• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 10
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 66
  • 66
  • 41
  • 24
  • 23
  • 23
  • 23
  • 16
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Prognostics and health management of power electronics

Alghassi, Alireza January 2016 (has links)
Prognostics and health management (PHM) is a major tool enabling systems to evaluate their reliability in real-time operation. Despite ground-breaking advances in most engineering and scientific disciplines during the past decades, reliability engineering has not seen significant breakthroughs or noticeable advances. Therefore, self-awareness of the embedded system is also often required in the sense that the system should be able to assess its own health state and failure records, and those of its main components, and take action appropriately. This thesis presents a radically new prognostics approach to reliable system design that will revolutionise complex power electronic systems with robust prognostics capability enhanced Insulated Gate Bipolar Transistors (IGBT) in applications where reliability is significantly challenging and critical. The IGBT is considered as one of the components that is mainly damaged in converters and experiences a number of failure mechanisms, such as bond wire lift off, die attached solder crack, loose gate control voltage, etc. The resulting effects mentioned are complex. For instance, solder crack growth results in increasing the IGBT’s thermal junction which becomes a source of heat turns to wire bond lift off. As a result, the indication of this failure can be seen often in increasing on-state resistance relating to the voltage drop between on-state collector-emitter. On the other hand, hot carrier injection is increased due to electrical stress. Additionally, IGBTs are components that mainly work under high stress, temperature and power consumptions due to the higher range of load that these devices need to switch. This accelerates the degradation mechanism in the power switches in discrete fashion till reaches failure state which fail after several hundred cycles. To this end, exploiting failure mechanism knowledge of IGBTs and identifying failure parameter indication are background information of developing failure model and prognostics algorithm to calculate remaining useful life (RUL) along with ±10% confidence bounds. A number of various prognostics models have been developed for forecasting time to failure of IGBTs and the performance of the presented estimation models has been evaluated based on two different evaluation metrics. The results show significant improvement in health monitoring capability for power switches. Furthermore, the reliability of the power switch was calculated and conducted to fully describe health state of the converter and reconfigure the control parameter using adaptive algorithm under degradation and load mission limitation. As a result, the life expectancy of devices has been increased. These all allow condition-monitoring facilities to minimise stress levels and predict future failure which greatly reduces the likelihood of power switch failures in the first place.
42

LC-ladder and capacitive shunt-shunt feedback LNA modelling for wideband HBT receivers

Weststrate, Marnus 24 July 2011 (has links)
Although the majority of wireless receiver subsystems have moved to digital signal processing over the last decade, the low noise amplifier (LNA) remains a crucial analogue subsystem in any design being the dominant subsystem in determining the noise figure (NF) and dynamic range of the receiver as a whole. In this research a novel LNA configuration, namely the LC-ladder and capacitive shunt-shunt feedback topology, was proposed for use in the implementation of very wideband LNAs. This was done after a thorough theoretical investigation of LNA configurations available in the body of knowledge from which it became apparent that for the most part narrowband LNA configurations are applied to wideband applications with suboptimal results, and also that the wideband configurations that exist have certain shortcomings. A mathematical model was derived to describe the new configuration and consists of equations for the input impedance, input return loss, gain and NF, as well as an approximation of the worst case IIP3. Compact design equations were also derived from this model and a design strategy was given which allows for electronic design automation of a LNA using this configuration. A process for simultaneously optimizing the circuit for minimum NF and maximum gain was deduced from this model and different means of improving the linearity of the LNA were given. This proposed design process was used successfully throughout this research. The accuracy of the mathematical model has been verified using simulations. Two versions of the LNA were also fabricated and the measured results compared well with these simulations. The good correlation found between the calculated, simulated and measured results prove the accuracy of the model, and some comments on how the accuracy of the model could be improved even further are provided as well. The simulated results of a LNA designed for the 1 GHz to 18 GHz band in the IBM 8HP process show a gain of 21.4 dB and a minimum NF of only 1.7 dB, increasing to 3.3 dB at the upper corner frequency while maintaining an input return loss below -10 dB. After steps were taken to improve the linearity, the IIP3 of the LNA is -14.5 dBm with only a small degradation in NF now 2.15 dB at the minimum. The power consumption of the respective LNAs are 12.75 mW and 23.25 mW and each LNA occupies a chip area of only 0.43 mm2. Measured results of the LNA fabricated in the IBM 7WL process had a gain of 10 dB compared to an expected simulated gain of 20 dB, however significant path loss was introduced by the IC package and PCB parasitics. The S11 tracked the simulated response very well and remained below -10 dB over the feasible frequency range. Reliable noise figure measurements could not be obtained. The measured P1dB compression point is -22 dBm. A 60 GHz LNA was also designed using this topology in a SiGe process with ƒT of 200 GHz. A simulated NF of 5.2 dB was achieved for a gain of 14.2 dB and an input return loss below -15 dB using three amplifier stages. The IIP3 of the LNA is -8.4 dBm and the power consumption 25.5 mW. Although these are acceptable results in the mm-wave range it was however found that the wideband nature of this configuration is redundant in the unlicensed 60 GHz band and results are often inconsistent with the design theory due to second order effects. The wideband results however prove that the LC-ladder and capacitive shunt-shunt feedback topology is a viable means for especially implementing LNAs that require a very wide operating frequency range and also very low NF over that range. / Thesis (PhD(Eng))--University of Pretoria, 2011. / Electrical, Electronic and Computer Engineering / unrestricted
43

