51 |
Integrated CM Filter for Single-Phase and Three-Phase PWM RectifiersHedayati, Mohammad Hassan January 2015 (has links) (PDF)
The use of insulated-gate bipolar transistor (IGBT)-based power converters is increasing exponentially. This is due to high performance of these devices in terms of efficiency and switching speed. However, due to the switching action, high frequency electromagnetic interference (EMI) noises are generated. Design of a power converter with reduced EMI noise level is one of the primary objectives of this research.
The first part of the work focuses on designing common-mode (CM) filters, which can be integrated with differential-mode (DM) filters for three-phase pulse-width modulation (PWM) rectifier-based motor drives. This work explores the filter design based on the CM equivalent circuit of the drive system. Guidelines are provided for selection of the filter components. Different variants of the filter topology are evaluated to establish the effectiveness of the proposed topology. Analytical results based on Bode plot of the transfer functions are presented, which suggest effective EMI reduction. Experimental results based on EMI measurement on the grid side and CM current measurement on the motor side are presented. These results validate the effectiveness of the filter.
In the second part of the work, it is shown that inclusion of CM filters into DM filters results in resonance oscillations in the CM circuit. An active damping strategy is proposed to damp the oscillations in both line-to-line and line-to-ground ac voltages and currents. An approach based on pole placement by state feedback is used to actively damp both the DM and CM filter oscillations. Analytical expressions for state-feedback controller gains are derived for both continuous-and discrete-time models of the filter. Trade-off in selection of the active damping gain on the lower-order grid current harmonics is analysed using a weighted admittance function method.
In the third part of the work, single-phase grid-connected power converters are considered. An integrated CM filter with DM LCL filter is proposed. The work explores the suitability of PWM methods for single-phase and parallel single-phase grid-connected power converters. It is found that bipolar PWM and unipolar PWM with 180◦interleaving angle are suitable for single-phase and parallel single-phase power converters, respectively. The proposed configuration along with the PWM methods reduces the CM voltage, CM current, and EMI noise level effectively. It is also shown that the suggested circuit is insensitive to nonidealities of the power converter such as dead-time mismatch, mismatch in converter-side inductors, unequal turn on and turn off of the switches, and propagation delays.
In the fourth part of the work, the inter-phase inductor in parallel interleaved power converters is integrated with LCL filter boost inductor. Different variant designs are presented and compared with the proposed structure. It is shown that the proposed structure makes use of standard core geometries and consumes lesser core material as well as copper wire. Hence, it reduces the overall size and cost of the power converter.
In the present work, a 10kVA three-phase back-to-back connected with input LCL filter and output dv/dt filter, a 5kVA single-phase grid-connected power converter with LCL filter, and a 7.5kVA parallel single-phase grid-connected power converter with LCL filter are fabricated in the laboratory to evaluate and validate the proposed methods. The experimental results validate the proposed methods that result in significant EMI performance improvement of grid-connected power converters.
