41 |
Adsorption Studies of Hazardous Air Pollutants in Microporous Adsorbents using Statistical Mechanical and Molecular Simulation TechniquesKotdawala, Rasesh R 04 May 2007 (has links)
The primary goal of the research studies conducted was to apply statistical mechanical and computer simulation methods to describe the equilibrium behavior of hazardous dipolar/quadru-polar single-gases and mixtures confined in micro porous adsorbents. Statistical mechanical models capable of handling the energetic heterogeneity by complex electrostatic interactions between adsorbate-adsorbent and adsorbate-adsorbate electrostatic interactions were developed and studied. The heterogeneous pore shape and size of different adsorbents were taken into account by two different approaches described in the following paragraphs. Under certain conditions, the use of Mean Field Perturbation Theories (MFPTs) is more attractive than Monte-Carlo (MC) simulations because of the enhanced physical insights that they offer, as well as very low computational times required. Existing literature shows that the applications of MFPTs for studying adsorption of polar molecules were limited due to the orientation dependency of the intermolecular potentials for electrostatic interactions, that in turn poses the challenging problem of seeking analytical expressions for the various thermodynamic functions involved. Furthermore, other existing approaches of accounting for complex electrostatic interactions through hydrogen bonding have limitations due to the requirement of parameter estimation related to radial distribution functions and the critical orientation values of molecules for hydrogen bonds, which are generally obtained through MC simulations and X-ray scattering techniques. In the first stage of research efforts, an attempt was made to express angle-dependent intermolecular potentials in the form of angle-independent intermolecular potential terms by employing statistical averaging methods. In particular, the permanent dipole-dipole and permanent dipole-induced dipole intermolecular potentials were expressed as angle-averaged intermolecular potentials. Then, angle-averaged intermolecular potentials were used to predict water isotherms in nano-slit pores. Furthermore, the angle-averaged intermolecular potentials were used for a binary mixture of polar molecules (water-methanol) to predict the adsorption behavior in nano-slit pores. However, significant limitations of MFPTs arise when they are used for the study of adsorption in zeolites that exhibit irregular shaped cavities with surface heterogeneities. The latter certainly represent a future meaningful research direction. It should be pointed out, that the mean field approach allows us to predict equilibrium sorption properties in homogeneous adsorbents like graphitic carbon (slit), carbon nano tubes (cylinder) and highly siliceous faujasites (spherical) as they have regular shaped cavities. The applications of such kinds of theory remained limited due to the (generally) unknown distribution of functional sites on adsorbents of interests (mainly activated carbons and zeolites) and their locations in the adsorbent framework. The second stage of research efforts focused on models capable of incorporating surface heterogeneities and addressing complex pore geometries. The models developed relied on Grand Canonical Monte-Carlo (GCMC) simulations. In particular, two types of GCMC simulations were carried out, namely molecular and atomistic MC simulations. Both techniques were applied to simulate sorption isotherms on zeolites and activated carbon to remove mercury chloride (quadrupole), hydrogen cyanide (HCN, dipole) and methyl ethyl ketone (MEK, dipole) from air. The molecular based MC technique utilized molecular properties of the molecules namely dipole, quadrupole moments, molecular polarizability and molecule size (kinetic diameter). The molecule was considered to be a spherical shaped particle. The dispersion interactions were calculated using Vaan der Waals equation and electrostatic interactions were quantified through the multi-pole expansion method. This approach was used to simulate adsorption of HgCl2, HCN and MEK in zeolite NaX and activated carbon with functional sites namely carbonyl, hydroxyl and carboxyls. Simulation results indicated that HgCl2 sorption could be attributed to charge-induced dipole interactions for activated carbon, suggesting that sorbents with more number surface charges can be useful except for the case of carbonyls in which quadrupole moments plays a crucial role in reducing sorbent capacities, in turn implying that relative positions of positively and negatively charged cations are indeed important. However, for zeolite NaX, performance characteristics were primarily attributed to charge-quadrupole interactions and dispersion interactions. Moreover, zeolite-NaX performance characteristics for capturing HCN and MEK were attributed to dipole-Na interactions due to the relatively large dipole moments of the molecules under consideration. In the case of activated carbon, HCN sorption was governed by mainly charge-dipole and charge-induced dipole interactions, and hence, carbons with carboxyls seemed to perform better than hydroxyls and carbonyls. MEK sorption was influenced by dispersion interactions (due to the large polarizability of MEK) and charge-dipole interactions, which makes carbon with carbonyls more efficient rather than carbons with hydroxyls having the same charge densities. However, application of the aforementioned molecular approaches was limited to sorbents with regular shape cavities having some surface heterogeneity such as activated carbons. Finally, in order to account for sorbents with irregular shaped cavities, such as silicalite and mordenite, one needs to use atomistic MC simulations. The atomistic MC technique utilizes appropriate atomic sizes and charges for the molecules under consideration to quantify intermolecular forces among the adsorbate molecules and the atoms of the zeolite framework as well as activated carbon. The dispersion interactions were calculated using the Van-Der Waals equation and electrostatic interactions were quantified through a standard Coulombic equation. The bond distances among atoms were kept fixed but variations in angular movement and dihedral/torsional movements were considered, and appropriate harmonic potentials were used to account for angle bending and torsional effects. The sorption performance was evaluated for mordenite, silicalite and zeolite beta for a Si/Al ratio of 47-197 for both an HCN and MEK system. The results of HCN/MEK sorption suggested that silicalite has greater capacity than that of mordenites .In the case of MEK Zeolite beta with sodium cations, performance was better than that of mordenites and silicalites. Sorption of HCN in silicalite was observed in straight and zigzag channels, and mainly attributable to hydrogen bonding among HCN molecules. The increase in sodium cations however decreases the capacity of silicalite, zeolite beta and mordenite slightly. The sorption of MEK in mordenite was mainly observed in an 12- and 8-member ring channel. It was found that an increase in sodium cations did not increase the sorption capacity of mordenite significantly as most of the cations in mordenite were located in an 8-member ring channel where MEK molecules can not be accommodated properly due to steric effects. However, the sorption of MEK in zeolite beta seemed to be influenced by the presence of sodium cations as most of the cations are at the intersection of two 12 member rings which provide sufficient space to orient MEK molecules at the intersection and maximize electrostatic interactions. The sorption of MEK in silicalite exhibited similar trends as in the case of mordenite, as all cations were at the intersection of straight and zigzag channels . Finally, in the last Section of the Thesis, a comparative assessment was made of all three approaches in terms of their significance in applications and the ease in applying them.
