• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 3
  • Tagged with
  • 18
  • 18
  • 14
  • 13
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Automatische Erkennung von Gebäudetypen auf Grundlage von Geobasisdaten

Hecht, Robert 10 February 2015 (has links) (PDF)
Für die kleinräumige Modellierung und Analyse von Prozessen im Siedlungsraum spielen gebäudebasierte Informationen eine zentrale Rolle. In amtlichen Geodaten, Karten und Diensten des Liegenschaftskatasters und der Landesvermessung werden die Gebäude in ihrem Grundriss modelliert. Semantische Informationen zur Gebäudefunktion, der Wohnform oder dem Baualter sind in den Geobasisdaten nur selten gegeben. In diesem Beitrag wird eine Methode zur automatischen Klassifizierung von Gebäudegrundrissen vorgestellt mit dem Ziel, diese für die Ableitung kleinräumiger Informationen zur Siedlungsstruktur zu nutzen. Dabei kommen Methoden der Mustererkennung und des maschinellen Lernens zum Einsatz. Im Kern werden Gebäudetypologie, Eingangsdaten, Merkmalsgewinnung sowie verschiedene Klassifikationsverfahren hinsichtlich ihrer Genauigkeit und Generalisierungsfähigkeit untersucht. Der Ensemble-basierte Random-Forest-Algorithmus zeigt im Vergleich zu 15 weiteren Lernverfahren die höchste Generalisierungsfähigkeit und Effizienz und wurde als bester Klassifikator zur Lösung der Aufgabenstellung identifiziert. Für Gebäudegrundrisse im Vektormodell, speziell den Gebäuden aus der ALK, dem ALKIS® oder dem ATKIS® Basis-DLM sowie den amtlichen Hausumringen und 3D-Gebäudemodellen, kann mit dem Klassifikator für alle städtischen Gebiete eine Klassifikationsgenauigkeit zwischen 90 % und 95 % erreicht werden. Die Genauigkeit bei Nutzung von Gebäudegrundrissen extrahiert aus digitalen topographischen Rasterkarten ist mit 76 % bis 88 % deutlich geringer. Die automatische Klassifizierung von Gebäudegrundrissen leistet einen wichtigen Beitrag zur Gewinnung von Informationen für die kleinräumige Beschreibung der Siedlungsstruktur. Neben der Relevanz in den Forschungs- und Anwendungsfeldern der Stadtgeographie und Stadtplanung sind die Ergebnisse auch für die kartographischen Arbeitsfelder der Kartengeneralisierung, der automatisierten Kartenerstellung sowie verschiedenen Arbeitsfeldern der Geovisualisierung relevant.
12

Enhancement of BIM Data Representation in Product-Process Modelling for Building Renovation

Karlapudi, Janakiram 27 January 2021 (has links)
Building Information Modelling (BIM) has the potential to become a technology which will help to use a holistic information repository to generate and represent relevant information in different building life-cycle stages (BLCS) to dedicated groups of stakeholders. However, the scope of model components of BIM data (e.g., IFC meta-data) is limited and some parts of it are not modelled in a manner that supports the diversity of engineering use cases. This paper aims to address this deficit by identifying the capability to formulate inference rules as one of the major benefits in the ontology-based information modelling approach. However, before one can formulate inferencing rules a detailed and in-depth understanding is required on how stakeholder information needs are defined in different BLCS and on how available, open-BIM meta-data models support these information requirements. Therefore, the research progressed initially on existing definitions for Level of Detail (LOD) and selected process-modelling standards (BLCS). In the subsequent part, different renovation Activities and the Stakeholder involvements are analysed. Use cases are defined and used as a grouping mechanism for selected scenarios. Based on these grouping mechanisms, a methodology of how components of a BIMmodel could be classified to support automated inferencing in the future. The outcome of this research is an established 6-dimensional intercommunication framework (LOD, BLS, Scenarios, Stakeholders, Use Cases, BIM model data) based on the Linked Building Data approach and focusing on renovation processes optimization. Based on the framework, a renovation Product-Process Modelling ontology is developed to connect existing components and to support new interoperable applications.:Abstract 1 Introduction and Backgroung 2 Renovation Framework 2.1 Level of Detail (LOD) 2.2 Building Life-Cycle Stage 2.3 Activity and Stakeholder 2.4 BIM Object (Product Information) 2.5 Use Cases 3 Product-Process Ontology 3.1 Activity – BIM Data – LOD 3.2 BLCS – Activity – Stakeholder 4 Validation 5 Conclusion 6 Future Work References
13