|
52 |
Etude et réalisation d'un interrupteur de puissance monolithique bidirectionnel sur substrat SOI / No title availableIhuel, François 19 June 2012 (has links)
Ces travaux traitent de la réalisation d’un prototype d’interrupteur monolithique bidirectionnel à base de transistor bipolaire. A terme, l’objectif est de développer un interrupteur intelligent à faible perte, complètement intégrable dans l’habitat. Nous nous intéressons d’abord aux composants bidirectionnels existants. Nous présentons ensuite deux transistors bipolaires bidirectionnels. Le premier à base large, de fabrication aisée. Le second, symétrique, latéral, sur substrat SOI, à base fine, verticale, autoprotégée, très novateur. Nous les comparons et optons pour le transistor latéral à base fine, puis discutons les différentes étapes de sa fabrication et montrons qu’elle constitue un véritable challenge. Ensuite, nous détaillons une méthodologie analytique 1D permettant de déterminer les éléments clefs de fabrication de la partie active du transistor. L’étude est validée par des simulations 2D numériques par éléments finis. Nous continuons par une réflexion sur la périphérie du composant et sa métallisation. Nous détaillons les variantes de réalisation envisagées et montrons que ce composant est robuste vis-à-vis des désalignements entre les masques lors de la fabrication. Finalement, nous caractérisons les transistors fabriqués. Initialement le dispositif est parasité par des effets de ségrégation des dopants aux interfaces SiO2 / Si. Nous expliquons qu’il est possible de contrecarrer ces effets, pour finalement valider le concept de transistor bipolaire symétrique latéral sur substrat SOI, à base fine, verticale, autoprotégée. / This study deals with the realization of a prototype of a low losses monolithic bidirectional switch. It is based on a SOI symmetrical and lateral bipolar transistor with a thin, vertical and shielded base. The goal is to produce a switch which can be integrated to smart electronics functions. First, we compare the existing bidirectional solutions. We then introduce two bidirectional bipolar transistors: one with a wide base, easy to realize, and the other one, patented, symmetrical and lateral, using a SOI substrate, with a thin, vertical and shielded base. We compare these two devices and choose the novel and patented lateral bipolar transistor. We then discuss the challenge of its fabrication. We then detail a 1D analytical methodology allowing to define rapidly the key steps of the active area transistor realization. The study is then confirmed by finite element 2D numerical simulations (Sentaurus). Next, we discuss the periphery and metallization of the device. We detail the variant of process introduced. We finally show that this component is robust to masks misaligning during its fabrication. To the end, the transistors are realized and analyzed. We show that, initially, the segregation of dopants at SiO2 / Si interfaces implies a parasiting canal in parallel of the transistor. We then explain how to reduce these parasiting effects, to finally validate the concept of a symmetrical and lateral bipolar transistor on a SOI substrate, with a thin, vertical, shielded base.
|
53 |
Non quasi-static effects investigation for compact bipolar transistor modeling / Investigations des effets non quasi-statiques dans le transistor bipolaire en vue de leur modélisation compacteBhattacharyya, Arkaprava 18 July 2011 (has links)
Les transistors rapides actuels présentent un retard lorsqu’ils fonctionnent à très hautes fréquences ou en régime transitoire rapide. Cet effet est appelé effet non quasi-statique (NQS). Dans cette thèse, l’effet NQS est analysé de manière concise de façon à être directement implanté dans les modèles de composant pour les bibliothèques de circuit en utilisant le langage standard VerilogA. Les mécanismes physiques à la base de l’effet NQS sont évalués dans le domaine de fonctionnement petit signal et les résultats sont comparés aux travaux déjà publiés. S’agissant du modèle standard bipolaire HICUM, les effets NQS latéraux et verticaux sont examinés séparément à partir du même modèle, en régime de fonctionnement transitoire et fréquentiel grâce à un sous-circuit dédié au calcul de la phase du signal. A partir de ce sous-circuit, la modélisation compacte avec HICUM est comparée aux données issues de mesures et issues de simulation amont. Enfin, un nouveau sous-circuit calculant l’excès de phase est proposé pour prendre mieux en compte les effets non quasi-statiques dans les transistors bipolaires. / Modern high speed (RF) transistors encounter certain delay while operated at high frequency or under fast transient condition. This effect is named as Non Quasi Static (NQS) effect. In the current work, NQS effect is analyzed in a concise manner so that it can be readily implemented in a compact model using the VerilogA description language. The basic physics behind this effect is investigated in small signal domain and the results are compared with the published work. In popular bipolar model HICUM lateral and vertical NQS are examined separately and uses the same model for both transient and AC operation which requires an additional minimum phase type sub circuit. Compact modeling with HICUM model is performed in both measurement and device simulated data. At last, an improved excess phase circuit is proposed to model the NQS effect.