Conception d'un module électronique de puissance pour application haute tension / Design of a power electronic module for high voltage application

Reynes, Hugo 24 April 2018 (has links)
Satisfaire les besoins en énergie de manière responsable est possible grâce aux énergies renouvelables, notamment éoliennes et solaires. Cependant ces centres de captation d’énergie sont éloignés dans zones de consommation. Le transport de l’énergie via des réseaux HVDC (haute tension courant continu) permet un rendement et une flexibilité avantageuse face au transport HVAC (haute tension courant alternatif). Ceci est rendu possible grâce aux convertisseurs utilisant l’électronique de puissance. Les récents développements sur les semi-conducteurs à large bande interdite, plus particulièrement le carbure de silicium (SiC) offrent la possibilité de concevoir ces convertisseurs plus simples, utilisant des briques technologiques de plus fort calibre (≤ 10 kV). Cependant le packaging, essentiel à leur bon fonctionnement, ne suit pas ces évolutions. Dans cette thèse, nous explorons les technologies actuelles ainsi que les limites physique et normatives liées au packaging haute tension. Des solutions innovantes sont proposées pour concevoir un module de puissance haute tension, impactant que faiblement les paramètres connexes (résistance thermique, isolation électrique et paramètres environnementaux). Les éléments identifiés comme problématiques sont traités individuellement. La problématique des décharges partielles sur les substrats céramiques métallisés est développée et une solution se basant sur les paramètres géométriques a été testée. Le boitier standard type XHP-3 a été étudié et une solution permettant de le faire fonctionner à 10 kV à fort degré de pollution a été développée. / The supply of carbon-free energy is possible with renewable energy. However, windfarms and solar power plants are geographically away from the distribution points. Transporting the energy using the HVDC (High Voltage Direct Current) technology allow for a better yield along the distance and result in a cost effective approach compared to HVAC (High Voltage Alternative Current) lines. Thus, there is a need of high voltage power converters using power electronics. Recent development on wide bandgap semiconductors, especially silicon carbide (SiC) allow a higher blocking voltage (around 10 kV) that would simplify the design of such power electronic converters. On the other hand, the development on packaging technologies needs to follow this trend. In this thesis, an exploration of technological and normative limitation has been done for a high voltage power module design. The main hot spot are clearly identified and innovative solutions are studied to provide a proper response with a low impact on parasitic parameters. Partial Discharges (PD) on ceramic substrates is analyzed and a solution of a high Partial Discharge Inception Voltage (PDIV) is given based on geometrical parameters. The XHP-3 like power modules are studied and a solution allowing a use under 10 kV at a high pollution degree (PD3) is given.
44

Analyse expérimentale et modélisation du bruit haute fréquence des transistors bipolaires à hétérojonctions SiGe et InGaAs/InP pour les applications très hautes fréquences / Experimental analysis and modelling of high frequency noise in SiGe and InGaAs/InP heterojunction bipolar transistors for high frequency applications