|
42 |
Hybrid Electrochemical Capacitors: Materials, Optimization, and MiniaturizationAgrawal, Richa 11 January 2018 (has links)
With the ever-advancing technology, there is an incessant need for reliable electrochemical energy storage (EES) components that can provide desired energy and power. At the forefront of EES systems are electrochemical capacitors (ECs), also known as supercapacitors that typically have higher power and superior cycle longevity but lower energy densities than their battery counterparts. One of the routes to achieve higher energy density for ECs is using the hybrid EC configuration, which typically utilizes a redox electrode coupled with a counter double-layer type electrode.
In this dissertation, both scale-up (coin-cell type) as well as scale-down (on-chip miniaturized) hybrid ECs were designed, constructed and evaluated. The first part of the dissertation comprised material identification, syntheses, and electrochemical analyses. Lithium titanate-anatase titanium oxide (Li4Ti5O12-TiO2) composites were synthesized via electrostatic spray deposition (ESD) and characterized in both half-cell and full-cell assembly against lithium and nanostructured carbon based counter electrodes, respectively. The second redox type material studied for hybrid electrochemical capacitors was ESD derived manganese oxide (MnOx). The MnOx electrodes exhibited a high gravimetric capacitance of 225F g-1 in aqueous media. Further improvement in the rate handling of the MnOx electrodes was achieved by using CNT additives. The MnOx-CNT composites were tested in full-cell assembly against activated carbon counter electrodes and tested for different anode and cathode mass ratios in order to achieve the best energy-power tradeoff, which was the second major goal of the dissertation. The optimized hybrid capacitor was able to deliver a high specific energy density of 30.3 Wh kg-1 and a maximal power density of 4kW kg-1. The last part of the dissertation focused on a scale-down miniaturized hybrid microsupercapacitor; an interdigitated electrode design was adopted in order to shorten the ion-transport pathway, and MnOx and reduced graphene oxide (rGO) were chosen as the redox and double layer components, respectively. The hybrid microsupercapacitor was able to deliver a high stack energy density of 1.02 mWh cm-3 and a maximal stack power density of 3.44 W cm-3, both of which are comparable with thin-film batteries and commercial supercapacitor in terms of volumetric energy and power densities.
|
43 |
Salts as highly diverse porogens : functional ionic liquid-derived carbons and carbon-based composites for energy-related applicationsFechler, Nina January 2012 (has links)
The present thesis is to be brought into line with the current need for alternative and sustainable approaches toward energy management and materials design. In this context, carbon in particular has become the material of choice in many fields such as energy conversion and storage.
Herein, three main topics are covered:
1)An alternative synthesis strategy toward highly porous functional carbons with tunable porosity using ordinary salts as porogen (denoted as “salt templating”)
2)The one-pot synthesis of porous metal nitride containing functional carbon composites
3)The combination of both approaches, enabling the generation of highly porous composites with finely tunable properties
All approaches have in common that they are based on the utilization of ionic liquids, salts which are liquid below 100 °C, as precursors.
Just recently, ionic liquids were shown to be versatile precursors for the generation of heteroatom-doped carbons since the liquid state and a negligible vapor pressure are highly advantageous properties. However, in most cases the products do not possess any porosity which is essential for many applications. In the first part, “salt templating”, the utilization of salts as diverse and sustainable porogens, is introduced. Exemplarily shown for ionic liquid derived nitrogen- and nitrogen-boron-co-doped carbons, the control of the porosity and morphology on the nanometer scale by salt templating is presented. The studies within this thesis were conducted with the ionic liquids 1-Butyl-3-methyl-pyridinium dicyanamide (Bmp-dca), 1-Ethyl-3-methyl-imidazolium dicyanamide (Emim-dca) and 1 Ethyl 3-methyl-imidazolium tetracyanoborate (Emim-tcb). The materials are generated through thermal treatment of precursor mixtures containing one of the ionic liquids and a porogen salt. By simple removal of the non-carbonizable template salt with water, functional graphitic carbons with pore sizes ranging from micro- to mesoporous and surface areas up to 2000 m2g-1 are obtained. The carbon morphologies, which presumably originate from different onsets of demixing, mainly depend on the nature of the porogen salt whereas the nature of the ionic liquid plays a minor role. Thus, a structural effect of the porogen salt rather than activation can be assumed. This offers an alternative to conventional activation and templating methods, enabling to avoid multiple-step and energy-consuming synthesis pathways as well as employment of hazardous chemicals for the template removal.
