• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • Tagged with
  • 10
  • 9
  • 9
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation de certains impacts de la mutation Laurina chez Coffea arabica L. aux niveaux histo-morphologique et moléculaire

Lecolier, Aurélie 11 December 2006 (has links) (PDF)
Le caféier Coffea arabica var. Laurina, aussi appelé Bourbon Pointu, est apparu à la Réunion suite à une mutation spontanée de la variété Bourbon. Cette mutation Laurina, monolocus et récessive, a des effets pléiotropiques qui différencie le Bourbon pointu du Bourbon. Au niveau morphologique, elle se caractérise par un nanisme, un port pyramidal et une forme pointue de ses graines. A un niveau moléculaire, la teneur des grains en caféine est fortement réduite. Malgré des caractéristiques agronomiques d'intérêt et d'excellentes qualités organoleptiques, peu d'études sont disponibles sur ce mutant naturel. Ce travail a ainsi pour objectif d'étudier la mutation Laurina et d'en caractériser les effets afin de mieux décrire les cascades de réaction mises en place. Il se base sur la comparaison du Bourbon pointu avec sa variété parente Bourbon. Au niveau morphologique, des mesures de croissance végétative ont permis l'analyse et l'explication de la forme pyramidale du mutant. Au niveau histologique, l'étude de l'apex, centre initiateur des organes de surface, et de différents entre-noeuds de l'axe orthotrope a permis d'expliquer l'origine du nanisme en terme de division et d'élongation cellulaire. Des hypothèses quant à l'action de la mutation Laurina sur certaines hormones ont été émises à partir des résultats d'application de gibbérelline exogène. Ces études macro et microscopiques ont été couplées au niveau moléculaire à la recherche de gènes différentiellement exprimés entre les deux variétés. La comparaison des transcriptomes des deux variétés à un stade précoce post-cotylédonaire avait pour but la recherche de gènes candidats impliqués dans les premières cascades de réactions menant aux effets pléiotropiques observés. Le clonage différentiel basé sur la méthode SSH (Hybridation Suppressive Soustractive) couplé à une étape de tri à haut débit (macro-array) a été appliqué à ces fins. L'ensemble des résultats décrit plus précisément les effets pléiotropiques induits par la mutation Laurina. La description précise des effets pléiotropiques de la mutation ouvre des pistes quant à la caractérisation moléculaire de la mutation à travers une approche gène candidat.
2

Etude du rôle de AHP6 dans le contrôle de la phyllotaxie chez la plante modèle Arabidopsis thaliana : robustesse et coordination spatio-temporelle au cours du développement de structures auto-organisées

Besnard, Fabrice 21 October 2011 (has links) (PDF)
En se développant, les plantes produisent des organes le long des tiges suivant des organisations stéréotypées, appelées phyllotaxies. Ces structures se forment dans les méristèmes, qui abritent une niche de cellules souches : les organes y sont produits successivement et leur positionnement dépendrait d'interactions dynamiques avec les organes pré-existants. Ces interactions seraient notamment dues à des champs inhibiteurs générés par le transport polaire de l'hormone végétale auxine. Afin de rechercher si d'autres facteurs que l'auxine contrôlent la phyllotaxie chez Arabidopsis thaliana, nous nous sommes intéressés au rôle possible des cytokinines, une autre hormone végétale. Nous avons développé des nouvelles méthodes statistiques pour analyser la structure de la phyllotaxie. Cette approche nous a permis d'identifier des anomalies de phyllotaxie chez des plantes mutantes pour le gène AHP6 (ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER protein 6), un inhibiteur de la signalisation des cytokinines. Notre analyse suggérait des possibles perturbations du plastochrone, la période de temps séparant l'initiation de deux organes, ce que nous avons alors confirmé par imagerie confocale en temps réel. Nos données montrent que AHP6 contrôle la régularité du plastochrone, et suggèrent que les perturbations de phyllotaxies sont dues à l'initiation simultanée de deux à trois organes dans le méristème. De plus, AHP6 est exprimé dans les organes et sa protéine établit des champs qui inhibent la signalisation des cytokinines au delà des organes. Pour mieux comprendre les rôles possibles de ces champs, nous avons généré un modèle numérique théorique de la phyllotaxie. Notre étude suggère que le plastochrone pourrait être déstabilisé par du bruit affectant le seuil d'activation nécessaire aux cellules méristématiques pour se différencier en organe. Des champs inhibiteurs pourraient filtrer les effets de ce bruit en influant sur la cinétique d'émergence des organes. Les propriétés observées des champs de AHP6 sont en accord avec ce modèle et nos données expérimentales suggèrent en effet que AHP6 et les cytokinines peuvent moduler la signalisation auxine lors de l'émergence des organes. Nous proposons comme modèle que le transport et la signalisation de l'auxine positionnent de manière robuste les organes mais génèrent un plastochrone irrégulier en présence de bruit. Des champs inhibiteurs de cytokinines stabiliseraient le plastochrone, assurant un couplage plus robuste entre le temps et l'espace lors de l'établissement de la phyllotaxie.
3