|
54 |
Théorie et Pratique de l'Amplificateur Distribué : Application aux Télécommunications Optiques à 100 Gbit/s / Theory and Practice of the Distributed Amplifier : Application to 100-Gb/s Optical TelecommunicationsDupuy, Jean-Yves 17 December 2015 (has links)
La théorie, la conception, l'optimisation et la caractérisation d'amplificateurs distribués en technologie TBDH InP 0,7 µm, pour les systèmes de communications optiques à 100 Gbit/s, sont présentés. Nous montrons comment l'exploitation adaptée du concept d'amplificateur distribué avec une technologie de transistors bipolaires à produit vitesse-amplitude élevé a permis la réalisation d'un driver de modulateur électro-optique fournissant une amplitude différentielle d'attaque de 6,2 et 5,9 Vpp, à 100 et 112 Gbit/s, respectivement, avec une qualité de signal élevée. Ce circuit établit ainsi le record de produit vitesse-amplitude à 660 Gbit/s.V sur tranche et 575 Gbit/s.V en module hyperfréquence. Dans le cadre du projet Européen POLYSYS, il a été associé à un laser accordable et un modulateur pour la réalisation d'un module transmetteur optoélectronique compact, démontrant des performances avançant l'état de l'art des communications optiques courtes distances à 100 Gbit/s. / The theory, design, optimisation and characterisation of distributed amplifiers in 0.7-µm InP DHBT technology, for 100-Gbit/s optical communication systems, are presented. We show how the appropriate implementation of the distributed amplifier concept in a bipolar transistors technology with high swing-speed product has enabled the realisation of an electro-optic modulator driver with 6.2- and 5.9-Vpp differential driving amplitude at 100 and 112 Gb/s, respectively, with a high signal quality. This circuit thus establishes the swing-speed product record at 660 Gb/s.V on wafer and at 575 Gb/s.V in a microwave module. In the frame of the European project POLYSYS, it has been co-packaged with a tunable laser and a modulator to realise a compact optoelectronic transmitter module, which has demonstrated performances advancing the state of the art of short reach 100-Gb/s optical communications.
|
55 |
Phase noise reduction of a 0.35 μm BiCMOS SiGe 5 GHz Voltage Controlled OscillatorLambrechts, Johannes Wynand 11 November 2009 (has links)
The research conducted in this dissertation studies the issues regarding the improvement of phase noise performance in a BiCMOS Silicon Germanium (SiGe) cross-coupled differential-pair voltage controlled oscillator (VCO) in a narrowband application as a result of a tail-current shaping technique. With this technique, low-frequency noise components are reduced by increasing the signal amplitude without consuming additional power, and its effect on overall phase noise performance is evaluated. The research investigates effects of the tail-current as a main contributor to phase noise, and also other effects that may influence the phase noise performance like inductor geometry and placement, transistor sizing, and the gain of the oscillator. The hypothesis is verified through design in a standard 0.35 μm BiCMOS process supplied by Austriamicrosystems (AMS). Several VCOs are fabricated on-chip to serve for a comparison and verify that the employment of tail-current shaping does improve phase noise performance. The results are then compared with mathematical models and simulated results, to confirm the hypothesis. Simulation results provided a 3.3 dBc/Hz improvement from -105.3 dBc/Hz to -108.6 dBc/Hz at a 1 MHz offset frequency from the 5 GHz carrier when employing tail-current shaping. The relatively small increase in VCO phase noise performance translates in higher modulation accuracy when used in a transceiver, therefore this increase can be regarded as significant. Parametric analysis provided an additional 1.8 dBc/Hz performance enhancement in phase noise that can be investigated in future works. The power consumption of the simulated VCO is around 6 mW and 4.1 mW for the measured prototype. The circuitry occupies 2.1 mm2 of die area. Copyright / Dissertation (MEng)--University of Pretoria, 2010. / Electrical, Electronic and Computer Engineering / unrestricted
|
56 |
Transistor Quantique InAs à Electrons Chauds : Fabrication submicronique et étude à haute fréquence / InAs Quantum Hot Electron Transistor : submicron fabrication and high frequency responseNguyen Van, Hoang 24 July 2012 (has links)