The composition of the carbons can be altered via the heat-treatment procedure, thus at lower synthesis temperatures rather polymeric carbonaceous materials with a high degree of functional groups and high surface areas are accessible. First results suggest the suitability of the materials for CO2 utilization.
In order to further illustrate the potential of ionic liquids as carbon precursors and to expand the class of carbons which can be obtained, the ionic liquid 1-Ethyl-3-methyl-imidazolium thiocyanate (Emim-scn) is introduced for the generation of nitrogen-sulfur-co-doped carbons in combination with the already studied ionic liquids Bmp-dca and Emim-dca. Here, the salt templating approach should also be applicable eventually further illustrating the potential of salt templating, too.
In the second part, a one-pot and template-free synthesis approach toward inherently porous metal nitride nanoparticle containing nitrogen-doped carbon composites is presented. Since ionic liquids also offer outstanding solubility properties, the materials can be generated through the carbonization of homogeneous solutions of an ionic liquid acting as nitrogen as well as carbon source and the respective metal precursor. The metal content and surface area are easily tunable via the initial metal precursor amount. Furthermore, it is also possible to synthesize composites with ternary nitride nanoparticles whose composition is adjustable by the metal ratio in the precursor solution.
Finally, both approaches are combined into salt templating of the one-pot composites. This opens the way to the one-step synthesis of composites with tunable composition, particle size as well as precisely controllable porosity and morphology. Thereby, common synthesis strategies where the product composition is often negatively affected by the template removal procedure can be avoided. The composites are further shown to be suitable as electrodes for supercapacitors. Here, different properties such as porosity, metal content and particle size are investigated and discussed with respect to their influence on the energy storage performance.
Because a variety of ionic liquids, metal precursors and salts can be combined and a simple closed-loop process including salt recycling is imaginable, the approaches present a promising platform toward sustainable materials design. / Die vorliegende Arbeit basiert auf der Notwendigkeit für eine alternative und nachhaltige Energiewirtschaft sowie alternativer Herstellungsmethoden der damit verbundenen Materialien.
Hierbei kommt besonders Kohlenstoffen und kohlenstoffbasierten Systemen eine hohe Bedeutung zu. Im Rahmen der Dissertation wurden drei Ansätze verfolgt, die zu der Entwicklung alternativer Strategien zur Herstellung poröser Heteroatom-enthaltender Kohlenstoffe und deren Komposite beitragen. Die Materialien wurden des Weiteren für die CO2 Nutzung sowie Energiespeicherung in Form von Superkondensatoren getestet. Allen Materialien ist gemeinsam, dass sie ausgehend von ionischen Flüssigkeiten, Salze mit einem Schmelzpunkt unterhalb von 100 °C, als Kohlenstoffvorstufe durch Hochtemperaturverfahren hergestellt wurden.
Im ersten Teil wird ein alternatives und nachhaltiges Verfahren zur Herstellung hochporöser Stickstoff und Stickstoff-Bor-haltiger Kohlenstoffe vorgestellt. Bei dieser als „Salztemplatierung“ bezeichneten Methode werden herkömmliche Salze als Porogen verwendet. Damit sind sehr hohe Oberflächen erreichbar, die neben der Porengröße und dem Porenvolumen durch die Variation der Salzspezies und Salzmenge einstellbar sind. Dies bietet gegenüber herkömmlichen Templatierungsverfahren den Vorteil, dass das Salz nach erfolgter Karbonisierung der ionischen Flüssigkeit in Anwesenheit der nicht karbonisierbaren Salzspezies einfach mit Wasser auswaschbar ist. Hierbei ist ein Recyclingprozess denkbar. Bei hohen Synthesetemperaturen werden graphitische, bei niedrigen hochfunktionalisierte, polymerartige Produkte erhalten. Letztere erwiesen sich als vielversprechende Materialien für die CO2 Nutzung. Unter Verwendung einer bisher nicht eingesetzten ionische Flüssigkeit konnte weiterhin die Einführung von Schwefel als Heteroatom ermöglicht werden.
Im zweiten Teil wird eine Templat-freie Einschrittsynthese von porösen Kompositen aus Metallnitrid Nanopartikeln und Stickstoff-dotiertem Kohlenstoff vorgestellt. Die Materialien werden ausgehend von einer Lösung aus einer ionischen Flüssigkeit und einem Metallvorläufer hergestellt, wobei die ionische Flüssigkeit sowohl als Kohlenstoffvorläufer als auch als Stickstoffquelle für die Metallnitride dient. Der Metallgehalt, das Metallverhältnis in ternären Nitriden und die Oberfläche sind über den Anteil des Metallvorläufers einstellbar.
Schließlich werden beide Ansätze zur Salztemplatierung von den Kompositen kombiniert. Dadurch wird die Einschrittsynthese von Kompositen mit einstellbarer Oberfläche, Zusammensetzung, Partikelgröße und Morphologie ermöglicht. Diese Materialien wurden schließlich als Elektroden für Superkondensatoren getestet und der Einfluss verschiedener Parameter auf die Leistungsfähigkeit untersucht.