Contrôle épigénétique de la plasticité de l'appareil végétatif du peuplier en réponse à des variations de la disponibilité en eau

Lafon Placette, Clément 21 December 2012 (has links) (PDF)
Au vu de l'impact croissant du changement climatique global et en particulier de la sécheresse sur les forêts, il est nécessaire de comprendre les mécanismes de réponse des arbres face à des variations de disponibilité en eau. Ces dernières années, des études ont montré un contrôle épigénétique et notamment par la méthylation de l'ADN de la plasticité phénotypique des plantes en réponse aux variations environnementales. Dans ce contexte, cette thèse visait à évaluer le rôle de la méthylation de l'ADN des cellules du méristème apical caulinaire dans la plasticité développementale de la tige feuillée en réponse à des variations de disponibilité en eau chez le peuplier, un arbre modèle. A cette fin, le méthylome de la chromatine non condensée dans le méristème apical caulinaire de Populus trichocarpa a été caractérisé. Ensuite, l'impact de variations de disponibilité en eau sur la méthylation de l'ADN a été étudié dans l'apex caulinaire de différents hybrides (P. × euramericana). Les loci et les réseaux de gènes affectés pour leur expression et leur méthylation ont ainsi été identifiés. Ces travaux ont montré que dans le méristème apical caulinaire, la majorité des gènes étaient dans un état non condensé de la chromatine et méthylés dans leur corps. Ils ont également mis en évidence une forte variation de la méthylation globale de l'ADN selon les génotypes et en réponse à des variations de disponibilité en eau. De plus, des corrélations ont été établies entre les niveaux de croissance des arbres et de méthylation globale de l'ADN dans l'apex caulinaire. Enfin, les variations de la méthylation de l'ADN en réponse aux variations de la disponibilité en eau s'accompagnent de variations d'expression et ont ciblé particulièrement des gènes impliqués dans la signalisation par les phytohormones ou la morphogenèse. Ainsi, les travaux effectués lors de cette thèse suggèrent un rôle de la méthylation de l'ADN dans la plasticité phénotypique en réponse à des variations de disponibilité en eau chez le peuplier via le contrôle de l'expression de réseaux de gènes dans le méristème apical caulinaire.
4

Caractérisation du lien entre croissance et patterning dans la morphogenèse chez Arabidopsis / Linking patterning to growth changes during morphogenesis in Arabidopsis shoot meristem

