fermentation quite efficiently.
Unfortunately, very little information is known on the regulation of the synthesis of
this enzyme or the various pathways that require it. An overexpression of this
hydrogenase could potentially increase the yields of substrate to hydrogen conversion.
This study aims to increase our knowledge about this FeFe hydrogenase by
overexpressing it in conditions that facilitate the production of hydrogen. The use of
organic waste as substrate for hydrogen production will also be studied.
|
38 |
Ingénierie tissulaire des ligaments : conception d'un bioréacteur et étude des propriétés mécaniques / Tissue engineering of ligaments : bioreactor design and study of the mechanical propertiesKahn, Cyril 02 February 2009 (has links)
L’ingénierie tissulaire vise à l’élaboration de prothèses biologiques par la régénération ou la culture, in vitro ou in vivo, de tissus ou d’organes. Dans la stratégie de culture in vitro, le développement de nouveaux outils, tels que des bioréacteurs, permettant la culture de cellules ou de tissus sous sollicitations mécaniques spécifiques au tissu est primordial. De plus, l’avancée de cette discipline dans la régénération des tissus nécessite de développer, dès à présent, des méthodes d’évaluation mécanique satisfaisantes permettant de comparer ces néo-tissus aux tissus sains selon des critères de sollicitations physiologiques. En effet, pour parvenir à une bonne évaluation de ces matériaux, il est nécessaire de pouvoir les tester sur des chargements représentatifs des sollicitations physiologiques auxquelles ils sont soumis. Nous avons ainsi, dans un premier temps, conçu et développé un bioréacteur de ligaments permettant la culture de cellules stimulées mécaniquement par des sollicitations cycliques de traction-torsion. Ce bioréacteur a été dimensionné afin de pouvoir obtenir des bio-prothèses de taille comparable aux ligaments et tendons à remplacer (4 à 5 cm de long). Nous avons, dans un deuxième temps, développé un modèle du comportement mécanique global de ces tissus à partir du formalisme thermodynamique développé au sein de notre laboratoire et des observations faites sur des tendons d’Achille de lapin. Ce modèle a pour but d’approfondir la compréhension des structures intervenant de façon prépondérante dans la qualité mécanique de ces tissus ainsi que l’évaluation et l’optimisation des matrices de support et des néo-tissus devant s’y substituer / Tissue Engineering aims to fabricate bio-prostheses by regenerating or culture, in vivo or in vitro, tissues or organs. In the in vitro strategy, developing new tools such as bioréactors which allow the culture of cells or tissues under their specific mechanical solicitations is a huge point. Moreover, the last advances of this discipline in regeneration of tissues require new mechanical model allowing their evaluation and comparison to native tissue under physiological loading. Indeed, in order to obtain a good evaluation of their mechanical quality, it is important to be able to applied mechanical solicitations linked to physiological ones. As a first step, a bioreactor of ligament allowing the culture of cells under mechanical solicitations of cyclic traction-torsion was designed and developed. This bioreactor was sized to potentially obtain a bio-prosthesis comparable to native tissue in term of size (4 to 5 cm long). In a second time, a mechanical model was elaborated based on a thermodynamic formalism developed in our laboratory and the observation made on rabbit Achilles tendons. The goals of this model are to improve our knowledge on the mayor structures involved into the mechanical quality of theses tissues and to evaluate and optimise the scaffolds and neo-tissues of substitution
|
39 |
Impact de l'agitation et de l'aération sur la réponse physiologique de Streptomyces pristinaespiralis DSMZ 40338 lors de sa culture en bioréacteurs mécaniquement agité et gazosiphon / Influence of agitation and aeration on the physiological behavior of Streptomyces pristinaespiralis DSMZ 40338 during cultures in stirred tank and airlift bioreactorsHaj-Husein, Laial 15 October 2013 (has links)
Des travaux préliminaires réalisés en fiole d'Erlenmeyer ont montré que l'environnement hydrodynamique, caractérisé par la puissance dissipée volumique (P/V) et le coefficient de transfert en oxygène (kLa), jouait un rôle important lors du procédé de production de pristinamycines par Streptomyces pristinaespiralis (Mehmood, 2011). L'objectif de ce travail est donc d'étudier l'influence de ces deux phénomènes dans des bioréacteurs mécaniquement agités (STR), largement utilisés à l'échelle industrielle, et de type gazosiphon. Dans un premier temps, une description de l'environnement hydrodynamique global a été réalisée en STR. En ce qui concerne le bioréacteur gazosiphon, celui-ci a été conçu et dimensionné spécifiquement pour ce travail. Une caractérisation des écoulements dans ce bioréacteur a ensuite été réalisée par simulation numérique des écoulements. En appliquant les mêmes conditions hydrodynamiques que celles étudiées lors de culture en fioles d'Erlenmeyer, les performances en terme de croissance et de production de pristinamycines ont toujours été moindres en STR et en gazosiphon qu'en fiole. Ceci démontre que P / V, kLa mais également la dissipation maximum, ne constituent pas les bons paramètres d'extrapolation. Par contre, les performances mesurées semblent être reliée aux variations de formes morphologiques observées (présence et taille des pelotes) et à la