Ramirez-garcia, Eloy 20 June 2011 (has links)
Le développement des technologies de communication et de l’information nécessite des composants semi-conducteurs ultrarapides et à faible niveau de bruit. Les transistors bipolaires à hétérojonction (TBH) sont des dispositifs qui visent des applications à hautes fréquences et qui peuvent satisfaire ces conditions. L’objet de cette thèse est l’étude expérimentale et la modélisation du bruit haute fréquence des TBH Si/SiGe:C (technologie STMicroelectronics) et InP/InGaAs (III-V Lab Alcatel-Thales).Accompagné d’un état de l’art des performances dynamiques des différentes technologies de TBH, le chapitre I rappelle brièvement le fonctionnement et la caractérisation des TBH en régime statique et dynamique. La première partie du chapitre II donne la description des deux types de TBH, avec l’analyse des performances dynamiques et statiques en fonction des variations technologiques de ceux-ci (composition de la base du TBH SiGe:C, réduction des dimensions latérales du TBH InGaAs). Avec l’aide d’une modélisation hydrodynamique, la seconde partie montre l’avantage d’une composition en germanium de 15-25% dans la base du TBH SiGe pour atteindre les meilleurs performances dynamiques. Le chapitre III synthétise des analyses statiques et dynamiques réalisées à basse température permettant de déterminer le poids relatif des temps de transit et des temps de charge dans la limitation des performances des TBH. L’analyse expérimentale et la modélisation analytique du bruit haute fréquence des deux types de TBH sont présentées en chapitre IV. La modélisation permet de mettre en évidence l’influence de la défocalisation du courant, de l’auto-échauffement, de la nature de l’hétérojonction base-émetteur sur le bruit haute fréquence. Une estimation des performances en bruit à basse température des deux types de TBH est obtenues avec les modèles électriques. / In order to fulfil the roadmap for the development of telecommunication and information technologies (TIC), low noise level and very fast semiconductor devices are required. Heterojunction bipolar transistor has demonstrated excellent high frequency performances and becomes a candidate to address TIC roadmap. This work deals with experimental analysis and high frequency noise modelling of Si/SiGe:C HBT (STMicroelectronics tech.) and InP/InGaAs HBT (III-V Lab Alcatel-Thales).Chapter I introduces the basic concepts of HBTs operation and the characterization at high-frequency. This chapter summarizes the high frequency performances of many state-of-the-art HBT technologies. The first part of chapter II describes the two HBT sets, with paying attention on the impact of the base composition (SiGe:C) or the lateral reduction of the device (InGaAs) on static and dynamic performances. Based on TCAD modelling, the second part shows that a 15-25% germanium composition profile in the base is able to reach highest dynamic performances. Chapter III summarizes the static and dynamic results at low temperature, giving a separation of the intrinsic transit times and charging times involved into the performance limitation. Chapter IV presents noise measurements and the derivation of high frequency noise analytical models. These models highlight the impact of the current crowding and the self-heating effects, and the influence of the base-emitter heterojunction on the high frequency noise. According to these models the high frequency noise performances are estimated at low temperature for both HBT technologies.
45