Aufgrund verschiedener Kombinationsmöglichkeiten von ionischen Flüssigkeiten, Metallvorläufern und Salzen, stellen die hier präsentierten Ansätze eine vielversprechende Plattform für die nachhaltige Materialsynthese dar.
|
44 |
Kroll-carbons based on silica and alumina templates as high-rate electrode materials in electrochemical double-layer capacitorsOschatz, Martin, Boukhalfa, S., Nickel, W., Lee, J. T., Klosz, S., Borchardt, L., Eychmüller, A., Yushin, G., Kaskel, Stefan 01 September 2014 (has links) (PDF)
Hierarchical Kroll-carbons (KCs) with combined micro- and mesopore systems are prepared from silica and alumina templates by a reductive carbochlorination reaction of fumed silica and alumina nanoparticles inside a dense carbon matrix. The resulting KCs offer specific surface areas close to 2000 m2 g−1 and total pore volumes exceeding 3 cm3 g−1, resulting from their hierarchical pore structure. High micropore volumes of 0.39 cm3 g−1 are achieved in alumina-based KCs due to the enhanced carbon etching reaction being mainly responsible for the evolution of porosity. Mesopore sizes are uniform and precisely controllable over a wide range by the template particle dimensions. The possibility of directly recycling the process exhaust gases for the template synthesis and the use of renewable carbohydrates as the carbon source lead to a scalable and efficient alternative to classical hard- and soft templating approaches for the production of mesoporous and hierarchical carbon materials. Silica- and alumina-based Kroll-carbons are versatile electrode materials in electrochemical double-layer capacitors (EDLCs). Specific capacitances of up to 135 F g−1 in an aqueous electrolyte (1 M sulfuric acid) and 174 F g−1 in ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate) are achieved when measured in a symmetric cell configuration up to voltages of 0.6 and 2.5 V, respectively. 90% of the capacitance can be utilized at high current densities (20 A g−1) and room temperature rendering Kroll-carbons as attractive materials for EDLC electrodes resulting in high capacities and high rate performance due to the combined presence of micro- and mesopores.
|
45 |
Utilisation de matériaux lignocellulosiques et d'impression 3D pour élaborer des structures contuctrices / Use of lignocellulosic materials and 3D printing for the elaboration of conductive carbon struturesShao, Ying 29 September 2017 (has links)
Cette thèse a pour l’objectif d’élaborer, à partir de technologie additive 3D (extrusion de gel), des structures conductrices (électriquement) et résistantes (mécaniquement) en utilisant exclusivement des matériaux lignocellulosiques. Les matériaux sélectionnés sont des microfibrilles de cellulose (MFC), du lignosulfonate de sodium (LS ou NaLS) et de la cellulose en poudre (CP). Ces trois constituants peuvent être utilisés pour élaborer des hydrogels aqueux compatibles avec l’impression 3D (extrusion). De plus, ce procédé d’impression permet la mise en forme avec une excellente définition de structures à base de précurseurs de carbone dont les géométries peuvent être adaptées aux différentes techniques de caractérisation selectionnées. / In the present work, electrically conductive and mechanically resistant carbon structures were elaborated by 3D printing and subsequent pyrolysis using microfibrillated cellulose/lignosulfonate/cellulose powder (labeled as MFC/LS/CP) blends. The processability of MFC/LS/CP slurries by 3D printing was examined by rheological tests in both steady flow and thixotropic modes. The printed MFC/LS/CP pastes were self-standing, provided a high printing definition and were proved to be morphologically stable to air drying and the subsequent pyrolysis. Pyrolysis at a slow rate (0.2°C/min) to a final temperature in the range of 400-1200°C was used to manufacture MFC/LS/CP carbons. The TGA/DTG was applied to monitor the thermal degradation of MFC/LS/CP materials in blends as well as in a separated form. The resulting carbons were further characterized in terms of morphology, microstructure and physical properties (such as density, electrical conductivity and mechanical strength). At 900°C, MFC/LS/CP carbons displayed a high electrical conductivity of 47.8 S/cm together with a low density of 0.74 g/cm3 as well as an important porosity of 0.58. They also achieved an elastic modulus maximum of 6.62 GPa. Such interesting electrical and mechanical properties would lead to a promising application of MFC/LS/CP- derived biocarbons in energy storage devices as electrode materials in close future.