Landrein, Benoit 14 March 2014 (has links)
Le contrôle moléculaire du patterning au cours des processus développementaux est aujourd’hui bien décrit chez les organismes multicellulaires. A l’inverse, la contribution de la croissance dans l’émergence des patterns reste peu explorée, et est souvent réduite à un rôle passif. Au cours de cette thèse, j’ai étudié cette question en utilisant le méristème apical caulinaire (MAC) d’Arabidopsis comme modèle. Le méristème est un groupe de cellules en divisions situé à l’extrémité de toutes les tiges et les branches et qui génère tous les organes aériens de la plante selon un patron stéréotypé, aussi appelé phyllotaxie. Dans une première partie, j’ai étudié comment la croissance de la tige pouvait influencer le patron phyllotactique. Plus précisément, en découplant dépôt de la cellulose dans la paroi et l’orientation des microtubules, j’ai montré que le patron de phyllotaxie devenait bimodal en raison de l’induction d’une torsion lors de la croissance de la tige. Dans une seconde partie, j’ai analysé le lien entre forme du MAC et expression génétique. En particulier, j’ai pu corréler l’expression d’un gène maître : SHOOTMERISTEM LESS (STM) au degré de courbure dans le MAC. De plus, en utilisant des approches de micromécaniques, j’ai aussi pu montrer que l’expression de STM pouvait être induite par le patron de contraintes localement généré par la courbure. Pour finir, j’ai aussi étudié comment la taille du méristème influence la robustesse du pattern de phyllotaxie sur la tige en modulant la fréquence d’initiation des organes. L’ensemble de ce travail met ainsi en avant le rôle de la croissance dans le patterning, notamment via des mécanismes de rétrocontrôles géométriques et mécaniques. / The molecular mechanisms behind the emergence of patterns during developmental processes have been well described in multicellular organisms. However, the contribution of growth in patterning is still poorly understood; growth is often seen as a passive output of the activity of the patterning signals. In this PhD, I have studied the relation between growth and patterning using the shoot apical meristem of Arabidopsis as a model system. The meristem is a group of dividing cells located at the tip of every stems and branches that generates all the aerial organs of the plant following a typical spatio-temporal pattern also called phyllotaxis. In a first part, the influence of post-meristematic growth on phyllotaxis was assessed. More precisely, by uncoupling cellulose deposition from the orientation of the microtubule array, I showed that the resulting stem torsion induces the emergence of a new and robust bimodal phyllotactic pattern. In a second part, the relation between meristem shape and gene expression was analyzed. More precisely, I correlated the expression of a master regulatory gene: SHOOT MERISTEMLESS (STM) to tissue curvature in the boundary domain that separates the emerging organ from the meristem. Furthermore, I showed that STM expression can be induced by micromechanical perturbations thus suggesting that shape-derived mechanical stresses in the meristem boundary contribute to STM expression. Finally, I also studied how meristem size can influence the robustness of the pattern of phyllotaxis along the stem through a modulation of the frequency of organ initiation. Altogether, this work highlights the important contribution of growth in patterning, notably thanks to the existence of geometrical and mechanical feedbacks.
5

Contrôle épigénétique de la plasticité de l’appareil végétatif du peuplier en réponse à des variations de la disponibilité en eau / Epigenetic control of shoot phenotypic plasticity towards variations in water availability in poplar

Lafon Placette, Clément 21 December 2012 (has links)
Au vu de l’impact croissant du changement climatique global et en particulier de la sécheresse sur les forêts, il est nécessaire de comprendre les mécanismes de réponse des arbres face à des variations de disponibilité en eau. Ces dernières années, des études ont montré un contrôle épigénétique et notamment par la méthylation de l’ADN de la plasticité phénotypique des plantes en réponse aux variations environnementales. Dans ce contexte, cette thèse visait à évaluer le rôle de la méthylation de l’ADN des cellules du méristème apical caulinaire dans la plasticité développementale de la tige feuillée en réponse à des variations de disponibilité en eau chez le peuplier, un arbre modèle. A cette fin, le méthylome de la chromatine non condensée dans le méristème apical caulinaire de Populus trichocarpa a été caractérisé. Ensuite, l’impact de variations de disponibilité en eau sur la méthylation de l’ADN a été étudié dans l’apex caulinaire de différents hybrides (P. × euramericana). Les loci et les réseaux de gènes affectés pour leur expression et leur méthylation ont ainsi été identifiés. Ces travaux ont montré que dans le méristème apical caulinaire, la majorité des gènes étaient dans un état non condensé de la chromatine et méthylés dans leur corps. Ils ont également mis en évidence une forte variation de la méthylation globale de l’ADN selon les génotypes et en réponse à des variations de disponibilité en eau. De plus, des corrélations ont été établies entre les niveaux de croissance des arbres et de méthylation globale de l’ADN dans l’apex caulinaire. Enfin, les variations de la méthylation de l’ADN en réponse aux variations de la disponibilité en eau s’accompagnent de variations d’expression et ont ciblé particulièrement des gènes impliqués dans la signalisation par les phytohormones ou la morphogenèse. Ainsi, les travaux effectués lors de cette thèse suggèrent un rôle de la méthylation de l’ADN dans la plasticité phénotypique en réponse à des variations de disponibilité en eau chez le peuplier via le contrôle de l’expression de réseaux de gènes dans le méristème apical caulinaire. / Predicted climate changes and particularly drought represent a major threat to forest health. Therefore, understanding mechanisms that control trees response to variations in water availability is of great interest. These last years, epigenetic marks such as DNA methylation have been involved in plant phenotypic plasticity in response to environmental stresses. In this context, this work aimed at assessing the role of shoot apical meristem cells DNA methylation in the shoot developmental plasticity towards variations in water availability in poplar, a model tree. For this purpose, the methylome of non condensed chromatin in Populus trichocarpa shoot apical meristem was characterized. Then, the impact of variations in water availability on shoot apex DNA methylation in different hybrids (P. × euramericana) was studied. Loci and gene networks affected by DNA methylation and expression changes were thus identified. This work showed that in shoot apical meristem, most of the genes was in non condensed chromatin state with DNA methylation in their body. A strong variation in DNA methylation depending on genotypes and water availability was highlighted. Moreover, correlations between trees growth and shoot apex DNA methylation levels were established. Lastly, DNA methylation changes in response to variations in water availability correlated to expression variations were identified for genomic loci and gene networks. Thus, the work performed during this thesis suggests a role for DNA methylation in poplar phenotypic plasticity in response to variations in water availability through the control of gene networks transcription in the shoot apical meristem.
6