physiologie des cellules au sein de ces structures. De façon surprenante, au cours de ce travail, le déclenchement de la production de pristinamycines a quasiment toujours été obtenu lors de la phase de croissance de S. pristinaespiralis. Nos travaux n'ont pas permis de mettre en évidence la raison de ce phénomène. Celui-ci est certainement la conséquence de plusieurs paramètres qui restent encore à préciser / Previous results performed in Erlenmeyer flasks have shown that the hydrodynamics, characterized by power dissipation per unit of volume (P/V) and volumetric oxygen mass transfer coefficient (kLa), impacted the production of pristinamycins by Streptomyces pristinaespiralis (Mehmood, 2011). The aim of this work is then to study the influence of these two parameters in a stirred tank bioreactor (STR), widely used in industry, and in an airlift bioreactor. This last bioreactor has been designed specifically for this work. In a first part, the hydrodynamic environment was described in STR and the fluid flows were simulated by computational fluid dynamics (CFD). Using the same hydrodynamic conditions in STR and in airlift bioreactor than in flasks, the process performance (bacterial growth and pristinamycin production) were always lower in STR and airlift bioreactor. This demonstrates that P / V, kLa and also maximum dissipation were not pertinent scale-up criteria for the pristinamycin production from flask to STR or airlift bioreactor. On the contrary, the determined performances seemed to be related to the changes in bacterial morphology (presence and size of pellets) and to the physiology of the cells inside these structures. Surprisingly, during this work, the initiation of the pristinamycin production occurred almost always during the growth phase of S. pristinaespiralis. This phenomenon was probably due to the conjunction of several parameters which remain to identify
|
40 |
Mise au point d'un bioréacteur de fermentation en milieu solide fonctionnant en continu pour la production de métabolites secondaires antioxydants par Aspergillus niger G131 / Development of a continuous pilote-scaled bioreactor for the production of antioxidant secondary metabolites by Aspergillus niger G131 using solid state fermentationCarboué, Quentin 04 June 2018 (has links)
Aspergillus niger souche G131 est un champignon qui produit en quantité des métabolites secondaires appartenant à la famille des naphtho-gamma-pyrones (NγPs). Ces NγPs sont des pigments qui présentent des intérêts industriels de par leurs importants potentiels antiradicalaires. L’objectif de ce doctorat est la production à l’échelle pilote et en continu de NγPs à travers la culture du champignon sur milieu solide. Le choix de la fermentation en milieu solide (FMS) comme processus de culture repose sur des aspects d’ordre qualitatif et quantitatif de production, ainsi que sur des raisons économiques et éthiques, relatives à la protection de l’environnement avec notamment la possibilité de valoriser des coproduits agricoles comme milieu de culture pour le champignon. Dans un premier temps, ce travail s’intéresse à la caractérisation de la composition et des potentialités associées aux molécules produites par la souche. Ces potentialités incluent les activités anti-radicalaires et les mesures de cytotoxicité. La thèse porte également sur la caractérisation de la physiologie de croissance de la souche en FMS et sur l’optimisation des conditions de culture par la méthodologie des plans d’expériences pour l’augmentation de la production de NγPs. Une stratégie originale d’optimisation adaptée aux contraintes posées par la FMS est d’ailleurs proposée. Finalement, un transfert d’échelle de production est réalisé au moyen d’un bioréacteur prototype innovant permettant la production à l’échelle pilote de milieu fermenté en continu. Dans son dernier chapitre, ce travail s’intéresse donc à la mise au point des paramètres opératifs qui entourent la production continue de NγPs par FMS. / Aspergillus niger strain G131 is a non-ochratoxigenic filamentous fungus producing high quantities of secondary metabolites known as naphtha-gamma-pyrones (NγPs). NγPs are pigments of industrial interest in reason of their high antioxidant properties. The aim of this dissertation is the continuous, pilote-scaled production of these NγPs through the cultivation of the fungus on solid medium. The choice of solid state fermentation (SSF) as cultivation method is not only driven by quantitative and qualitative considerations, but also by economical and ethical concerns related to environmental protection. SSF allows, in fact, a direct valorization of agricultural byproducts as the solid medium for the fungal growth. First, this work deals with the characterization of the composition and potentialities associated with the molecules produced by the strain, which include antioxidant and cytotoxic activities. Second, the dissertation focuses on the characterization of the fungal growth’s physiology on solid medium and on the optimization of the culture conditions using experimental methodology in order to increase NγPs production. For this purpose, an original optimization strategy is proposed to overcome specific constraints connected to SSF. Finally, a scale transfer of the production is advanced by means of an innovative prototype bioreactor continuously producing fermented material. The final chapter of this work addresses the development of parameters regarding the continuous NγPs production using SSF.
|
Page generated in 0.0502 seconds