• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Incident-response monitoring technologies for aircraft-cabin air quality

Magoha, Paul W. January 1900 (has links)
Doctor of Philosophy / Department of Mechanical Engineering / Steven J. Eckels / Byron W. Jones / Poor air quality in commercial aircraft cabins can be caused by volatile organophosphorus (OP) compounds emitted from the jet engine bleed air system during smoke/fume incidents. Tri-cresyl phosphate (TCP), a common anti-wear additive in turbine engine oils, is an important component in today’s global aircraft operations. However, exposure to TCP increases risks of certain adverse health effects. This research analyzed used aircraft cabin air filters for jet engine oil contaminants and designed a jet engine bleed air simulator (BAS) to replicate smoke/fume incidents caused by pyrolysis of jet engine oil. Field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectroscopy (EDS) and neutron activation analysis (NAA) were used for elemental analysis of filters, and gas chromatography interfaced with mass spectrometry (GC/MS) was used to analyze used filters to determine TCP isomers. The filter analysis study involved 110 used and 74 incident filters. Clean air filter samples exposed to different bleed air conditions simulating cabin air contamination incidents were also analyzed by FESEM/EDS, NAA, and GC/MS. Experiments were conducted on a BAS at various bleed air conditions typical of an operating jet engine so that the effects of temperature and pressure variations on jet engine oil aerosol formation could be determined. The GC/MS analysis of both used and incident filters characterized tri-m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP) by a base peak of an m/z = 368, with corresponding retention times of 21.9 and 23.4 minutes. The hydrocarbons in jet oil were characterized in the filters by a base peak pattern of an m/z = 85, 113. Using retention times and hydrocarbon thermal conductivity peak (TCP) pattern obtained from jet engine oil standards, five out of 110 used filters tested had oil markers. Meanwhile 22 out of 74 incident filters tested positive for oil fingerprints. Probit analysis of jet engine oil aerosols obtained from BAS tests by optical particle counter (OPC) revealed lognormal distributions with the mean (range) of geometric mass mean diameter (GMMD) = 0.41 (0.39, 0.45) [mu]m and geometric standard deviation (GSD), [sigma][subscript]g = 1.92 (1.87, 1.98). FESEM/EDS and NAA techniques found a wide range of elements on filters, and further investigations of used filters are recommended using these techniques. The protocols for air and filter sampling and GC/MS analysis used in this study will increase the options available for detecting jet engine oil on cabin air filters. Such criteria could support policy development for compliance with cabin air quality standards during incidents.
2

Cabin environment and air quality in civil transport aircraft

Zhou, Weiguo 01 1900 (has links)
The cabin environment of a commercial aircraft, including cabin layout and the quality of air supply, is crucial to the airline operators. These aspects directly affect the passengers’ experience and willing to travel. This aim of this thesis is to design the cabin layout for flying wing aircraft as part of cabin environment work, followed by the air quality work, which is to understand what effect the ECS can have in terms of cabin air contamination. The project, initially, focuses on the cabin layout, including passenger cabin configuration, seat arrangement and its own size due to the top requirements, of a conventional aircraft and further into that of a flying wing aircraft. The cabin work in respect of aircraft conceptual design is discussed and conducted by comparing different design approaches. Before the evaluation of cabin air quality, an overall examination of the main ECS components involved in the contaminants access will be carried on and, therefore, attempt to discover how these components influence the property of the concerned contaminants. By case study in the B767 ECS, there are some comments and discussions regarding the relationship between the cabin air contaminations and the passing by ambient environment. The thesis ends up with a conclusion explaining whether or not the contaminated air enters the occupants’ compartments on aircraft and proposing some approaches and engineering solutions to the continue research.
3

Avaliação da qualidade do ar de cabines de veículos automotores recém-manufaturados / Evaluation of new vehicles cabin indoor air quality

