• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 11
  • 11
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Altered DNA Repair, Antioxidant and Cellular Proliferation Status as Determinants of Susceptibility to Methylmercury Toxicity in Vitro

Ondovcik, Stephanie Lee 20 June 2014 (has links)
Methylmercury (MeHg) is a pervasive environmental contaminant with potent neurotoxic, teratogenic and likely carcinogenic activity, for which the underlying molecular mechanisms remain largely unclear. Base excision repair (BER) is important in mitigating the pathogenic effects of oxidative stress, which has also been implicated in the mechanism of MeHg toxicity, however the importance of BER in MeHg toxicity is currently unknown. Accordingly, we addressed this question using: (1) spontaneously- and Simian virus 40 (SV40) large T antigen-immortalized oxoguanine glycosylase 1-null (Ogg1-/-) murine embryonic fibroblasts (MEFs); and, (2) human Ogg1 (hOgg1)- or formamidopyrimidine glycosylase (Fpg)-expressing human embryonic kidney (HEK) cells; reciprocal in vitro cellular models with deficient and enhanced ability to repair oxidatively damaged DNA respectively. When spontaneously-immortalized wild-type and Ogg1-/- MEFs were exposed to environmentally relevant, low micromolar concentrations of MeHg, both underwent cell cycle arrest but Ogg1-/- cells exhibited a greater sensitivity to MeHg than wild-type controls with reduced clonogenic survival and increased apoptosis, DNA damage and DNA damage response activation. Antioxidative catalase alleviated the MeHg-initiated DNA damage in both wild-type and Ogg1-/- cells, but failed to block MeHg-mediated apoptosis at micromolar concentrations. As in spontaneously immortalized MEFs, MeHg induced cell cycle arrest in SV40 large T antigen-immortalized MEFs, with increased sensitivity to MeHg persisting in the Ogg1-/- MEFs. Importantly, cells seeded at a higher density exhibited compromised proliferation, which protected against MeHg-mediated cell cycle arrest and DNA damage. In the reciprocal model of enhanced DNA repair, hOgg1- and Fpg-expressing cells appeared paradoxically more sensitive than wild-type controls to acute MeHg exposure for all cellular and biochemical parameters, potentially due to the accumulation of toxic intermediary abasic sites. Accordingly, our results provide the first evidence that Ogg1 status represents a critical determinant of risk for MeHg toxicity independent of cellular immortalization method, with variations in cellular proliferation and interindividual variability in antioxidative and DNA repair capacities constituting important determinants of risk for environmentally-initiated oxidatively damaged DNA and its pathological consequences.
42

Fermentabilidade de frutanos da cebola (Allium cepa L.) estudo in vivo, in vitro e do efeito trófico no intestino grosso / Fermentability of onion fructan (Allium cepa L.) in vivo, in vitro study and the trophic effect in the large intestine