|
46 |
Modulation de l’absorption intestinale de la chlordécone (CLD) par l’utilisation de substances séquestrantes : application à l’élevage en zones contaminées / Modulation of intestinal absorption of chlordecone (CLD) using sequestering substances : Application on contaminated zones breedYehya, Sarah 22 December 2017 (has links)
La contamination des sols agricoles par la chlordécone menace la durabilité de l’élevage de plein air aux Antilles. Afin de maintenir ce dernier tout en protégeant les consommateurs de denrées animales d’origine terrestre, plusieurs stratégies sont étudiées. Ces travaux de thèse sont focalisés sur l’une d’entre elles qui consiste à séquestrer la chlordécone afin de réduire significativement sa biodisponibilité pour l’animal. La démarche expérimentale a été réalisée par étape, elle s’appuie sur trois piliers : des matières séquestrantes carbonées de type biochar ou charbon activé, l’utilisation de sols artificiels et sur le concept de biodisponibilité relative pour évaluer les performances de séquestration. Les essais conduits avec du charbon activé (à base de noyaux de dattes, de coco ou de lignite) ont montré une séquestration de la chlordécone en milieu aqueux ou chez l’animal, mais pour ce dernier cela ne fonctionne que si la chlordécone et la matrice séquestrante ont eu un temps de contact prolongé (ou maturation) avec l’ingestion par l’animal. Ces résultats montrent l’intérêt d’une séquestration in situ, à savoir directement dans le sol contaminé susceptible d’être ingéré par les animaux. Comme le charbon activé a un coût élevé, des matières carbonées a priori moins coûteuses ont été testées : des biochars à base de diverses essences de bois. Ces biochars produits à deux températures de pyrolyse (500 et 700°C) ont été caractérisés d’un point de vue physique (porosité) et sélectionnés via un test in vitro de disponibilité environnementale. Les tests in vivo (sur porcelets) n’ont pas montré que ces biochars sélectionnés étaient aptes à séquestrer efficacement la chlordécone, puisque la biodisponibilité relative n’était pas différente de un (référence = sol standard sans matière organique). La présence de tourbe dans le sol artificiel ne s’oppose pas au piégeage par les matrices carbonées exogènes. Le test in vitro utilisé et le test in vivo donnent des tendances équivalentes de réduction de la biodisponibilité relative, ce qui est intéressant dans une logique de validation du test in vitro. Ces résultats positifs montrent que la stratégie de séquestration par des matériaux hautement carbonés est possible, requiert des propriétés de microporosité et d’accès aux pores proches de celles d’un charbon activé, mais contingents des conditions expérimentales mises en œuvre ils doivent être poursuivis et validés sur des sols dits naturels / The contamination of agricultural soils by chlordecone threatens the sustainability of outdoor farming in the West Indies. In order to maintain the latter while protecting consumers of terrestrial animal products, several strategies are being studied. This thesis is focused on one of them which consists of sequestering chlordecone in order to significantly reduce its bioavailability for the animal. The experimental approach was carried out in stages, based on three pillars: biochar or activated carbon as sequestering materials, the use of artificial soils and the concept of relative bioavailability to assess sequestration performance. Tests conducted with activated charcoal (based on dates kernels, coconut or lignite) have shown that chlordecone is sequestered in an aqueous medium or in animals, but for the latter it only works if chlordecone and sequestering matrix had a prolonged contact time (or maturation) with ingestion by the animal. These results show the interest of in situ sequestration, ie directly in the contaminated soil likely to be ingested by the animals. As activated charcoal has a high cost, a priori less expensive carbonaceous materials have been tested: biochars based on various wood species. These biochars produced at two pyrolysis temperatures (500 and 700 ° C) were characterized from a physical point of view (porosity) and selected via an in vitro environmental availability test. In vivo tests (on piglets) did not show that these selected biochars were able to effectively sequester chlordecone, since the relative bioavailability was not different from one (reference = standard soil without organic matter). The presence of peat in the artificial soil does not prevent trapping by exogenous carbonaceous matrices. The in vitro test used and the in vivo test give equivalent tendencies to reduce the relative bioavailability, which is interesting in a logic of validation of the in vitro test. These positive results show that the strategy of sequestration by highly carbonaceous materials is possible, requires properties of microporosity and access to pores close to those of an activated carbon, but contingent on the experimental conditions implemented, they must be continued and validated on natural soils
|
47 |
Perovskitas contendo lantânio, ferro e cobalto - melhoramento de propriedades texturais via síntese por nanomoldagem e avaliação como catalisadores na redução de NO com COLima, Rita Karolinny Chaves de 20 October 2008 (has links)
Made available in DSpace on 2016-06-02T19:55:24Z (GMT). No. of bitstreams: 1
2075.pdf: 4577723 bytes, checksum: 80abdc876165c000f61328875ff2a061 (MD5)
Previous issue date: 2008-10-20 / Financiadora de Estudos e Projetos / Mixed oxides with perovskite structure have high potential as catalysts in gas depollution processes and particularly in the abatement of nitrogen oxides (NOx). Such solids could be considered as a promising alternative for the replacement of noble metals based catalysts, whose use is predominant. Great flexibility of composition, easy synthesis, low cost and high thermal stability justify the special interest in these materials. However, the low specific surface areas (<10 m2/g) of these solids, when prepared by conventional methods, limit your use in catalytic processes. Some efforts have been made in order to overcome that disadvantage. Nevertheless, the preparation of high surface area ternary or multinary oxides is not easy once their synthesis is associated with solid state reactions carried out at high temperatures. Considering the discussed context, perovskites were obtained in this work by means of a conventional method or via sequencial nanocasting. In the first case, perovskites with LaFe1-xCoxO3 (x = 0, 0.2, 0.3, 0.4, 0.5 and 1) nominal compositions were prepared using the citrate method and nitrate salts as inorganic precursors. In the second case, LaFeO3 and LaFe0.6Co0.4O3 perovskites were obtained by nanocasting using Fluka 05120 activated carbon, Black Pearls 2000 black carbon (Cabot Corporation), and porous carbons nanocasted in Aerosil 200 pyrogenic silica and sílica-SBA-15 mesoporous molecular sieve. X-ray diffraction (XRD), N2 sorption measurements, X-ray fluorescence (XRF), hydrogen temperature programmed reduction (H2-TPR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FTIR) and thermogravimetry (TG) were used to characterize the studied solids. The catalytic activity of the prepared perovskites was evaluated in the reduction of NO to N2 with