Analyseergebnisse zum Gebäudebestand in Deutschland auf der Grundlage von Geobasisdaten

Behnisch, Martin, Hagemann, Ulrike, Meinel, Gotthard 10 February 2015 (has links) (PDF)
Seit 2010 werden die Geobasisprodukte „Amtliche Hausumringe“ und „Amtliche Hauskoordinaten“ (auch georeferenzierte Adressdaten genannt) – geometrische Teilauszüge der Automatisierten Liegenschaftskarte (ALK) – von der Zentralen Stelle für Hauskoordinaten, Hausumringe und 3D-Gebäudemodelle (ZSHH) der Bezirksregierung Köln für länderübergreifende oder bundesweite Untersuchungen angeboten. Erstmals sind dadurch umfassendere Untersuchungen zum deutschen Gebäudebestand möglich und Ausdifferenzierungen nach Menge, geometrischer Eigenschaften (u. a. Gebäudetyp) sowie seiner Nutzung durchführbar. Das Analysepotenzial ist aber noch weitaus größer, da sowohl auf administrativer Ebene als auch auf Rasterebene räumliche Muster für unterschiedliche thematische Fragestellungen abbildbar werden. Das raumbezogene Informationsinstrument Monitor der Siedlungs- und Freiraumentwicklung (IÖR-Monitor) ist eine wissenschaftliche Dienstleistung des Leibniz-Instituts für ökologische Raumentwicklung und stellt seit 2012 auch Gebäudeindikatoren auf Grundlage dieser Katasterdaten bereit. In diesem Beitrag werden dazu erste Arbeitsergebnisse vorgestellt.
14

Flächennutzungsmonitoring IV: Genauere Daten - informierte Akteure - praktisches Handeln

Meinel, Gotthard, Schumacher, Ulrich, Behnisch, Martin 02 February 2015 (has links)
Der vierte Band der Serie Flächennutzungsmonitoring fokussiert auf Methoden und Programme der Flächenerhebung. Vor diesem Hintergrund widmen sich die Beiträge des 4. Dresdner Flächennutzungssymposiums der Diskussion internationaler Entwicklungen, der Entwicklung von Indikatoren zur Beschreibung der Flächennutzungsstruktur, der Analyse von Gebäudebeständen, dem Angebot an kleinräumigen Daten und der Beschreibung von Analyse- und Prognoseverfahren. Das verbesserte Angebot amtlicher aber auch freier Geodaten (z. B. OpenStreetMap) und innovative Berechnungsverfahren der geographischen Informationswissenschaft führen zu noch genaueren Informationen für die Akteure der Raumentwicklung. Ein Beispiel dafür sind statistische Aussagen zum deutschen Gebäudebestand auf Basis von Gebäudegeometriedaten (Hausumringe/Hauskoordinaten).
15

Auswertungen zum Gebäudebestand in Deutschland auf Grundlage digitaler Geobasisdaten

Behnisch, Martin, Meinel, Gotthard, Burckhardt, Manuel, Hecht, Robert January 2012 (has links)
Das Leibniz-Institut für ökologische Raumentwicklung (IÖR) verfolgt u. a. das Ziel, präzise Kenntnisse über das Mengengerüst des deutschen Gebäudebestandes und seiner Eigenschaften zu gewinnen und räumlich hochauflösende Indikatoren als Grundlage einer nachhaltigen Raumentwicklung für Planer und Entscheidungsträger zu erarbeiten. Dieser Beitrag fokussiert auf Ansätze der räumlichen Analyse, die eine Quantifizierung und Charakterisierung des Gesamtbestandes von Wohn- und Nichtwohngebäuden unterstützen. Vorgestellt werden erste Ergebnisse einer deutschlandweiten Auswertung amtlicher Hauskoordinaten und Hausumringe. Der Gebäudebestand wird nach Bundesländern und nach Raumstrukturtypen des Bundesinstituts für Bau-, Stadt- und Raumforschung (BBSR) gegliedert. Es besteht Bedarf, nicht nur Datenmodelle zu entwickeln, sondern daraus auch Erklärungs- und Messmodelle abzuleiten, die einen expliziten Raumbezug aufweisen und sich zur bestandsorientierten Wissensgewinnung sowie zur Strategieentwicklung eignen – auch im europäischen Kontext.
16