Device design and process integration for SiGeC and Si/SOI bipolar transistors

Haralson, Erik January 2004 (has links)
SiGe is a significant enabling technology for therealization of integrated circuits used in high performanceoptical networks and radio frequency applications. In order tocontinue to fulfill the demands for these applications, newmaterials and device structures are needed. This thesis focuseson new materials and their integration into heterojunctionbipolar transistor (HBT) structures as well as using devicesimulations to optimize and better understand the deviceoperation. Specifically, a SiGeC HBT platform was designed,fabricated, and electrically characterized. The platformfeatures a non-selectively grown epitaxial SiGeC base,in situdoped polysilicon emitter, nickel silicide,LOCOS isolation, and a minimum emitter width of 0.4 μm.Alternately, a selective epitaxy growth in an oxide window wasused to form the collector and isolation regions. Thetransistors exhibited cutoff frequency (fT) and maximum frequency of oscillation (fMAX) of 40-80 GHz and 15-45 GHz, respectively.Lateral design rules allowed the investigation of behavior suchas transient enhanced diffusion, leakage current, and theinfluence of parasitics such as base resistance and CBC. The formation of nickel silicide on polysiliconSiGe and SiGeC films was also investigated. The formation ofthe low resistivity monosilicide phase was shown to occur athigher temperatures on SiGeC than on SiGe. The stability of themonosilicide was also shown to improve for SiGeC. Nickelsilicide was then integrated into a SiGeC HBT featuring aselectively grown collector. A novel, fully silicided extrinsicbase contact was demonstrated along with the simultaneousformation of NiSi on thein situdoped polysilicon emitter. High-resolution x-ray diffraction (HRXRD) was used toinvestigate the growth and stability of SiGeC base layers forHBT integration. HRXRD proved to be an effective, fast,non-destructive tool for monitoring carbon out-diffusion due tothe dopant activation anneal for different temperatures as wellas for inline process monitoring of epitaxial growth of SiGeClayers. The stability of the SiGe layer with 0.2-0.4 at% carbonwhen subjected to dopant activation anneals ranging from1020-1100&#176C was analyzed by reciprocal lattice mapping.It was found that as the substitutional carbon increases theformation of boron clusters due to diffusion is suppressed, buta higher density of carbon clusters is formed. Device simulations were performed to optimize the DC and HFperformance of an advanced SiGeC HBT structure with low baseresistance and small dimension emitter widths. The selectivelyimplanted collector (SIC) was studied using a design ofexperiments (DOE) method. For small dimensions the lateralimplantation straggle has a significant influence on the SICprofile (width). A significant influence of the SIC width onthe DC gain was observed. The optimized structure showedbalanced fT/fMAXvalues of 200+ GHz. Finally, SOI BJT transistorswith deep trench isolation were fabricated in a 0.25μmBiCMOS process and self-heating effects were characterized andcompared to transistors on bulk silicon featuring deep trenchand shallow trench isolation. Device simulations based on SEMcross-sections and SIMS data were performed and the resultscompared to the fabricated transistors. Key words:Silicon-Germanium(SiGe), SiGeC,heterojunction bipolar transistor(HBT), nickel silicide,selectively implanted collector(SIC), device simulation, SiGeClayer stability, high resolution x-ray diffraction(HRXRD),silicon-on-insulator(SOI), self-heating.
46

High Frequency Characterization and Modeling of SiGe Heterojunction Bipolar Transistors

Malm, B. Gunnar January 2002 (has links)
No description available.
47

An assessment of silicon-germanium BiCMOS technologies for extreme environment applications

Lourenco, Nelson Estacio 13 November 2012 (has links)
This thesis evaluates the suitability of silicon-germanium technology for electronic systems intended for extreme environments, such as ambient temperatures outside of military specification (-55 degC to 125 degC) range and intense exposures to ionizing radiation. Silicon-germanium devices and circuits were characterized at cryogenic and high-temperatures (up to 300 degC) and exposed to ionizing radiation, providing empirical evidence that silicon-germanium is an excellent platform for terrestrial and space-based electronic applications.
48

High Frequency Characterization and Modeling of SiGe Heterojunction Bipolar Transistors