CO and in the oxidation of the latter compound to CO2. According to the obtained results, it was evident that in comparison with the conventional route, the nanocasting technique using carbons as hard template was efficient to obtain the pure perovskite phase with specific surface areas substantially higher (25 a 49 m2/g). The prepared perovskites were highly active and selective in the reduction of NO to N2 with CO, as well as in the oxidation of the latter compound to CO2. The most active samples were those whose B sites contain up to about 30 % Co. However, the activity of these catalysts decreases strongly with the presence of O2 or water steam. The La-Fe nanocasted binary perovskites showed, in the studied reactions, remarkable higher catalytic activity than the perovskite with the same composition prepared using the conventional method. The higher activity of these materials was related with the increase of their specific surface area. The nanocasted ternary perovskites with LaFe0.6Co0.4O3 composition, despite of the significant increase in their specific surface area, did not show a considerable increase in their activity. This result is in agreement with the behaviour of La-Fe-Co ternary perovskites, in which Co occupies a proportion of B sites greater than 30 %. / Óxidos mistos com estrutura perovskita apresentam alto potencial como catalisadores em processos de despoluição de gases e particularmente no abatimento de óxidos de nitrogênio (NOx). Tais sólidos são uma alternativa promissora para substituição de catalisadores à base de metais nobres, cujo uso é predominante. Vantagens como grande flexibilidade de composição, fácil síntese, baixo custo e elevada estabilidade térmica justificam o especial interesse por esses materiais. Contudo, as baixas áreas superficiais específicas desses sólidos (< 10 m2/g), quando sintetizados por métodos convencionais, limitam o seu uso em processos catalíticos. Algumas tentativas têm sido feitas no sentido de contornar essa desvantagem. No entanto, a obtenção de óxidos ternários ou multinários de alta área superficial específica é especialmente difícil, uma vez que sua síntese está associada a reações no estado sólido realizadas em temperaturas elevadas. Considerando o contexto discutido, neste trabalho foram obtidas perovskitas através de método convencional ou via nanomoldagem seqüencial. No primeiro caso, perovskitas com composição nominal LaFe1-xCoxO3 (x = 0; 0,2; 0,3; 0,4; 0,5 e 1) foram preparadas utilizando o método do citrato e sais de nitratos como precursores inorgânicos. No segundo caso, perovskitas LaFeO3 e LaFe0,6Co0,4O3 foram obtidas por nanomoldagem utilizando carbono ativado Fluka 05120, negro de fumo Black Pearls 2000 (Cabot Corporation), e carbonos porosos nanomoldados em sílica pirogênica Aerosil 200 e peneira molecular mesoporosa sílica-SBA-15. Difração de raios X (DRX), medidas de adsorção/dessorção de N2, fluorescência de raios X (FRX), redução com hidrogênio a temperatura programada (RTP-H2), microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET), espectroscopia no infravermelho por transformada de Fourier (IV) e termogravimetria (TG) foram utilizadas para caracterizar os sólidos estudados. A atividade catalítica das perovskitas preparadas foi avaliada na redução de NO a N2 com CO e na oxidação desse último composto a CO2. De acordo com os resultados obtidos, ficou evidente que em comparação com a rota convencional, a técnica de nanomoldagem utilizando moldes de carbono foi eficiente na obtenção da fase perovskita pura com área superficial específica substancialmente maior (25 a 49 m2/g). As perovskitas preparadas foram altamente ativas e seletivas na redução de NO a N2 com CO, bem como na oxidação desse último composto a CO2, sendo mais ativas aquelas cujos sítios B contêm até cerca de 30 % de Co. A presença de O2 ou vapor de água, entretanto, reduz fortemente a atividade desses catalisadores. As perovskitas binárias La-Fe nanomoldadas apresentaram, nas reações estudadas, atividade catalítica consideravelmente superior a da perovskita com a mesma composição preparada pelo método convencional. A maior atividade desses materiais foi relacionada com o aumento da sua área superficial específica. As perovskitas nanomoldadas ternárias com composição LaFe0,6Co0,4O3, apesar do significativo aumento na sua área superficial específica, não apresentaram um aumento considerável na atividade, fato esse condizente com o comportamento de perovskitas ternárias La-Fe-Co, nas quais o Co ocupa uma proporção de sítios B superior a 30 %.
|
48 |
An?lise de desempenho de um refrigerador de pequeno porte com drop in de refrigerantes hidrocarbonetosMarques, Jo?o Carlos Borges 20 December 2010 (has links)
Made available in DSpace on 2014-12-17T14:58:09Z (GMT). No. of bitstreams: 1
JoaoCBM_DISSERT.pdf: 5805236 bytes, checksum: 65458c7bbde564338d0a049065004604 (MD5)
Previous issue date: 2010-12-20 / From what was stated in the Montreal Protocol, the researchers and refrigeration industry seek
substitutes for synthetic refrigerants -chlorofluorocarbons (CFCs) and HCFCs (HCFC) - that
contribute to the depletion of the ozone layer. The phase-out of these substances was started
using as one of the replacement alternatives the synthetic fluids based on hydro fluorocarbons
(HFCs) that have zero potential depletion of the ozone layer. However, contribute to the process
of global warming. HFC refrigerants are greenhouse gases and are part of the group of gases
whose emissions must be reduced as the Kyoto Protocol says. The hydrocarbons (HC's), for not
contribute to the depletion of the ozone layer, because they have very low global warming potential,
and are found abundantly in nature, has been presented as an alternative, and therefore,
are being used in new home refrigeration equipment in several countries. In Brazil, due to incipient
production of domestic refrigerators using HC's, the transition refrigerants remain on the
scene for some years. This dissertation deals with an experimental evaluation of the conduct of
a drinking fountain designed to work with HFC (R-134a), operating with a mixture of HC's or
isobutane (R-600a) without any modification to the system or the lubricating oil. In the refrigeration
laboratory of Federal University of Rio Grande do Norte were installed, in a drinking
fountain, temperature and pressure sensors at strategic points in the refrigeration cycle, connected
to an acquisition system of computerized data, to enable the mapping and thermodynamics
analysis of the device operating with R-134a or with a mixture of HC's or with R-600a. The
refrigerator-test operating with the natural fluids (mixture of HC's or R-600a) had a coefficient
of performance (COP) lower than the R-134a / A partir do estabelecido no Protocolo de Montreal, os pesquisadores e a ind?stria de refrigera??o
buscam substitutos para os refrigerantes sint?ticos clorofluorcarbonos (CFC s) e os hidroclorofluorcabonos
(HCFC s), que contribuem para a degrada??o da camada de oz?nio. O phase-
out dessas subst?ncias foi iniciado utilizando como uma das alternativas de substitui??o os
fluidos sint?ticos baseados em hidrofluorcarbonos (HFC s) que possuem potencial nulo de
deple??o da camada de oz?nio, entretanto, contribuem para o processo de aquecimento global.