Transistor Quantique InAs à Electrons Chauds: Fabrication submicronique et étude à haute fréquenceL'objectif de cette thèse est le développement de la technologie d'un transistor à électrons chauds constitué d'une hétérostructure quantique InAs/AlSb et exploitant un transport électronique résonant ultrarapide, le QHET (Quantum Hot Electron Transistor). Ce travail a permis l'étude approfondie de ses propriétés et performances à haute fréquence. L'étude aborde tous les aspects, de la conception, la croissance épitaxiale, la technologie de fabrication à la caractérisation statique et dynamique. Ce travail de thèse s'est effectué principalement à l'Institut d'Electronique du Sud (IES), sous la direction de Roland Teissier, et pour partie à l'Institut d'Electronique de Microélectronique et Nanotechnologie (IEMN) sous la direction de Mohamed Zaknoune. Nous avons, dans premier temps, mis en œuvre à l'IES une technologie double mésa afin de fabriquer les transistors avec l'émetteur de 10x10µm². La technologie en grande dimension est aisément réalisable et surtout reproductible. Elle nous a permis de travailler sur un grand nombre de structures transistor fabriquées par epitaxie par jets moléculaires (EJM) sur substrats InAs, afin d'en étudier le transport électronique et d'optimiser leur dessin. Le premier résultat marquant a été d'augmenter le gain statique jusqu'à une valeur de 15 grâce à une modification de la structure de l'émetteur qui une injection plus efficace puis l'utilisation d'une base fine de 85Å, qui améliore le temps de transit. Dans un deuxième temps, nous avons travaillé au sein de l'IES sur l'évolution de la technologie vers des dimensions intermédiaires dont la dimension la plus petite est de 1 µm de largeur. Cette technologie nous a donné une amélioration de performance des QHET grâce à la réduction des résistances et des capacités parasites des composants. Nous avons aussi travaillé à l'IEMN pour développer une technologie submicronique qui permet d'atteindre une largeur d'émetteur de 0.3 µm grâce à l'utilisation de la lithographie électronique. Cette technologie de fabrication plus performante nous a permis de mieux comprendre le fonctionnement du QHET. Et d'atteindre une régime de fonctionnement à forte densité de courant jusqu'à près de 1MA/ cm². Enfin, nous avons développé la structure et la technologie qui vont nous permettre d'évaluer la réponse à haute fréquence des QHET. Un point important a été de à disposer de la structure active du transistor sur un substrat isolant qui permette de réduire les éléments parasites durant la mesure en fréquence. Nous avons développé deux solutions : le transfert de substrat et la croissance métamorphique directement sur un substrat GaAs isolant.Les composants fabriqués par transfert de susbtrat présentent des valeurs de fréquence de transition FT de 77GHz et de fréquence d'oscillation FMAX de 88GHz. Les échantillons métamorphiques ont démontré de meilleures performances avec un FT de 170GHz et un FMAX supérieur à 200GHz. Ces résultats constituent les meilleurs dynamiques de transistors à électrons chauds à température ambiante. Ces études ont également fait progresser la compréhension du transport à haute fréquence dans ces composants. Ils permettent de comprendre les limitations actuelles et de proposer des pistes d'amélioration. / This work aims to develop a new high speed transistor in a vertical transport configuration that exploits the favourable transport properties of III-V semiconductor heterostructures based on InAs. This transistor is similar to a heterojunction bipolar transistor (HBT), but has theoretical assets to overcome the fundamental high speed limits of electron transport in HBT. Our approach uses the concept of hot electron transistor in an original InAs/AlSb quantum heterostructure, that we called a quantum hot electron transistor (QHET) or quantum cascade transistor (QCT). This research was almost done in Southern Electronics Institute (IES) under supervision of Dr. Roland Teissier and other work was realized in Micro-Nanotechnology Electronics Institute (IEMN) under supervision of Dr. Mohamed Zaknoune. The QHET is a unipolar vertical transport device made of a InAs/AlSb quantum heterostructure. Its first advantage over npn HBTs is the low base sheet resistance of 250 Ω/□ , accessible with moderate n-type doping levels (typically 1018 cm-3), which is a key parameter for high speed operation. Secondly, electron transport in the short (typically 100nm) bulk InAs collector is mostly ballistic with calculated transit times much shorter