Grazieli Benedetti Pascoal 15 May 2007 (has links)
Os frutanos são carboidratos não-disponíveis, classificados como fibra alimentar solúvel e, também, prebióticos. Chegam intactos no intestino grosso (IG) e sofrem fermentação pela microbiota, fornecendo ácidos graxos de cadeia curta (AGCC), gases e biomassa. Os objetivos foram avaliar a fermentação in vivo e in vitro de frutanos da cebola (Allium cepa L.) e seu efeito no intestino grosso de ratos. Durante 38 dias, ratos machos Wistar receberam ração controle (RC) ou suplementada com cebola (10% de frutanos) (RF). Na fermentação in vivo foram avaliados: peso e umidade das fezes, umidade do conteúdo cecal, AGCC, peso total e parede do ceco e pH. Paralelamente, fragmentos do ceco e cólon foram coletados para avaliação morfométrica e proliferação celular. Na fermentação in vitro, as frações indigeríveis das rações (RC e RF) e da cebola foram avaliadas sob diferentes parâmetros, como: pH, AGCC, fermentabilidade e resíduo nãofermentado. A fermentação in vivo causou no grupo frutanos 10%, em relação ao controle, os seguintes efeitos: aumento significante do peso e umidade das fezes, da umidade do conteúdo cecal, do peso e parede do ceco e da concentração de AGCC e diminuição do pH cecal, no grupo frutanos 10% em relação ao controle. Na fermentação in vitro, houve alterações tanto quantitativas como qualitativas de todos os substratos fermentados. De acordo com todas as variáveis analisadas, a RF apresentou maior fermentabilidade quando comparada com a RC. O grupo frutanos 10% apresentou, no ceco, aumento significante no tamanho das criptas, no número de criptas bifurcadas e no índice metafásico em relação ao controle. No cólon não foi evidenciada qualquer mudança microscópica entre os grupos. Os resultados indicam que a ingestão de frutanos causou mudanças significantes nos parâmetros fermentativos, tanto na fermentação in vivo (ratos) quanto na in vitro e na proliferação celular do ceco. A fermentação in vitro mostrou o possível perfil fermentativo dos substratos, a RF teve fermentabilidade maior que a RC. Esse perfil foi confirmado in vivo, onde o grupo frutanos 10% apresentou aumento na produção de AGCC em relação ao controle. O aumento do butirato provavelmente provocou efeito trófico do ceco, evidenciado pelo aumento de peso e de proliferação celular. / Fructans are unavailable carbohydrates, c1assified as soluble dietary fiber and prebiotics. They arrive intact in the large intestine (LI) and are fermented by the microbiota. This fermentation mainly produces short chain fatty acids (SCFA), gases and biomass. The objectives were evaluation of the in vitro and in vivo fermentation of onion fructans (Allium cepa L.) and their effect in the large intestine of rats. Male Wistar rats received, for 38 days, control diet (CD) or onion supplemented diet (10% fructans) (FD). In the in vivo fermentation were evaluated: faeces weight and moisture, moisture of caecal content, SCFA, cecum weight and wall and pH. In parallel, fragments of cecum and colon were collected for morphometric and cellular proliferation evaluation. In the in vitro fermentation, non-digestible fractions of CD and FD were evaluated under different parameters, such as: pH, SCFA, fermentability and non-fermentable residues. In vivo fermentation caused, in the 10% fructans group in relation to the control group, the following effects: a significant increase in faeces weight and moisture, in the moisture of caecal content, in cecum weight and wall, in the concentration of SCFA and a decrease in the caecal pH. The in vitro fermentation showed both quantitative and qualitative changes of all fermented substracts. The FD presented greater fermentability when compared to the CD, according to all variables analyzed. The 10% fructans group presented greater depth and fission of caecal crypts and metaphasic index in relation to the control group. No microscopic changes were noticed in the colon between the groups. The results indicated that the ingestion of fructans caused significant changes on the fermentative parameters, both in vivo (rats) and in vitro fermentation, and on cell proliferation in the cecum. In vitro fermentation indicated a possible fermentative behavior of the substracts and the FD had greater fermentability than the CD. These results were confirmed in vivo, once the 10% fructans group presented an increase in the SCFA production compared to the control group. The increase in butyrate might have caused the trophic effect of the cecum, which was noticed by the increase in weight and cellular proliferation.
43

Régulations épigénétiques et cancer : coopération ou antagonisme entre le suppresseur de tumeurs BAP1 et les facteurs de transcription FOXKs ?