Os refrigerantes HCF s s?o gases de efeito estufa e fazem parte do grupo de gases cujas emiss?es
devem ser reduzidas, conforme Protocolo de Kyoto. Os hidrocarbonetos (HC s), por n?o
contribu?rem para a degrada??o da camada de oz?nio, por terem muito baixo potencial de
aquecimento global, e por serem encontrados abundantemente na natureza, t?m sido apresentados
como alternativa e, por isso, est?o sendo usados em novos equipamentos de refrigera??o
dom?stica em diversos pa?ses. No Brasil, devido ? produ??o incipiente de refrigeradores
dom?sticos utilizando HC s, os refrigerantes de transi??o continuar?o em cena por mais alguns
anos. Este trabalho trata de uma avalia??o experimental do comportamento de um bebedouro
projetado para trabalhar com HFC (R-134a), operando com uma mistura de HC s ou
isobutano (R-600a) sem nenhuma modifica??o no sistema ou no ?leo lubrificante. No laborat?rio
de refrigera??o da Universidade Federal do Rio Grande do Norte foram instalados, em
um bebedouro, sensores de press?o e temperatura em pontos estrat?gicos do ciclo de refrigera??o,
conectados a um sistema de aquisi??o de dados computadorizado, de modo a permitir o
mapeamento e a an?lise termodin?mica do dispositivo operando com R-134a ou com a mistura
HC s ou com R-600a. O refrigerador de testes, operando com fluidos naturais (mistura de
HC s ou R-600a), apresentam um coeficiente de performance (COP) inferior ao do R-134a
|
49 |
Catalisadores heterogêneos aplicados à reação de Biginelli / Heterogeneous catalysts applied to the Biginelli reactionNascimento, Letícia Gomes do 07 March 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-04-07T20:19:45Z
No. of bitstreams: 2
Dissertação - Letícia Gomes do Nascimento - 2017.pdf: 6868423 bytes, checksum: 7a54ea8b28095c4c81126f3998e87c13 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-04-10T11:16:14Z (GMT) No. of bitstreams: 2
Dissertação - Letícia Gomes do Nascimento - 2017.pdf: 6868423 bytes, checksum: 7a54ea8b28095c4c81126f3998e87c13 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-04-10T11:16:14Z (GMT). No. of bitstreams: 2
Dissertação - Letícia Gomes do Nascimento - 2017.pdf: 6868423 bytes, checksum: 7a54ea8b28095c4c81126f3998e87c13 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-03-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The Biginelli reaction involves the cyclocondensation of three reagents in the presence of an
acid catalyst to obtain dihydropyrimidinones (DHPMs).This compound and its analogues are
widely known to possess various pharmacological properties, such as antibacterial, antiinflammatory,
antifungal, antiviral, anticancer and antihypertensive. This reaction is usually
carried out via homogeneous catalysis, which presents, however, some difficulties, such as
regeneration of the catalyst and difficult separation of the final product, thus becoming an
obstacle for industrial use. In the present work, it was proposed the use of two classes of
heterogeneous catalysts, which are: metal oxides and acid carbons in order to achieve
attractive characteristics in the Biginelli reaction, as a reduction of reaction time and increase
in yield. The acidic carbons were prepared by carbonization by impregnation of agroindustrial
residues with sulfuric acid at a temperature of 200 °C in the mass ratio of 1:10
(precursor: H2SO4) for 6 h. The pure HY-340 and Nb2O5 were both tested and chemically
treated with a solution of 30% sulfuric acid. The catalysts were characterized by X-ray
diffraction (XRD), infrared spectroscopy (FTIR), thermogravimetric (TG), differential
thermal analysis (DTA), textural adsorption/desorption analysis of N2 at -196 °C and
desorption of ammonia at programmed temperature (DTP-NH3), scanning electron
microscopy (SEM) and X-ray Dispersive Energy Spectrometry (EDS). The contents of C, N,
O and S present on the surface of the coals were quantified by Elementary Analysis
(CHNS-O). Exploratory catalytic tests were carried out to define the best experimental
conditions of solvent, temperature, molar ratio and amount of catalyst. The results obtained
allowed to establish the best experimental conditions for the realization of the Biginelli
reaction. Thus, the following parameters were adopted to evaluate the performance of the
different catalysts. These are: 5% catalyst content (by mass), molar ratio of 1 Benzaldehyde:
1,5 Methyl acetoacetate: 1,5 Urea, without solvent and temperature of 130 °C. The best
catalyst was Nb2O5 treated with sulfuric acid, whereby a yield of 94% of
dihydropyrimidinones (DHPMs). / A reação de Biginelli envolve a ciclocondensação de três reagentes na presença de um
catalisador ácido para a obtenção de Dihidropirimidinonas (DHPMs). Este composto e seus
derivados são amplamente conhecidos por possuir diversas propriedades farmacológicas e
terapêuticas. Esta reação é geralmente realizada via catálise homogênea, que apresentam, no
entanto, algumas dificuldades, como regeneração do catalisador e difícil separação do produto
final, tornando-se dessa forma um obstáculo para utilização industrial. O presente trabalho