than in InP-based devices. We already developed the design and technology of QHET and demonstrated its resonant transports at cryogenic temperature and its improved static operation in smaller device. From these results, we come to develop our QHET structures to achieve high current gain. Using quantum design of thin base, the current gain is about 15. We fabricated QHET with emitter width scaled down to 0.3µm, using a state of the art electron beam lithography process. The junctions are defined using selective chemical etching. The base contact is self-aligned on the emitter contact. We achieved base resistance lower than 50Ω, comparable to state of the art HBTs. The small dimension allowed reaching the high current density regime of up to 1 MA/cm² required for high frequency operation. The static current gain is about 10, but could be increased up to 14 using a new quantum design. The collector breakdown voltage is greater than 1.2 V.Towards high frequency measurement, the substrate must be non-conducting material but InAs substrate is not available. Two technologies were proposed: transferred substrate and metamorphic substrate. For transferred substrate technology, we obtained a response of cutoff frequency of 77 GHz for FT and 88 for FMAX. For metamorphic substrate technology, we performed the growth of the transistor structures on a semi-insulating GaAs substrate. We used a thin GaSb buffer layer for metamorphic growth of the active part of the transistor, with an adequate growth procedure that allows forming mainly 90° misfit dislocations at the interface between the GaAs and GaSb. This technique permits more convenient and reliable processing of the devices, as compared to use of the more standard AlSb thick buffer layer. The frequency response was determined from S-parameters measured with a network analyser up to a frequency of 70 GHz. The measured gains, after de-embedding of the connection parasitic for a device with 0.5x4µm² emitter for JC=350kA/cm² (Ic= 6.0mA, Ib= 0.7mA, Vce=1.3V). The frequency dependence is not conventional on this device, with a resonance in the current gain close to 10 GHz and a slope different from -20 dB/decade for Mason's unilateral gains. Nevertheless, we could extract the cut-off frequencies FT=172 GHz from H21 and FMAX =230 GHz using -20dB/decade extrapolation of maximum stable gain (MSG). The present results confirmed the validity of this novel device concept. In addition, this is the first demonstration of the ability of a hot electron transistor to operate at high frequency at room temperature.
|
57 |
Device-level real-time modeling and simulation of power electronics converters / Modélisation et simulation en temps réel au niveau composant des convertisseurs d’électronique de puissanceBai, Hao 11 October 2019 (has links)
Pour le développement des convertisseurs d’électronique de puissance, la simulation en temps réel joue un rôle essentiel dans la validation des performances des convertisseurs et de leur contrôle avant leur réalisation. Cela permet de simuler et reproduire avec précision les formes d’ondes des courants et tensions des convertisseurs de puissance modélisés avec un pas de temps de simulation correspondant exactement au temps physique. Les circuits d’électronique de puissance sont caractérisés par le comportement non linéaire des interrupteurs. Par conséquent, les représentations des dispositifs de commutation sont cruciales dans la simulation en temps réel. Le modèle au niveau système est largement utilisé dans les simulateurs temps réel du commerce et les plates-formes expérimentales, qui modélisent les comportements des interrupteurspar deux états stationnaires distincts - passant et bloqué - et négligent tous les phénomènes transitoires. Ces dernières années, la simulation temps réel au niveau du composant est devenue populaire car elle permet de simuler les formes d'onde de commutation transitoires et de fournir des informations utiles concernant les contraintes sur les interrupteurs , les pertes, les effets parasites et les comportements électrothermiques. Néanmoins, la simulation temps réel au niveau du composant est contrainte par le pas de temps transitoire réalisable en raison des quantités de calcul accrues introduites par la non-linéarité du modèle de commutation.Afin d'intégrer le modèle au niveau du composant dans la simulation en temps réel, cette thèse porte sur l'exploration approfondie des techniques de modélisation et de simulation en temps réel au