Contribution of mechanical stress to cell division plane orientation at the shoot apical meristem of Arabidopsis thaliana / Rôle des contraintes mécaniques dans l'orientation du plan de division des cellules du méristème apical caulinaire d'Arabidopsis thaliana

Louveaux, Marion 02 October 2015 (has links)
La morphogenèse des plantes repose sur deux mécanismes cellulaires : la division et l'élongation. Par ailleurs, la croissance est source de contraintes mécaniques qui affectent les cellules et guident la morphogenèse. Si les contraintes mécaniques influencent l'orientation du plan de division dans les cellules animales, rien n'est prouvé pour les cellules végétales. À l'heure actuelle, la forme de la cellule est proposée comme le facteur principal gouvernant l'orientation du plan dans les divisions symétriques : les cellules se divisent selon un des plans les plus courts. Cette règle géométrique a été validée dans des tissus à croissance ou courbure isotropes, mais les mécanismes moléculaires sous-jacents demeurent inconnus. Dans cette thèse, un pipeline a été mis au point pour analyser les divisions cellulaires dans les différents domaines du méristème apical caulinaire d'Arabidopsis thaliana et questionner l'application de la règle géométrique dans ce tissu. La zone frontière du méristème présente une proportion anormalement basse de plans de division très courts. Des simulations de tissus en croissance, dans lesquelles une règle de division mécanique a été implémentée, ont montrées le même biais sur les orientation des plans, comparé à la règle géométrique. Des ablations laser de quelques cellules de l'épiderme ont également été effectuées afin de perturber localement le patron de contraintes mécaniques. Les résultats montrent que l'orientation du plan des divisions postérieures à cette perturbation suit le nouveau patron de contraintes. Enfin, une nouvelle méthode quantitative, basée sur l'utilisation d'un micro-indenteur, a été mise au point pour quantifier la réponse du cytosquelette, et en particulier des microtubules, aux contraintes mécaniques. Le protocole de compression a été testé et validé sur les mutants katanin et spiral2, dans lesquels la réponse aux contraintes est respectivement faible ou amplifiée. / Morphogenesis during primary plant growth is driven by cell division and elongation. In turn, growth generates mechanical stress, which impacts cellular events and channels morphogenesis. Mechanical stress impacts the orientation of division plane in single animal cells; this remains to be fully demonstrated in plants. Currently, cell geometry is proposed to be the main factor determining plane orientation in symmetric divisions: cell divide along one the shortest paths. This geometrical rule was tested on tissues with rather isotropic shapes or growth and the corresponding molecular mechanism remains unknown, although it could involve tension within the cytoskeleton. To address these shortcomings, we developed a pipeline to analyze cell divisions in the different domains of the shoot apical meristem of Arabidopsis thaliana. We computed the probability of each possible planes according to cell geometry and compared the output to observed orientations. A quarter of the cells did not follow the geometrical rule. Boundary domain was enriched in long planes aligned with supracellular maximal tension lines. Computer simulations of a growing tissue following a division rule that relies on tension gave the most realistic outputs. Mechanical perturbations of local stress pattern, by laser ablations, further confirmed the importance of mechanical stress in cell division. To explore the role of microtubules in this process, we developed a microindenter-based protocol to quantify the cytoskeletal response to mechanical stress. This protocol was tested and validated in the katanin and spiral2 mutants, in which the response to stress is delayed or promoted respectively.
7