Automatische Erkennung von Gebäudetypen auf Grundlage von Geobasisdaten

Hecht, Robert January 2013 (has links)
Für die kleinräumige Modellierung und Analyse von Prozessen im Siedlungsraum spielen gebäudebasierte Informationen eine zentrale Rolle. In amtlichen Geodaten, Karten und Diensten des Liegenschaftskatasters und der Landesvermessung werden die Gebäude in ihrem Grundriss modelliert. Semantische Informationen zur Gebäudefunktion, der Wohnform oder dem Baualter sind in den Geobasisdaten nur selten gegeben. In diesem Beitrag wird eine Methode zur automatischen Klassifizierung von Gebäudegrundrissen vorgestellt mit dem Ziel, diese für die Ableitung kleinräumiger Informationen zur Siedlungsstruktur zu nutzen. Dabei kommen Methoden der Mustererkennung und des maschinellen Lernens zum Einsatz. Im Kern werden Gebäudetypologie, Eingangsdaten, Merkmalsgewinnung sowie verschiedene Klassifikationsverfahren hinsichtlich ihrer Genauigkeit und Generalisierungsfähigkeit untersucht. Der Ensemble-basierte Random-Forest-Algorithmus zeigt im Vergleich zu 15 weiteren Lernverfahren die höchste Generalisierungsfähigkeit und Effizienz und wurde als bester Klassifikator zur Lösung der Aufgabenstellung identifiziert. Für Gebäudegrundrisse im Vektormodell, speziell den Gebäuden aus der ALK, dem ALKIS® oder dem ATKIS® Basis-DLM sowie den amtlichen Hausumringen und 3D-Gebäudemodellen, kann mit dem Klassifikator für alle städtischen Gebiete eine Klassifikationsgenauigkeit zwischen 90 % und 95 % erreicht werden. Die Genauigkeit bei Nutzung von Gebäudegrundrissen extrahiert aus digitalen topographischen Rasterkarten ist mit 76 % bis 88 % deutlich geringer. Die automatische Klassifizierung von Gebäudegrundrissen leistet einen wichtigen Beitrag zur Gewinnung von Informationen für die kleinräumige Beschreibung der Siedlungsstruktur. Neben der Relevanz in den Forschungs- und Anwendungsfeldern der Stadtgeographie und Stadtplanung sind die Ergebnisse auch für die kartographischen Arbeitsfelder der Kartengeneralisierung, der automatisierten Kartenerstellung sowie verschiedenen Arbeitsfeldern der Geovisualisierung relevant.
17

Analyseergebnisse zum Gebäudebestand in Deutschland auf der Grundlage von Geobasisdaten

Behnisch, Martin, Hagemann, Ulrike, Meinel, Gotthard January 2013 (has links)
Seit 2010 werden die Geobasisprodukte „Amtliche Hausumringe“ und „Amtliche Hauskoordinaten“ (auch georeferenzierte Adressdaten genannt) – geometrische Teilauszüge der Automatisierten Liegenschaftskarte (ALK) – von der Zentralen Stelle für Hauskoordinaten, Hausumringe und 3D-Gebäudemodelle (ZSHH) der Bezirksregierung Köln für länderübergreifende oder bundesweite Untersuchungen angeboten. Erstmals sind dadurch umfassendere Untersuchungen zum deutschen Gebäudebestand möglich und Ausdifferenzierungen nach Menge, geometrischer Eigenschaften (u. a. Gebäudetyp) sowie seiner Nutzung durchführbar. Das Analysepotenzial ist aber noch weitaus größer, da sowohl auf administrativer Ebene als auch auf Rasterebene räumliche Muster für unterschiedliche thematische Fragestellungen abbildbar werden. Das raumbezogene Informationsinstrument Monitor der Siedlungs- und Freiraumentwicklung (IÖR-Monitor) ist eine wissenschaftliche Dienstleistung des Leibniz-Instituts für ökologische Raumentwicklung und stellt seit 2012 auch Gebäudeindikatoren auf Grundlage dieser Katasterdaten bereit. In diesem Beitrag werden dazu erste Arbeitsergebnisse vorgestellt.
18

Automatische Klassifizierung von Gebäudegrundrissen: Ein Beitrag zur kleinräumigen Beschreibung der Siedlungsstruktur