niveau composantdes convertisseurs d’électronique de puissance. Les techniques de simulation en temps réel les plus récentes sont d’abord examinées de manière exhaustive, tant au niveau du système que du composant. En outre, deux approches de modélisation au niveau du composant sont proposées, à savoir le modèle haute résolution quasi-transitoire (HRQT) et le modèle transitoire linéaire par morceaux (PLT). Dans le modèle HRQT, le modèle de réseau est implémenté par une simulation au niveau système tout en générant les formes d'onde de commutation transitoires avec une résolution de 5 ns, ce qui permet de simuler le convertisseur de puissance avec des transitoires rapides jusqu'à des dizaines de nanosecondes. Compte tenu des effets des transitoires sur l’ensemble du réseau, les modèles non linéaires des IGBT et diodes sont linéarisés par morceaux dans le modèle PLT. À l'aide de techniques efficaces de découplage de circuits, le modèle du convertisseur de puissance au niveau composant peut être simulé de manière stable avec un pas de temps de simulation global de 50 ns. Les deux modèles proposés sont testés et validés via différents cas sur une plate-forme temps réel de National Instruments basée sur un FPGA, comprenant un convertisseur boost boosté entrelacé (FIBC) pour le modèle HRQT, un convertisseur DC-DC-AC pour le modèle PLT et un convertisseur modulaire à plusieurs niveaux (MMC) pour les deux. Des résultats précis sont produits par rapport aux outils de simulation hors ligne. L'efficacité et les valeurs d'application sont également vérifiées par les résultats d’essais en temps réel. / In the development cycles of the power electronics converters, the real-time simulation plays an essential role in validating the converters’ and the controllers’ performances before their implementations on real systems. It can simulate and reproduce the current and voltage waveforms of the modeled power electronics converters accurately with a simulation time-step exactly corresponding to the physical time. The power electronics circuits are characterized by nonlinear switching behaviors. Therefore, the representations of switching devices are crucial in real-time simulation. The system-level model is widely used in both commercial real-time simulators and the experimentally built real-time platforms, which models the switching behaviors by two separate steady states – turn-on and turn-off, and neglects all the switching transients. In recent years, the device-level real-time simulation has become popular since it can simulate the transient switching waveforms and provide useful information with regard to the device stresses, the power losses, the parasitic effects, and electro-thermal behaviors. Nevertheless, the device-level real-time simulation is constrained by the achievable transient time-step due to the increased computational amounts introduced by the nonlinearity of the switch model.In order to integrate the device-level model in the real-time simulation, in this thesis, the device-level real-time modeling and simulation techniques of the power electronics converters are deeply explored. The state-of-art real-time simulation techniques are firstly reviewed comprehensively with regard to both system-level and device-level. Moreover, two device-level modeling approaches are proposed, including high- resolution quasi-transient model (HRQT) and the piecewise linear transient (PLT) model. In HRQT model, the network model can be implemented by system-level simulation while generating the transient switching waveforms with a 5 ns resolution, which is good at simulating the power converter with fast switching transients down to tens of nanoseconds. Considering the effects of the transient behaviors on the entire network, the PLT model is proposed by piecewise linearizing the nonlinear IGBT and diode equivalent models. With the help of effective circuit decoupling techniques, the device-level power converter model can be simulated stably with a 50 ns global simulation time-step. The proposed two models are tested and validated via different case studies on National Instruments (NI) FPGA-based real-time platform, including floating interleaved boost converter (FIBC) for HRQT model, DC-DC-AC converter for PLT model, and modular multi-level converter (MMC) for the both. Accurate results are produced compared to offline simulation tools. The effectiveness and the application values are further verified by the results of the real-time experiments.
