• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 10
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 53
  • 12
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A la recherche des tores perdus

Nguyen, Tien Zung 23 November 2001 (has links) (PDF)
C'est l'histoire d'un mathématicien qui est allé à la recherche des tores perdus<br />dans la jungle des systèmes complètement intégrables. Il a trouvé des feuilles<br />particulières et des tores pour construire une petite cabane qui donne une vue<br />topologique sur la jungle.
32

Contractivity-Preserving Explicit 2-Step, 6-Stage, 6-Derivative Hermite-Birkhoff–Obrechkoff Ode Solver of Order 13

Alzahrani, Abdulrahman January 2015 (has links)
In this thesis, we construct a new optimal contractivity-preserving (CP) explicit, 2-step, 6-stage, 6-derivative, Hermite--Birkhoff--Obrechkoff method of order 13, denoted by HBO(13) with nonnegative coefficients, for solving nonstiff first-order initial value problems y'=f(t,y), y(t_0)=y_0. This new method is the combination of a CP 2-step, 6-derivative, Hermite--Obrechkoff of order 9, denoted by HO(9), and a 6-stage Runge-Kutta method of order 5, denoted by RK(6,5). The new HBO(13) method has order 13. We compare this new method, programmed in Matlab, to Adams-Bashforth-Moulton method of order 13 in PECE mode, denoted by ABM(13), by testing them on several frequently used test problems, and show that HBO(13) is more efficient with respect to the CPU time, the global error at the endpoint of integration and the relative energy error. We show that the new HBO(13) method has a larger scaled interval of absolute stability than ABM(13) in PECE mode.
33

Utilisation de feuilletages transverse à l'étude d'homéomorphismes préservant l'aire de surfaces / Use of transverse foliations to the study of area preserving homeomorphisms of surfaces

Yan, Jingzhi 02 December 2014 (has links)
Cette thèse concerne les homéomorphismes de surfaces.Soit f un difféomorphisme d'une surface M préservant l'aire et isotope à l'identité. Si f a un point fixe contractile isolé et dégénéré z0 avec un indice de Lefschetz égal à 1, et si l'aire de M est finie, nous prouverons au chapitre 3 que z0 est accumulé non seulement par des points périodiques mais aussi par des orbites périodiques au sens de la mesure. Plus précisément, la mesure de Dirac en z0 est la limite en topologie faible-étoile d'une suite de probabilités invariantes supportées par des orbites périodiques. Notre preuve est totalement topologique et s'applique au cas d'homéomorphismes en considérant l'ensemble de rotation local.Au chapitre 4, nous étudierons des homéomorphismes préservant l’aire et isotope à l’identité. Nous prouverons l’existence d'isotopies maximales particulières: les isotopies maximales à torsion faible. En particulier, lorsque f est un difféomorphisme ayant un nombre fini de points fixes tous non-dégénérés, une isotopie I joignant l'identité à f est à torsion faible si et seulement si pour tout point z fixé le long de I, le nombre de rotation (réel) ρ(I,z), qui est bien défini quand on éclate f en z, est contenu dans (-1,1). Nous démontrerons l'existence d'isotopies maximales à torsion faible, et nous étudierons la dynamique locale de feuilletages transverses à l'isotopie près des singularités isolées.Au chapitre 5, nous énoncerons une généralisation d'un théorème de Poincaré-Birkhoff local au cas où il existe des points fixes au bord. / This thesis concerns homeomorphisms of surfaces.Let f be an area preserving diffeomorphism of an oriented surface M isotopic to the identity. If f has an isolated degenerate contractible fixed point z0 with Lefschetz index one, and if the area of M is finite, we will prove in Chapter 3 that z0 is accumulated not only by periodic points, but also by periodic orbits in the measure sense. More precisely, the Dirac measure at z0 is the limit in weak-star topology of a sequence of invariant probability measures supported on periodic orbits. Our proof is purely topological and will works for homeomorphisms and is related to the notion of local rotation set.In chapter 4, we will define a kind of identity isotopies: torsion-low isotopies. In particular, when f is a diffeomorphism with finitely many fixed points such that every fixed point is not degenerate, an identity isotopy I of f is torsion-low if and only if for every point z fixed along the isotopy, the (real) rotation number ρ(I,z), which is well defined when one blows-up f at z, is contained in (-1,1). We will prove the existence of torsion-low maximal identity isotopies, and we will deduce the local dynamics of the transverse foliations of any torsion-low maximal isotopy near any isolated singularity.In chapter 5, we will generalize a local Poincaré-Birkhoff theorem to the case where there exist fixed points on the boundary
34