Etude du rôle de AHP6 dans le contrôle de la phyllotaxie chez la plante modèle Arabidopsis thaliana : robustesse et coordination spatio-temporelle au cours du développement de structures auto-organisées / Study of the role of AHP6 in the control of phyllotaxis in Arabidopsis thaliana : robustness and spatio-temporal coordination in the development of self-organized organisms

Besnard, Fabrice 21 October 2011 (has links)
En se développant, les plantes produisent des organes le long des tiges suivant des organisations stéréotypées, appelées phyllotaxies. Ces structures se forment dans les méristèmes, qui abritent une niche de cellules souches : les organes y sont produits successivement et leur positionnement dépendrait d'interactions dynamiques avec les organes pré-existants. Ces interactions seraient notamment dues à des champs inhibiteurs générés par le transport polaire de l'hormone végétale auxine. Afin de rechercher si d'autres facteurs que l'auxine contrôlent la phyllotaxie chez Arabidopsis thaliana, nous nous sommes intéressés au rôle possible des cytokinines, une autre hormone végétale. Nous avons développé des nouvelles méthodes statistiques pour analyser la structure de la phyllotaxie. Cette approche nous a permis d'identifier des anomalies de phyllotaxie chez des plantes mutantes pour le gène AHP6 (ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER protein 6), un inhibiteur de la signalisation des cytokinines. Notre analyse suggérait des possibles perturbations du plastochrone, la période de temps séparant l'initiation de deux organes, ce que nous avons alors confirmé par imagerie confocale en temps réel. Nos données montrent que AHP6 contrôle la régularité du plastochrone, et suggèrent que les perturbations de phyllotaxies sont dues à l'initiation simultanée de deux à trois organes dans le méristème. De plus, AHP6 est exprimé dans les organes et sa protéine établit des champs qui inhibent la signalisation des cytokinines au delà des organes. Pour mieux comprendre les rôles possibles de ces champs, nous avons généré un modèle numérique théorique de la phyllotaxie. Notre étude suggère que le plastochrone pourrait être déstabilisé par du bruit affectant le seuil d'activation nécessaire aux cellules méristématiques pour se différencier en organe. Des champs inhibiteurs pourraient filtrer les effets de ce bruit en influant sur la cinétique d'émergence des organes. Les propriétés observées des champs de AHP6 sont en accord avec ce modèle et nos données expérimentales suggèrent en effet que AHP6 et les cytokinines peuvent moduler la signalisation auxine lors de l'émergence des organes. Nous proposons comme modèle que le transport et la signalisation de l'auxine positionnent de manière robuste les organes mais génèrent un plastochrone irrégulier en présence de bruit. Des champs inhibiteurs de cytokinines stabiliseraient le plastochrone, assurant un couplage plus robuste entre le temps et l'espace lors de l'établissement de la phyllotaxie. / During development, plant aerial organs are produced along the stems following stereotyped patterns. This so-called phyllotaxis is initiated at the shoot meristem, which contains the stem cell niche: organs are produced iteratively and their precise position is thought to depend on dynamic interactions with preexisting organs. These interactions would notably result from inhibitory fields generated by the polar transport of the plant hormone auxin. To investigate whether other factors than auxin regulate phyllotaxis, we studied the potential role of cytokinin signaling. We developed a new pipeline of methods based on statistics to analyze phyllotactic patterns. This approach allowed us to identify phyllotactic perturbations in mutants of the AHP6 (ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER protein 6), an inhibitor of cytokinin signaling that suggested perturbations in the plastochron, the time between two organ initiations. This was further confirmed using confocal live-imaging. We demonstrated that AHP6 controls the regularity of the plastochron, and our results suggest that the defective phyllotaxis in ahp6 is caused by concomitant initiations of two or three organs in the meristem. Interestingly, AHP6 is expressed in organs and the protein can move beyond these domains, generating cytokinin signaling inhibitory fields. To explore further the putative role of these secondary fields, we generated a mathematical model of phyllotaxis. This suggested that plastochron instabilities could be caused by noise affecting the threshold at which meristematic cells are recruited into organs. Inhibitory fields generated by AHP6 could filter out the effect of noise by modifying the kinetics of early organ emergence. Consistently, the properties of AHP6 fields fit the model predictions and our experimental data show that AHP6 and cytokinin modulate auxin signaling during organ emergence. We thus propose a model in which auxin transport and signaling robustly control organ positioning but generates plastochron instablities in noisy backgrounds. In this scenario cytokinin inhibitory fields would stabilize the rhythmicity of organ initiation, ensuring a robust coupling of space and time during pattern formation.
8