|
58 |
Caracterisation et modelisation du bruit basse frequence des composants bipolaires et a effet de champ pour applications micro-ondesRENNANE, Abdelali 17 December 2004 (has links) (PDF)
Le travail presente dans ce memoire a pour objet principal l'etude des phenomenes de bruit du fond electrique basse frequence dans des transistors pour applications micro-ondes de type effet de champ (HEMT) sur SiGe et GaN ainsi que de type bipolaire a heterojonction (TBH) a base de silicium-germanium (SiGe). Dans un premier chapitre nous rappelons les caracteristiques et proprietes essentielles des sources de bruit en exces que l'on rencontre generalement dans ce type de composants et proposons une description des bancs de mesure de bruit mis en oeuvre. Dans les deuxieme et troisieme chapitres, nous proposons une analyse detaillee de l'evolution du bruit observe en fonction de la frequence, de la polarisation, et de la geometrie sur des HEMTs des deux familles technologiques SiGe et GaN. Nous avons en particulier etudie les deux generateurs de bruit en courant en entree et en sortie respectivement iG et iD ainsi que leur correlation. Ceci nous a permis, en nous appuyant aussi sur l'analyse des caracteristiques statiques des transistors, d'identifier les diverses sources de bruit en exces presentes dans ces composants et de faire des hypotheses sur leurs origines. Le dernier chapitre est consacre aux TBHs a base de SiGe. Dans une premiere partie nous etablissons comment varie le bruit basse frequence de TBHs, fabriques par un premier constructeur, en fonction de la polarisation, de la geometrie et de la fraction molaire de germanium. Dans une seconde partie nous mettons en evidence, d'apres nos observations effectuees sur des TBHs fabriques par un second constructeur, l'impact important sur le bruit BF de stress thermiques appliques sur ce type de composants.
|
59 |
Zum thermischen Widerstand von Silicium-Germanium-Hetero-Bipolartransistoren / The thermal resistance of silicon-germanium heterojunction bipolar transistorsKorndörfer, Falk 10 November 2014 (has links) (PDF)
Der thermische Widerstand ist eine wichtige Kenngröße von Silicium-Germanium-Hetero-Bipolartransistoren (SiGe-HBTs). Bisher kam es bei der quantitativen Bestimmung der thermischen Widerstände von SiGe-HBTs zu deutlichen Abweichungen zwischen Simulation und Messung. Der Unterschied zwischen Simulation und Messung betrug bei den untersuchten HBTs mehr als 30 Prozent. Diese Arbeit widmet sich der Aufklärung und Beseitigung der möglichen Ursachen hierfür. Zu diesem Zweck werden als erstes die Messmethoden analysiert. Es zeigt sich, dass die bisher verwendete Extraktionsmethode sensitiv auf den Early-Effekt (Basisweitenmodulation) reagiert. Im Rahmen der Untersuchungen wurde ein neues Extraktionsverfahren entwickelt. Die neue Extraktionsmethode ist unempfindlich gegenüber dem Early-Effekt. Mit Bauelementesimulationen wird erstmalig die Wirkung des Seebeck-Effektes (Thermospannungen) auf die elektrisch extrahierten thermischen Widerstände demonstriert. Der Seebeck-Effekt bewirkt, dass die elektrisch extrahierten thermischen Widerstände der untersuchten HBTs nahezu 10 Prozent kleiner als die erwarteten Werte sind. Dieser Effekt wurde bisher nicht beachtet und wird hier erstmals nachgewiesen. Weiterhin wird die Abhängigkeit des thermischen Widerstandes vom Arbeitspunkt untersucht. Dabei hat sich gezeigt, dass bis zu einer Basis-Emitter-Spannung von 0,91 Volt die geometrische Form des Wärme abgebenden Gebietes unabhängig vom Arbeitspunkt ist. Anhand von Messungen wird gezeigt, dass die Dotierung die spezifische Wärmeleitfähigkeit von Silicium reduziert. Die Abnahme wird für Dotierungen größer als 1*1019 cm‑3 deutlich sichtbar. Ist die Dotierung größer als 1*1020 cm‑3, beträgt die Abnahme der spezifischen Wärmeleitfähigkeit mehr als 75 Prozent. Mithilfe einer Simulatorkalibrierung wird die spezifische Wärmeleitfähigkeit als Funktion der Dotierung bestimmt. Die erhaltene Funktion kann künftig beim thermischen Entwurf von HBTs verwendet werden. Somit können zukünftig genauere Vorhersagen zum thermischen Widerstand der HBTs gemacht werden. Dies ermöglicht zuverlässigere Aussagen darüber, wie Änderungen des Transistordesigns zur Minimierung des thermischen Widerstandes beitragen. / The thermal resistance is an important parameter of silicon-germanium heterojunction bipolar transistors (SiGe HBTs). Until now, the quantitative determination of the thermal resistance showed significant differences between measurements and simulations. The difference between simulation and measurement of the investigated HBTs was more than 30 percent. This thesis devotes the clarification and elimination of potential sources for it. For this purpose, the measurement methods are analyzed at first. It is shown, that the currently used extraction method is sensitive to the Early effect (basewidth modulation). A now extraction method was developed, which is not sensitive to the Early effect.