Valvassori Filho, Auzebio 23 September 2008 (has links)
Cabines de veículos automotores recém-manufaturados podem ser consideradas críticas quando se avalia a qualidade do ar interno, pois concentrações de compostos orgânicos voláteis encontram-se em níveis mais altos que os ambientes externos. Determinadas substâncias presentes no ar da cabine podem ser prejudiciais ao ser humano em função da sua toxicidade, pricipalmente nos grandes centros urbanos. A avaliação do ar da cabine automotiva se faz necessária. Nesse estudo, foi feita uma avaliação da qualidade do ar interno da cabine de 7 veículos populares recém-manufaturados contendo materiais de acabamento interno iguais. Um total de 46 compostos orgânicos voláteis foi identificado, sendo que 14 deles são compostos carbonílicos e 32 são hidrocarbonetos alifáticos e aromáticos, compostos halogenados e um nitrogenado. Os compostos carbonílicos foram identificados e quantificados por cromatografia a líquido e os outros VOCs apenas identificados por GC-MS. No ar interno da cabine dos veículos estudados, as concentrações médias encontradas para os compostos carbonílicos (µg/m3) em ordem decrescente foram: formaldeído (165,3); acetona (67,5); acetaldeído (56,8); isovaleraldeído (40,8); propionaldeído (21,1); butiraldeído (17,9); crotonaldeído (14,9); hexaldeído (14,9) valeraldeído (9,8); 2.5- dimetilbenzaldeído (9,3); otolualdeído (8,4); p/m tolualdeído (6,8); acroleína (4,2) e benzaldeído (3,8). Com relação aos outros VOCS foram identificados o metilbutano, que apresentou a maior porcentagem de abundância relativa, 8,5%, seguido de outros hidrocarbonetos com abundância relativa entre 5 e 2% , como, 2,7,10-trimetildodecano, 2,2,6-trimetildecano, ciclopentano, 2,3,4-trimetildecano, n-pentano, 3,6-dimetilundecano, 4-metildodecano, 4,6- dimetildodecano, 3,6-dimetildecano e 1,2-dimetilbenzeno. Dois derivados de hidrocarbonetos halogenados também foram encontrados, sendo que o triclorofluormetano foi o majoritário com 5,7%, e um composto nitrogenado, a acetonitrila com 5,4%. Os compostos derivados do benzeno identificados foram: 1,2-dimetilbenzeno, etilbenzeno, metilbenzeno, 1-etil-3- metilbenzeno, 1-etil-3-metilbenzeno e 1,3,5-trimetilbenzeno que perfazem 6,6 % de abundância relativa. O mais abundante entre os aromáticos foi o 1,2-dimetilbenzeno (2,5%). Os resultados experimentais revelaram também a liberação de VOCs pelos materiais de acabamento interno dos veículos automotores recém-manufaturados. / New motor vehicles cabins may be critical when considering the internal air quality, because concentrations of volatile organic compounds are at levels higher than the outdoors. Certain substances present in the cabin air can be harmful to humans according to their toxicity, mainly in the big cities. Assessment of the cabin air becomes necessary. In this study, cabin air quality was assessed and 7 popular new vehicles containing same interior trim materials were evaluated. A total of 46 volatile organic compounds were identified, with 14 of them were carbonylic compounds and 32 are aliphatic and aromatic hydrocarbons, halogenated compounds and a nitrogenated compound. The carbonylic compounds were identified and quantified by the liquid chromatography and other VOCs only identified by GC-MS. Cabin air vehicles studied showed the following average concentrations found for carbonylic compounds ( µg/m3) in a descending order: formaldehyde (165.3), acetone (67.5); acetaldehyde (56.8); Isovaleraldehyde ( 40.8); propionaldehyde (21.1); butyraldehyde (17.9); crotonaldeído (14.9); hexaldeído (14.9) Valeraldehyde (9.8); dimetilbenzaldeído-2.5 (9.3); the - tolualdeído (8.4), p / m - tolualdeído (6.8); acrolein (4.2) and benzaldehyde (3.8). Concerning the other VOCs the following compounds were identified: methylbutane, which had the highest percentage of relative abundance, 8.5%, followed by other hydrocarbons with relative abundance between 5 and 2%, 2,7,10-trimetildodecano, 2.2 ,6- Trimetildecano, ciclopentano, 2,3,4-trimetildecano, n-pentane, 3.6-dimetilundecano, 4- metildodecano, dimetildodecano-4.6, 3.6 and 1.2-dimetildecano-dimetilbenzeno. Two halogenated hydrocarbons were also found, and triclorofluormetano had the biggest relative abundance percentage 5.7%, and a nitrogen compound, the acetonitrile with 5.4%. The benzene compounds identified were: 1.2-dimetilbenzeno, ethylbenzene, methylbenzene, 1- ethyl-3-methyl, ethyl-1-and 3-methyl 1,3,5-trimethylbenzene which comprise 6.6% of relative abundance. 1.2-dimetilbenzeno was the most abundant aromatic compound with relative abundance 2.5%. Results also showed that VOCs were released by studied vehicles interior trim materials.
4

Avaliação da qualidade do ar de cabines de veículos automotores recém-manufaturados / Evaluation of new vehicles cabin indoor air quality