Comparative development of lateral organs in Arabidopsis thaliana

Le Gloanec, Constance 08 1900 (has links)
Les plantes présentent une incroyable diversité de tailles, formes et couleurs, étroitement liée à certaines de leurs fonctions biologiques telles que la photosynthèse, la reproduction, etc. De ce fait, la façon dont ces organismes multicellulaires acquièrent des formes complexes est une question clé en biologie du développement. La morphologie des organes végétaux résulte en effet de la modulation, à l’échelle cellulaire, de patrons d’expression génétique, de croissance et de différenciation. Bien que la morphogénèse ait été largement étudiée d’un point de vue moléculaire, nous ne savons toujours pas comment ces réseaux génétiques sont traduits en formes biologiques. Le but de ce projet de recherche est donc d’étudier le développement des organes latéraux (feuilles juvéniles, feuilles caulinaires et organes floraux, id sépales, pétales et anthères) chez l’espèce modèle Arabidopsis thaliana. Afin d’approcher la question du rôle des interactions complexes entre cellules et organes lors du développement, nous nous intéressons à la variabilité entre les organes, mais aussi à la variabilité cellulaire intrinsèque de chaque organe. Nous avons donc testé (1) si la diversité de formes observées chez les organes latéraux résulte de modulations d’un programme développemental commun; (2) si la croissance et le développement des organes latéraux est un phénomène stochastique ou dépend de mécanismes sous-jacents spécifiques. Pour ce faire, nous utilisons une approche multidisciplinaire basée sur la génétique, la microscopie confocale et l’analyse d’images 3D pour extraire les patrons de croissance inhérents aux différents organes. Les résultats de la première étude (Chapitre 2) montrent que la forme des organes dépend de l’équilibre entre croissance et différentiation, dont la régulation précise permet l'acquisition de fonctions hautement spécialisées. La feuille caulinaire, par exemple, présente un retard de différenciation qui permet une activité morphogénétique prolongée et une redistribution de la croissance. À travers la suppression transitoire de la croissance lors des premiers stades de développement, la trajectoire développementale de la feuille caulinaire permet sa double fonction, à la fois protectrice et photosynthétique.\par La deuxième étude (Chapitre 3), quant-à-elle, s’intéresse aux comportements des cellules individuelles, dont la croissance, bien que contrôlée par des informations positionnelles, est souvent hétérogène. Cette variabilité résulte de la différenciation de cellules spécialisés, les stomates, qui suivent un programme de développement spécifique. Le comportement autonome de ces cellules, asynchrone, est la principale source de variabilité dans des tissus dont la croissance est autrement homogènes. Dans l’ensemble, cette thèse a permis de mettre en lumière l’importance de la temporalité lors du développement des organes végétaux. Que ce soit à l’échelle de l’organe, du tissu ou de la cellule, la modulation et la synchronisation de la croissance et de la différentiation sont nécessaires à l’acquisition des formes stéréotypiques des organes et à leur complexité fonctionnelle. / Plants display an incredible diversity of sizes, shapes, and colors, closely linked to some of their biological functions, such as photosynthesis, reproduction, etc. How these multicellular organisms acquire complex shapes is, therefore, a key question in developmental biology. The morphology of plant organs results from cell-level modulation of patterns of gene expression, growth, and differentiation. Although morphogenesis has been extensively studied from a molecular point of view, how genetic networks are translated into biological forms is still unclear. Thus, the aim of this research project is to study the development of lateral organs (rosette leaves, cauline leaves, and floral organs, i.e. sepals, petals, and anthers) in the model species Arabidopsis thaliana. To address the question of the role of complex cell-organ interactions during development, we are interested not only in variability between organs but also in the intrinsic cellular variability of each organ. We, therefore, tested (1) whether the diversity of shapes observed in lateral organs results from modulations of a common developmental program; (2) whether the growth and development of lateral organs is a stochastic phenomenon or depends on specific underlying mechanisms. To this end, we are using a multidisciplinary approach based on genetics, confocal microscopy, and 3D image analysis to extract the growth patterns inherent in the different organs. The results of the first study (Chapter 2) show that organ shape depends on the balance between growth and differentiation, which fine regulation enables the acquisition of highly specialized functions. The cauline leaf, for example, shows a delay in differentiation that allows for prolonged morphogenetic activity and growth redistribution. Through the transient growth suppression at early stages, the cauline leaf developmental trajectory allows for its dual function, from protection to photosynthesis. The second study (Chapter 3) focuses on the behavior of individual cells, whose growth, although controlled by positional information, is often heterogeneous. This variability results from the differentiation of specialized cells, the stomata, which follow a specific developmental program. The autonomous, asynchronous behavior of these cells is the main source of variability in tissues whose growth is otherwise homogeneous. Overall, this thesis has shed light on the importance of timing in plant organ development. Whether at the organ, tissue, or cell level, modulation and synchronization of growth and differentiation are necessary for the acquisition of stereotypic organ shapes and functional complexity.
9