For the first time, the influence of the Seebeck effect (thermoelectric voltages) on the electrically extracted thermal resistance is shown by device simulations. The Seebeck effect leads to a 10 percent lower extracted thermal resistances compared to the expected values of the investigated HBTs. This effect was not taken into account up to now and is demonstrated here for the first time. Furthermore, the dependence of the thermal resistance on the operating point was investigated. The results show that the shape of the heat source is independent of the operating point if the base emitter voltage is smaller than 0.91 volt.
The thermal conductivity of silicon is decreased by increasing doping concentrations. This is shown by measurements. The reduction of the thermal conductivity is well observable for doping concentrations higher than 1*1019 cm‑3. For doping concentration higher than 1*1020 cm‑3 the reduction amounts to more than 75 percent. The thermal conductivity was determined as a function of the doping concentration with the aid of a simulator calibration. This function can be used in the future thermal design of HBTs. It facilitates the optimization of the HBTs with respect to a minimal thermal resistance.
|
60 |
Low-cost SiGe circuits for frequency synthesis in millimeter-wave devicesLauterbach, Adam Peter January 2010 (has links)
"2009" / Thesis (MSc (Hons))--Macquarie University, Faculty of Science, Dept. of Physics and Engineering, 2010. / Bibliography: p. 163-166. / Introduction -- Design theory and process technology -- 15GHz oscillator implementations -- 24GHz oscillator implementation -- Frequency prescaler implementation -- MMIC fabrication and measurement -- Conclusion. / Advances in Silicon Germanium (SiGe) Bipolar Complementary Metal Oxide Semiconductor (BiCMOS) technology has caused a recent revolution in low-cost Monolithic Microwave Integrated Circuit (MMIC) design. -- This thesis presents the design, fabrication and measurement of four MMICs for frequency synthesis, manufactured in a commercially available IBM 0.18μm SiGe BiCMOS technology with ft = 60GHz. The high speed and low-cost features of SiGe Heterojunction Bipolar Transistors (HBTs) were exploited to successfully develop two single-ended injection-lockable 15GHz Voltage Controlled Oscillators (VCOs) for application in an active Ka-Band antenna beam-forming network, and a 24GHz differential cross-coupled VCO and 1/6 synchronous static frequency prescaler for emerging Ultra Wideband (UWB) automotive Short Range Radar (SRR) applications. -- On-wafer measurement techniques were used to precisely characterise the performance of each circuit and compare against expected simulation results and state-of-the-art performance reported in the literature. -- The original contributions of this thesis include the application of negative resistance theory to single-ended and differential SiGe VCO design at 15-24GHz, consideration of manufacturing process variation on 24GHz VCO and prescaler performance, implementation of a fully static multi-stage synchronous divider topology at 24GHz and the use of differential on-wafer measurement techniques. -- Finally, this thesis has llustrated the excellent practicability of SiGe BiCMOS technology in the engineering of high performance, low-cost MMICs for frequency synthesis in millimeterwave (mm-wave) devices. / Mode of access: World Wide Web. / xxii, 166 p. : ill (some col.)
|
Page generated in 0.0618 seconds