Hecht, Robert 10 June 2013 (has links)
Für die Beantwortung verschiedener Fragestellungen im Siedlungsraum werden kleinräumige Informationen zur Siedlungsstruktur (funktional, morphologisch und sozio-ökonomisch) benötigt. Der Gebäudebestand spielt eine besondere Rolle, da dieser die physische Struktur prägt und sich durch dessen Nutzung Verteilungsmuster von Wohnungen, Arbeitsstätten und Infrastrukturen ergeben. In amtlichen Geodaten, Karten und Diensten des Liegenschaftskatasters und der Landesvermessung sind die Gebäude in ihrem Grundriss modelliert. Diese besitzen allerdings nur selten explizite semantische Informationen zum Gebäudetyp. Es stellt sich die Frage, ob und wie genau eine automatische Erkennung von Gebäudetypen unter Nutzung von Methoden der Geoinformatik, der Mustererkennung und des maschinellen Lernens möglich ist. In diesem Buch werden methodische Bausteine zur automatischen Klassifizierung von Gebäudegrundrissen vorgestellt. Im Kern werden Fragen beantwortet zu den Datenanforderungen, der Gebäudetypologie, der Merkmalsgewinnung sowie zu geeigneten Klassifikationsverfahren und den Klassifikationsgenauigkeiten, die abhängig von Eingangsdaten, Siedlungstyp und Trainingsdatenmenge erzielt werden können. Der Random-Forest-Algorithmus zeigte die höchste Flexibilität, Generalisierungsfähigkeit und Effizienz und wurde als bestes Klassifikationsverfahren identifiziert. Die Arbeit leistet einen wichtigen Beitrag zur Gewinnung kleinräumiger Informationen zur Siedlungsstruktur. Die entwickelte Methodik ermöglicht ein breites Anwendungsspektrum in der Wissenschaft, Planung, Politik und Wirtschaft (u. a. Stadt- und Regionalplanung, Infrastrukturplanung, Risikomanagement, Energiebedarfsplanung oder dem Geomarketing).:Vorwort .................................................................................................. I Danksagung ......................................................................................... III Kurzfassung und Thesen ....................................................................... V Abstract and Theses ............................................................................. IX Inhaltsverzeichnis ................................................................................ XV 1 Einleitung ............................................................................................ 1 2 Grundlagen zur Siedlungsstruktur .................................................... 11 3 Methodische Grundlagen der Mustererkennung .............................. 57 4 Forschungsstand .............................................................................. 95 5 Konzeptionelle Vorüberlegungen .................................................... 113 6 Mögliche Datenquellen zum Gebäudegrundriss .............................. 127 7 Entwicklung des Verfahrens ........................................................... 143 8 Ergebnisse und Diskussion ............................................................. 201 9 Schlussfolgerungen und Ausblick .................................................... 259 Literatur ............................................................................................. 275 Abkürzungsverzeichnis ...................................................................... 311 Abbildungsverzeichnis ....................................................................... 320 Tabellenverzeichnis ........................................................................... 323 Anhang A Datengrundlagen zur Siedlungsstruktur ......................................... 327 B Gebäudetypologie .......................................................................... 343 C Merkmale ........................................................................................ 349 D Entwicklung des Klassifikators ........................................................ 365 E Genauigkeitsuntersuchung ............................................................. 375 F Exemplarische Anwendung von BFClassTool ................................... 395 / Building data are highly relevant for the small-scale description of settlement structures. Spatial base data from National Mapping and Cadastral Agencies describe the buildings in terms of the geometry but often lack semantic information on the building type. Here, methods for the automatic classification of building footprints are presented and discussed. The work addresses issues of data integration, data processing, feature extraction, feature selection, and investigates the accuracy of various classification methods. The results are of scientific, planning, policy and business interest at various spatial levels.:Vorwort .................................................................................................. I Danksagung ......................................................................................... III Kurzfassung und Thesen ....................................................................... V Abstract and Theses ............................................................................. IX Inhaltsverzeichnis ................................................................................ XV 1 Einleitung ............................................................................................ 1 2 Grundlagen zur Siedlungsstruktur .................................................... 11 3 Methodische Grundlagen der Mustererkennung .............................. 57 4 Forschungsstand .............................................................................. 95 5 Konzeptionelle Vorüberlegungen .................................................... 113 6 Mögliche Datenquellen zum Gebäudegrundriss .............................. 127 7 Entwicklung des Verfahrens ........................................................... 143 8 Ergebnisse und Diskussion ............................................................. 201 9 Schlussfolgerungen und Ausblick .................................................... 259 Literatur ............................................................................................. 275 Abkürzungsverzeichnis ...................................................................... 311 Abbildungsverzeichnis ....................................................................... 320 Tabellenverzeichnis ........................................................................... 323 Anhang A Datengrundlagen zur Siedlungsstruktur ......................................... 327 B Gebäudetypologie .......................................................................... 343 C Merkmale ........................................................................................ 349 D Entwicklung des Klassifikators ........................................................ 365 E Genauigkeitsuntersuchung ............................................................. 375 F Exemplarische Anwendung von BFClassTool ................................... 395

Page generated in 0.0594 seconds