Méthylation de l’ADN et plasticité phénotypique en réponse à des variations de disponibilité en eau chez le peuplier / DNA methylation and phenotypic plasticity towards water availability variations in poplar

Le Gac, Anne-Laure 16 June 2017 (has links)
Face à la rapidité des changements climatiques, les arbres doivent faire preuve de plasticité phénotypique. Les mécanismes épigénétiques font partie des pistes de recherche actuelles pour expliquer la plasticité phénotypique. Cette thèse visait à évaluer le rôle de la méthylation de l’ADN dans la plasticité phénotypique d’un organisme pérenne séquencé, le peuplier, en réponse à des variations de disponibilité en eau du sol. Les travaux, combinant écophysiologie et épigénomique, se sont focalisés sur le méristème apical caulinaire, centre de la morphogenèse de la tige feuillée. Trois résultats majeurs sont issus de cette thèse : i) Chaque état hydrique est associé à un méthylome et un transcriptome spécifiques, ii) Certaines régions différentiellement méthylées sont conservées dans le temps et entre contextes environnementaux, iii) Des lignées RNAi hypométhylées soumises à différents contextes hydriques présentent une réponse modifiée. Les résultats acquis lors de cette thèse appuient une contribution de la méthylation de l’ADN à la plasticité phénotypique et suggèrent un rôle des mécanismes épigénétiques dans la mémoire d’un stress chez les arbres. / Due to rapid climate changes, trees must exhibit phenotypic plasticity. Epigenetic mechanisms are part of current research to explain phenotypic plasticity. This thesis aimed to evaluate the role of DNA methylation in phenotypic plasticity of a perennial sequenced organism, poplar, in response to variations in soil water availability. The work, combining ecophysiology and epigenomics, focused on the shoot apical meristem, the center of morphogenesis of the leafy stem. Three major results emerge from this thesis: (i) Each hydric state is associated with a specific methylome and transcriptome, (ii) Some differentially methylated regions are conserved in time and between environmental contexts, (iii) Hypomethylated RNAi lines subjected to different contexts show a modified response. The results obtained during this thesis support a contribution of DNA methylation to phenotypic plasticity and suggest a role of epigenetic mechanisms in stress memory in trees.
10