Malm, B. Gunnar January 2002 (has links)
No description available.
49

Device design and process integration for SiGeC and Si/SOI bipolar transistors

Haralson, Erik January 2004 (has links)
<p>SiGe is a significant enabling technology for therealization of integrated circuits used in high performanceoptical networks and radio frequency applications. In order tocontinue to fulfill the demands for these applications, newmaterials and device structures are needed. This thesis focuseson new materials and their integration into heterojunctionbipolar transistor (HBT) structures as well as using devicesimulations to optimize and better understand the deviceoperation. Specifically, a SiGeC HBT platform was designed,fabricated, and electrically characterized. The platformfeatures a non-selectively grown epitaxial SiGeC base,<i>in situ</i>doped polysilicon emitter, nickel silicide,LOCOS isolation, and a minimum emitter width of 0.4 μm.Alternately, a selective epitaxy growth in an oxide window wasused to form the collector and isolation regions. Thetransistors exhibited cutoff frequency (f<sub>T</sub>) and maximum frequency of oscillation (f<sub>MAX</sub>) of 40-80 GHz and 15-45 GHz, respectively.Lateral design rules allowed the investigation of behavior suchas transient enhanced diffusion, leakage current, and theinfluence of parasitics such as base resistance and C<sub>BC</sub>. The formation of nickel silicide on polysiliconSiGe and SiGeC films was also investigated. The formation ofthe low resistivity monosilicide phase was shown to occur athigher temperatures on SiGeC than on SiGe. The stability of themonosilicide was also shown to improve for SiGeC. Nickelsilicide was then integrated into a SiGeC HBT featuring aselectively grown collector. A novel, fully silicided extrinsicbase contact was demonstrated along with the simultaneousformation of NiSi on the<i>in situ</i>doped polysilicon emitter.</p><p>High-resolution x-ray diffraction (HRXRD) was used toinvestigate the growth and stability of SiGeC base layers forHBT integration. HRXRD proved to be an effective, fast,non-destructive tool for monitoring carbon out-diffusion due tothe dopant activation anneal for different temperatures as wellas for inline process monitoring of epitaxial growth of SiGeClayers. The stability of the SiGe layer with 0.2-0.4 at% carbonwhen subjected to dopant activation anneals ranging from1020-1100&#176C was analyzed by reciprocal lattice mapping.It was found that as the substitutional carbon increases theformation of boron clusters due to diffusion is suppressed, buta higher density of carbon clusters is formed.</p><p>Device simulations were performed to optimize the DC and HFperformance of an advanced SiGeC HBT structure with low baseresistance and small dimension emitter widths. The selectivelyimplanted collector (SIC) was studied using a design ofexperiments (DOE) method. For small dimensions the lateralimplantation straggle has a significant influence on the SICprofile (width). A significant influence of the SIC width onthe DC gain was observed. The optimized structure showedbalanced f<sub>T</sub>/f<sub>MAX</sub>values of 200+ GHz. Finally, SOI BJT transistorswith deep trench isolation were fabricated in a 0.25μmBiCMOS process and self-heating effects were characterized andcompared to transistors on bulk silicon featuring deep trenchand shallow trench isolation. Device simulations based on SEMcross-sections and SIMS data were performed and the resultscompared to the fabricated transistors.</p><p><b>Key words:</b>Silicon-Germanium(SiGe), SiGeC,heterojunction bipolar transistor(HBT), nickel silicide,selectively implanted collector(SIC), device simulation, SiGeClayer stability, high resolution x-ray diffraction(HRXRD),silicon-on-insulator(SOI), self-heating.</p>
50

Hardness assurance testing and radiation hardening by design techniques for silicon-germanium heterojunction bipolar transistors and digital logic circuits

Sutton, Akil Khamisi 04 May 2009 (has links)
Hydrocarbon exploration, global navigation satellite systems, computed tomography, and aircraft avionics are just a few examples of applications that require system operation at an ambient temperature, pressure, or radiation level outside the range covered by military specifications. The electronics employed in these applications are known as "extreme environment electronics." On account of the increased cost resulting from both process modifications and the use of exotic substrate materials, only a handful of semiconductor foundries have specialized in the production of extreme environment electronics. Protection of these electronic systems in an extreme environment may be attained by encapsulating sensitive circuits in a controlled environment, which provides isolation from the hostile ambient, often at a significant cost and performance penalty. In a significant departure from this traditional approach, system designers have begun to use commercial off-the-shelf technology platforms with built in mitigation techniques for extreme environment applications. Such an approach simultaneously leverages the state of the art in technology performance with significant savings in project cost. Silicon-germanium is one such commercial technology platform that demonstrates potential for deployment into extreme environment applications as a result of its excellent performance at cryogenic temperatures, remarkable tolerance to radiation-induced degradation, and monolithic integration with silicon-based manufacturing. In this dissertation the radiation response of silicon-germanium technology is investigated, and novel transistor-level layout-based techniques are implemented to improve the radiation tolerance of HBT digital logic.

Page generated in 0.0929 seconds