Auzebio Valvassori Filho 23 September 2008 (has links)
Cabines de veículos automotores recém-manufaturados podem ser consideradas críticas quando se avalia a qualidade do ar interno, pois concentrações de compostos orgânicos voláteis encontram-se em níveis mais altos que os ambientes externos. Determinadas substâncias presentes no ar da cabine podem ser prejudiciais ao ser humano em função da sua toxicidade, pricipalmente nos grandes centros urbanos. A avaliação do ar da cabine automotiva se faz necessária. Nesse estudo, foi feita uma avaliação da qualidade do ar interno da cabine de 7 veículos populares recém-manufaturados contendo materiais de acabamento interno iguais. Um total de 46 compostos orgânicos voláteis foi identificado, sendo que 14 deles são compostos carbonílicos e 32 são hidrocarbonetos alifáticos e aromáticos, compostos halogenados e um nitrogenado. Os compostos carbonílicos foram identificados e quantificados por cromatografia a líquido e os outros VOCs apenas identificados por GC-MS. No ar interno da cabine dos veículos estudados, as concentrações médias encontradas para os compostos carbonílicos (µg/m3) em ordem decrescente foram: formaldeído (165,3); acetona (67,5); acetaldeído (56,8); isovaleraldeído (40,8); propionaldeído (21,1); butiraldeído (17,9); crotonaldeído (14,9); hexaldeído (14,9) valeraldeído (9,8); 2.5- dimetilbenzaldeído (9,3); otolualdeído (8,4); p/m tolualdeído (6,8); acroleína (4,2) e benzaldeído (3,8). Com relação aos outros VOCS foram identificados o metilbutano, que apresentou a maior porcentagem de abundância relativa, 8,5%, seguido de outros hidrocarbonetos com abundância relativa entre 5 e 2% , como, 2,7,10-trimetildodecano, 2,2,6-trimetildecano, ciclopentano, 2,3,4-trimetildecano, n-pentano, 3,6-dimetilundecano, 4-metildodecano, 4,6- dimetildodecano, 3,6-dimetildecano e 1,2-dimetilbenzeno. Dois derivados de hidrocarbonetos halogenados também foram encontrados, sendo que o triclorofluormetano foi o majoritário com 5,7%, e um composto nitrogenado, a acetonitrila com 5,4%. Os compostos derivados do benzeno identificados foram: 1,2-dimetilbenzeno, etilbenzeno, metilbenzeno, 1-etil-3- metilbenzeno, 1-etil-3-metilbenzeno e 1,3,5-trimetilbenzeno que perfazem 6,6 % de abundância relativa. O mais abundante entre os aromáticos foi o 1,2-dimetilbenzeno (2,5%). Os resultados experimentais revelaram também a liberação de VOCs pelos materiais de acabamento interno dos veículos automotores recém-manufaturados. / New motor vehicles cabins may be critical when considering the internal air quality, because concentrations of volatile organic compounds are at levels higher than the outdoors. Certain substances present in the cabin air can be harmful to humans according to their toxicity, mainly in the big cities. Assessment of the cabin air becomes necessary. In this study, cabin air quality was assessed and 7 popular new vehicles containing same interior trim materials were evaluated. A total of 46 volatile organic compounds were identified, with 14 of them were carbonylic compounds and 32 are aliphatic and aromatic hydrocarbons, halogenated compounds and a nitrogenated compound. The carbonylic compounds were identified and quantified by the liquid chromatography and other VOCs only identified by GC-MS. Cabin air vehicles studied showed the following average concentrations found for carbonylic compounds ( µg/m3) in a descending order: formaldehyde (165.3), acetone (67.5); acetaldehyde (56.8); Isovaleraldehyde ( 40.8); propionaldehyde (21.1); butyraldehyde (17.9); crotonaldeído (14.9); hexaldeído (14.9) Valeraldehyde (9.8); dimetilbenzaldeído-2.5 (9.3); the - tolualdeído (8.4), p / m - tolualdeído (6.8); acrolein (4.2) and benzaldehyde (3.8). Concerning the other VOCs the following compounds were identified: methylbutane, which had the highest percentage of relative abundance, 8.5%, followed by other hydrocarbons with relative abundance between 5 and 2%, 2,7,10-trimetildodecano, 2.2 ,6- Trimetildecano, ciclopentano, 2,3,4-trimetildecano, n-pentane, 3.6-dimetilundecano, 4- metildodecano, dimetildodecano-4.6, 3.6 and 1.2-dimetildecano-dimetilbenzeno. Two halogenated hydrocarbons were also found, and triclorofluormetano had the biggest relative abundance percentage 5.7%, and a nitrogen compound, the acetonitrile with 5.4%. The benzene compounds identified were: 1.2-dimetilbenzeno, ethylbenzene, methylbenzene, 1- ethyl-3-methyl, ethyl-1-and 3-methyl 1,3,5-trimethylbenzene which comprise 6.6% of relative abundance. 1.2-dimetilbenzeno was the most abundant aromatic compound with relative abundance 2.5%. Results also showed that VOCs were released by studied vehicles interior trim materials.
5