Rôle de l'auxine et de sa signalisation dans la dynamique et la robustesse des patrons développementaux dans le méristème apical caulinaire / The role of auxin and its signaling pathways in the dynamics and robustness of developmental patterns at the shoot apical meristem

Oliva Freitas Santos, Marina 17 January 2014 (has links)
Les végétaux, contrairement aux animaux, génèrent la plupart de leurs organes et tissus au cours de leur développement post-embryonnaire et ce, grâce à des tissus contenant de petits amas de cellules souches appelés méristèmes. Le méristème apical caulinaire (MAC), situé à l’extrémité de la tige, génère toute la partie aérienne de la plante. A sa périphérie, les organes latéraux (fleurs ou feuilles) sont générés selon un patron spatio-temporel précis appelé phyllotaxie. De nombreuses données accumulées ces 20 dernières années ont démontré qu’une hormone végétale, l’auxine, joue un rôle prépondérant dans le contrôle du devenir des cellules dans le MAC. Un ensemble de données expérimentales couplées à des modèles mathématiques suggère que l’auxine s’accumule successivement dans les sites d’organogenèse grâce à l’auto-organisation de ses transporteurs membranaires et instruit les cellules à se différencier en organes.Fautes d’outils appropriés, il était impossible jusqu’alors de visualiser l’auxine in vivo et d’étudier sa dynamique temporelle. Nous avons généré un nouveau senseur de la signalisation de l’auxine, appelé DII-Venus, qui permet de visualiser de manière indirecte mais spécifique les niveaux relatifs d’auxine in planta avec une excellente résolution spatio-temporelle. Cet outil a permis de mettre en évidence pour la première fois des oscillations circadiennes d’auxine au niveau du MAC. Une analyse complète de la structure de la voie de réponse transcriptionelle à l’auxine, couplée à des approches de modélisation, a permis de mettre en évidence des propriétés « tampon » de la voie transcriptionnelle qui la rendent relativement insensible aux fluctuations d’auxine, et contribuent à la robustesse du programme organogénétique. En revanche, la voie non-transriptionnelle de réponse à l’auxine, sensible à ces oscillations, génère des rythmicités de croissance au niveau du MAC qui contribuent à déterminer la temporalité de l’émergence de nouveaux organes. Ces résultats démontrent ainsi pour la première fois que la rythmicité de l’émergence de nouveaux organes au niveau du MAC n’est pas uniquement une conséquence des capacités d’auto-organisation du tissu mais est aussi contrôlée, au moins partiellement, par une horloge biologique. / Plants, contrarily to animals, are able to generate new organs and tissues throughout their lives thanks to the activity of specialized tissues containing stem cells called meristems. The shoot apical meristem (SAM), located at the shoot tip, generates all the aerial parts of the plant that arise after germination. At its periphery, organ production occurs following precise spatio-temporal patterns also known as phyllotaxis. During the past twenty years, the phytohormone auxin has been demonstrated to play a major role in this process. Indeed, both experimental and theoretical studies strongly suggest that auxin accumulates successively in sites of organogenesis thanks to its efflux carriers, and instructs cells to differentiate into organs.However, so far, very little is known about the actual temporal dynamics of auxin in tissues, because of the lack of appropriate tool to visualize auxin in vivo. We developed a new auxin signaling sensor, called DII-VENUS, that allows for monitoring auxin levels in planta with a good spatio-temporal resolution. Using this new tool, we were able to demonstrate that for the first time that the SAM is subjected to circadian oscillations of auxin levels. Our data suggest that these oscillations are not perceived by the auxin transcriptional pathway, which is predicted, according to our mathematical models, to exhibit buffering properties. However, they are perceived by the non-transcriptional putative receptor ABP1 and translated into rhythmic growth patterns at the SAM. These growth oscillations seem to regulate organ initiation in the meristem thus demonstrating for the first time the rhythmic emergence of organs at the SAM does not only result from the self-organizing properties of the tissue but is also controlled, at least partially, by a biological clock.

Page generated in 0.0461 seconds