Intégrales Itérées en Physique Combinatoire

Deneufchâtel, Matthieu 27 September 2012 (has links) (PDF)
Nous présentons différents résultats liés par les outils et les structures qu'ils font intervenir (intégrales itérées, produits de mélange). Dans la première partie, nous considérons le calcul de certaines intégrales de type Selberg et leurs limites lorsque le nombre de variables tend vers l'infini. Dans le cas général, on montre que le résultat s'exprime comme un produit dont le nombre de facteurs ne dépend pas du nombre de variables (sous certaines conditions). Si la puissance du déterminant de Vandermonde vaut 2, il est possible de calculer la limite de ces intégrales lorsque le nombre de variables tend vers l'infini à l'aide d'opérateurs liés à l'interpolation de Newton. Dans la seconde partie, nous étudions les propriétés de dépendance linéaire de familles de fonctions obtenues par intégrales itérées et donnons un critère qui permet d'assurer l'indépendance linéaire d'une famille infinie de fonctions à partir de l'étude des relations entre les fonctions obtenues par intégrales simples. Nous montrons comment construire effectivement les corps de germes de fonctions analytiques nécessaires et en donnons quelques exemples qui permettent d'étendre les résultats connus sur les hyperlogarithmes. Ensuite, nous étudions certaines bases de l'algèbre libre dans le but d'appliquer la factorisation de Schützenberger. Nous rappelons quelques résultats classiques, puis nous intéressons à la famille obtenue à partir des mots de Lyndon. Celle-ci ne permet pas d'écrire la factorisation qui nous intéresse mais nous précisons les caractéristiques de sa famille duale. Enfin, nous donnons un critère relatif à deux familles en dualité assurant que l'on peut écrire cette factorisation.
35

Estimation bayésienne nonparamétrique de copules

Guillotte, Simon January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
36

Geometry of Minkowski Planes and Spaces -- Selected Topics

Wu, Senlin 03 February 2009 (has links) (PDF)
The results presented in this dissertation refer to the geometry of Minkowski spaces, i.e., of real finite-dimensional Banach spaces. First we study geometric properties of radial projections of bisectors in Minkowski spaces, especially the relation between the geometric structure of radial projections and Birkhoff orthogonality. As an application of our results it is shown that for any Minkowski space there exists a number, which plays somehow the role that $\sqrt2$ plays in Euclidean space. This number is referred to as the critical number of any Minkowski space. Lower and upper bounds on the critical number are given, and the cases when these bounds are attained are characterized. Moreover, with the help of the properties of bisectors we show that a linear map from a normed linear space $X$ to another normed linear space $Y$ preserves isosceles orthogonality if and only if it is a scalar multiple of a linear isometry. Further on, we examine the two tangent segments from any exterior point to the unit circle, the relation between the length of a chord of the unit circle and the length of the arc corresponding to it, the distances from the normalization of the sum of two unit vectors to those two vectors, and the extension of the notions of orthocentric systems and orthocenters in Euclidean plane into Minkowski spaces. Also we prove theorems referring to chords of Minkowski circles and balls which are either concurrent or parallel. All these discussions yield many interesting characterizations of the Euclidean spaces among all (strictly convex) Minkowski spaces. In the final chapter we investigate the relation between the length of a closed curve and the length of its midpoint curve as well as the length of its image under the so-called halving pair transformation. We show that the image curve under the halving pair transformation is convex provided the original curve is convex. Moreover, we obtain several inequalities to show the relation between the halving distance and other quantities well known in convex geometry. It is known that the lower bound for the geometric dilation of rectifiable simple closed curves in the Euclidean plane is $\pi/2$, which can be attained only by circles. We extend this result to Minkowski planes by proving that the lower bound for the geometric dilation of rectifiable simple closed curves in a Minkowski plane $X$ is analogously a quarter of the circumference of the unit circle $S_X$ of $X$, but can also be attained by curves that are not Minkowskian circles. In addition we show that the lower bound is attained only by Minkowskian circles if the respective norm is strictly convex. Also we give a sufficient condition for the geometric dilation of a closed convex curve to be larger than a quarter of the perimeter of the unit circle.
37

Estimation bayésienne nonparamétrique de copules

Guillotte, Simon January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
38

Sur l'isomorphisme entre les cohomologies de Hochschild et de Chevalley-Eilenberg.

Riviere, Salim 06 December 2012 (has links) (PDF)
Nous construisons un inverse explicite à l'isomorphisme d'antisymétrisation de Cartan-Eilenberg qui permet d'identifier la cohomologie d'une algèbre de Lie sur un anneau de caractéristique zéro et la cohomologie de Hochschild de son algèbre universelle enveloppante.
39

Three-and four-derivative Hermite-Birkhoff-Obrechkoff solvers for stiff ODE

Albishi, Njwd January 2016 (has links)
Three- and four-derivative k-step Hermite-Birkhoff-Obrechkoff (HBO) methods are constructed for solving stiff systems of first-order differential equations of the form y'= f(t,y), y(t0) = y0. These methods use higher derivatives of the solution y as in Obrechkoff methods. We compute their regions of absolute stability and show the three- and four-derivative HBO are A( 𝜶)-stable with 𝜶 > 71 ° and 𝜶 > 78 ° respectively. We conduct numerical tests and show that our new methods are more efficient than several existing well-known methods.
40

Dynamics of Systems Driven by an External Force

Liu, Xue 06 April 2021 (has links)
In this dissertation, we study the complicated dynamics of two classes of systems: Anosov systems driven by an external force and partially hyperbolic systems driven by an external force. For smooth Anosov systems driven by an external force, we first study the random specification property, which is on the approximation of an N−spaced arbitrary long finite random orbit segments within given precision by a random periodic point. We prove that if such system is topological mixing on fibers, then it has the random specification property. Furthermore, we prove that the homeomorphism induced by such a system on the space of random probability measures also has the specification property. We note that the random specification property implies the positivity of topological fiber entropy. Secondly, we show that if the system is topological mixing on fibers, then its past and future random correlation for Hölder observable functions decay exponentially with respect to the system and the unique random SRB measure. For smooth partially hyperbolic systems driven by an external force, we prove the existence of the random Gibbs u−state, which has absolutely continuous conditional measure on the strong unstable manifolds.

Page generated in 0.0401 seconds