Cabin Air Quality in Commercial Aircraft : Exposure, Symptoms and Signs

Lindgren, Torsten January 2003 (has links)
<p>The objective of the dissertation was to study the cabin environment, and identify personal and environmental risk factors, associated with symptoms, and perception of cabin air quality. Another objective was to study if ban of smoking, and increased relative air humidity on intercontinental flights, could have a beneficial health effect. The studies were performed among Scandinavian cabin crew in one Airline Company. Office workers from the same company served as controls. Exposure differed between cruise and non-cruise conditions. Air humidity was very low during intercontinental flights (3-8%). Concentration of moulds, bacteria, formaldehyde, and ozone was low. Tobacco smoking increased respirable particles in the cabin air, from 3 to 49 mg/m3, and increased cotinine in urine. The ETS-exposure was highest in the aft part of the cabin. Symptoms and environmental complaints were more common among flight crew than office workers. We could identify personal factors of importance, and certain conditions that could be improved, to achieve a better cabin environment. There was an association between symptoms and environmental perceptions and work stress, lack of influence on working condition, and a history of atopy. After ban on smoking in aircraft, there was a decrease of ocular and general symptoms, and increased tear-film stability in aircrew. Air humidification reduced headache and ocular, nasal, and dermal dryness symptoms, increased tear-film stability, and increased nasal patency. Our result indicates that ETS and low air humidity are important environmental factors in aircraft, and that atopy, and work stress could be significant risk factors for symptoms and environmental perceptions.</p>
6

Cabin Air Quality in Commercial Aircraft : Exposure, Symptoms and Signs

Lindgren, Torsten January 2003 (has links)
The objective of the dissertation was to study the cabin environment, and identify personal and environmental risk factors, associated with symptoms, and perception of cabin air quality. Another objective was to study if ban of smoking, and increased relative air humidity on intercontinental flights, could have a beneficial health effect. The studies were performed among Scandinavian cabin crew in one Airline Company. Office workers from the same company served as controls. Exposure differed between cruise and non-cruise conditions. Air humidity was very low during intercontinental flights (3-8%). Concentration of moulds, bacteria, formaldehyde, and ozone was low. Tobacco smoking increased respirable particles in the cabin air, from 3 to 49 mg/m3, and increased cotinine in urine. The ETS-exposure was highest in the aft part of the cabin. Symptoms and environmental complaints were more common among flight crew than office workers. We could identify personal factors of importance, and certain conditions that could be improved, to achieve a better cabin environment. There was an association between symptoms and environmental perceptions and work stress, lack of influence on working condition, and a history of atopy. After ban on smoking in aircraft, there was a decrease of ocular and general symptoms, and increased tear-film stability in aircrew. Air humidification reduced headache and ocular, nasal, and dermal dryness symptoms, increased tear-film stability, and increased nasal patency. Our result indicates that ETS and low air humidity are important environmental factors in aircraft, and that atopy, and work stress could be significant risk factors for symptoms and environmental perceptions.
7

Dynamic Cabin Air Contamination Calculation Theory

Lakies, Marcel January 2019 (has links) (PDF)
In this report an equation is derived to calculate the dynamic effect of primary and secondary aircraft cabin air contamination. The equation is applied in order to understand implications and hazards. Primary contamination is from an outside source in form of normal low level contamination or high level contamination in a failure case. Secondary contamination originates from deposited material released into the cabin by a trigger event. The dynamic effect is described as an initial value problem (IVP) of a system governed by a nonhomogeneous linear first order ordinary differential equation (ODE). More complicated excitations are treated as a sequence of IVPs. The ODE is solved from first principles. Spreadsheets are provided with sample calculations that can be adapted to user needs. The method is not limited to a particular principle of the environmental control system (ECS) or contamination substance. The report considers cabin air recirculation and several locations of contamination sources, filters, and deposit points (where contaminants can accumulate and from where they can be released). This is a level of detail so far not considered in the cabin air literature. Various primary and secondary cabin contamination scenarios are calculated with plausible input parameters taken from popular passenger aircraft. A large cabin volume, high air exchange rate, large filtered air recirculation rate, and high absorption rates at deposit points lead to low contamination concentration at given source strength. Especially high contamination concentrations would result if large deposits of contaminants are released in a short time. The accuracy of the results depends on the accuracy of the input parameters. Five different approaches to reduce the contaminant concentration in the aircraft cabin are discussed and evaluated. More effective solutions involve higher implementation efforts. The method and the spreadsheets allow predicting cabin air contamination concentrations independent of confidential industrial input parameters.

Page generated in 0.0653 seconds