teve como objetivo geral avaliar diferentes catalisadores ácidos heterogêneos na produção de
dihidropirimidinonas, como óxidos de nióbio sulfonados e carvões sulfonados produzidos a
partir de resíduos agroindustriais (casca de arroz e bagaço de tomate). Os carvões ácidos
foram preparados por carbonização, por meio da impregnação de resíduos agroindustriais com
ácido sulfúrico a uma temperatura de 200 °C na proporção mássica de 1:10 (precursor:
H2SO4), por 6 h. Testou-se, também, o ácido nióbico (HY-340) e Nb2O5 ambos puros e
tratados quimicamente com uma solução de 30% de ácido sulfúrico. Os catalisadores foram
caracterizados por Difração de Raios X (DRX), Espectroscopia no Infravermelho (IV),
Termogravimetria (TG), Análise Térmica Diferencial (DTA), Análise Textural por
Adsorção/Dessorção de N2 a -196 °C, Dessorção de Amônia a Temperatura Programada
(DTP-NH3), Microscopia Eletrônica de Varredura (MEV) e Espectrometria de Energia
Dispersiva de Raios X (EDS). Os teores de C, N, O e S presentes na superfície dos carvões
foram quantificados por Análise Elementar (CHNS-O). Foram realizados testes catalíticos
exploratórios para definir melhores condições experimentais de solvente, temperatura, razão
molar e quantidade de catalisador. Os resultados obtidos permitiram estabelecer as melhores
condições experimentais para a realização da reação de Biginelli. Desse modo, adotaram-se os
seguintes parâmetros para avaliar o desempenho dos diferentes catalisadores. São estes: teor
de 5% de catalisador (em massa), razão molar de 1 Benzaldeído: 1,5 Acetoacetato de metila:
1,5 Ureia, sem solvente e temperatura de 130 °C. O melhor catalisador foi o Nb2O5 tratado
com ácido sulfúrico, em que obteve-se um rendimento de 94% de dihidropirimidinonas
(DHPMs).
|
50 |
Removal of endocrine disruptors by activated carbons and Hypersol-Macronet hypercrosslinked polymeric adsorbentsKarounou, Eleni January 2004 (has links)
The normal operation of the endocrine (hormonal) system can be disrupted by a number of man-made and naturally-occurring chemicals, thereby affecting those physiological processes that are under hormonal control. Such substances are called endocrine disrupting compounds (EDCs). The endocrine disruption issue has alarmed the environmental authorities since the substances involved can hinder hormonal processes causing far-reaching effects on reproduction and development in current and future human and wildlife generations. Effects on some species of fish triggered worldwide concern and initiated a research scheme which is being undertaken by various organisations e.g. United States Environmental Protection Agency (USEPA), United Kingdom Environment Agency (UKEA), Oslo and Paris Commission (OSPAR), Japan Environment Agency (JEA) and World Wildlife Fund (WWF) in order to assess the effects (present and potential), point of generation, levels of contamination and exposure limits. The findings showed that most of the oestrogens are produced by humans and animals and get discharged into river streams mainly through sewage effluents. Fish in particular have been found to be affected the most even when the oestrogenic levels in water are very low. The probability of future European legislation to eliminate hormonally active compounds from wastewaters suggests that new and alternative methods should be developed for their removal. In this work, the adsorption of 17ß-oestradiol (E2) and 17a-ethinyl oestradiol (EE2) onto several granular activated carbons and Hypersol-Macronet hypercrosslinked polymers was investigated by batch experiments after a low level detection system had been developed using Gas Chromatography Mass Spectrometry (GC/MS). Equilibrium experiments were carried out for all adsorbents to quantify the sorption capacity for E2 and EE2. For better assessment of the sorbents performance, their physical properties such as surface area, average pore diameter and micropore volume and chemical structure were characterised by N2 adsorption experiments, scanning electron microscopy (SEM), FTIR spectroscopy, elemental analysis, sodium capacity determination, pH titration, proton binding curves and zeta potential measurements. Adsorption isotherm data were fitted to the Langmuir and Freundlich equations. Activated carbons were found to be preferable to Hypersol-Macronet hypercrosslinked polymers for adsorption purposes. The adsorption of oestrogens appears to be controlled by hydrophobic interactions. Kinetic experiments were performed with different size ranges of adsorbents at different concentrations and the results were analysed by a particle diffusion model. It was found that concentration did not seem to influence the kinetics of the oestrogen sorption whereas the particle size of the adsorbents influenced the adsorption rate of both molecules. The particle diffusion model seemed to fit the data collected for the adsorption rate of 17B-oestradiool onto the adsorbents but gave a poor fit for most of the data collected for 17a-ethinyl oestradiol.
|
Page generated in 0.0663 seconds