Ahmed, Oumaima 03 1900 (has links)
Le suppresseur de tumeurs BAP1 est la déubiquitinase la plus fréquemment mutée dans le cancer humain. Ce dernier est impliqué dans la régulation des gènes cibles des facteurs de transcription E2Fs, qui sont des régulateurs centraux de la prolifération cellulaire en contrôlant, les points de contrôle du cycle cellulaire, la mitose, la réparation de l'ADN et l'apoptose. Dans le complexe BAP1, nous notons plusieurs protéines liant la chromatine, telles que les facteurs de transcription FOXKs (FOXK1 et FOXK2), qui sont connues pour recruter BAP1 sur ses gènes cibles. En effet, le complexe BAP1 est recruté à la chromatine pour assurer sa fonction de déubiquitination de la marque d’histone répressive H2AK119ub, et ainsi, réguler l'expression des gènes. Dans cette étude, nous avons cherché à étudier l'axe BAP1-FOXKs dans la régulation des fonctions cellulaires associées à ce complexe. Fait intéressant, FOXK1, mais pas FOXK2, est connue pour avoir des propriétés oncogéniques, car des niveaux d'expression plus élevés de FOXK1 ont été observés dans une variété de cancers et sont corrélés avec la progression tumorale, l'invasion et les métastases. Ce fait soulève de nombreuses questions sur la nature de la régulation entre ces protéines dont la question suivante : s’agit-il d’une relation de coopération ou antagonisme, entre le suppresseur de tumeurs BAP1 et l’oncogène FOXK1 ? De façon intéressante, nous avons découvert que les protéines FOXK1 et FOXK2 forment deux complexes mutuellement exclusifs avec le complexe BAP1, ce qui suggère qu'elles ont des fonctions moléculaires et cellulaires distinctes à travers ce complexe. Nos études phénotypiques en utilisant des fibroblastes primaires humains montrent que FOXK1 et FOXK2 régulent différemment la prolifération cellulaire, la sénescence cellulaire et la transformation oncogénique. En effet, FOXK1, mais pas FOXK2, favorise la prolifération cellulaire via l’activation de l'expression d'E2F1 et de ses gènes cibles. En conséquence, FOXK1 retarde la sénescence cellulaire et favorise une réplication prolongée des fibroblastes primaires. De plus, la surexpression de FOXK1 favorise la transformation oncogénique des fibroblastes primaires transduits par les oncoprotéines E1A et RAS V12G en augmentant la pénétrance et en diminuant le temps de latence de formation des tumeurs. Ces résultats confirment que ces facteurs disposent de fonctions de signalisation cellulaire distinctes et suggèrent qu'ils sont régulés de manière différentielle au niveau moléculaire. Afin d’investiguer davantage le mécanisme moléculaire qui pourrait distinguer entre les fonctions cellulaires de FOXK1 et FOXK2, nous avons cherché à étudier les modifications post-traductionnelles de ces facteurs. Fait intéressant, nos données de spectrométrie de masse ont révélé que seul FOXK1, mais pas FOXK2, est modifié par O-GlcNAcylation, une modification post-traductionnelle catalysée par l'enzyme OGT. Nos essaies in-vitro montrent que cette modification régule la fonction de FOXK1 dans la prolifération cellulaire car le mutant de la O-GlcNAcylation réduit l'impact prolifératif de FOXK1 sur des cellules. Nos essaies in-vivo, en utilisant un modèle de xénogreffe de cellules cancéreuses humaines chez la souris, confirment que la O-GlcNAcylation de FOXK1 favorise la croissance tumorale. Plus intéressant, le mutant de la O-GlcNAcylation de FOXK1 affecte la transformation oncogénique des fibroblastes primaires transduits par E1A et RAS V12G, en augmentant le temps de latence tumorale et diminuant la taille finale de la tumeur. Au niveau de la chromatine, la O-GlcNAcylation de FOXK1 favorise le recrutement de BAP1 sur les gènes cibles des facteurs E2Fs afin deubiquitiner H2AK119Ub et permettre leur expression. En conclusion, la O-GlcNAcylation est un mécanisme clé qui régule la fonction de FOXK1 dans la prolifération cellulaire, et qui contribue à son activité oncogénique. Dans une autre perspective de cette étude, et afin d'investiguer l'importance de l'axe de signalisation BAP1-FOXKs dans la fonction de suppression tumorale de BAP1, nous avons étudié le rôle fonctionnel de l’interaction BAP1-FOXKs dans un modèle murin. Nous avons généré un modèle de souris en utilisant le système d'édition de gènes CRISPR/Cas9 pour muter la thréonine 492 du gène bap1, en alanine et ainsi perturber l'interaction entre les FOXKs et BAP1 chez la souris. Des descendants hétérozygotes de Bap1T492A/+ ont été croisés pour générer des individus homozygotes et étudier leur phénotype. Fait intéressant, nos résultats montrent que les souris homozygotes Bap1T492A/T492A meurent au stade embryonnaire. De plus, les quelques souris homozygotes Bap1T492A/T492A viables échappant à la barrière de létalité (qui représentent seulement 4.7 % au lieu de 25%) sont remarquablement plus petites et certaines d'entre elles ont présenté des anomalies de développement. De plus, lors de l'analyse du système immunitaire des souris adultes homozygotes Bap1T492A/T492A, nous avons constaté une réduction importante dans les proportions des cellules NKT qui sont des combattants du système immunitaire pouvant éliminer les cellules cancéreuses. Ensemble, ces données montrent que l'axe BAP1-FOXKs est important pour le développement et fournissent de nouvelles informations sur la manière dont les événements de signalisation entre le suppresseur de tumeurs BAP1 et les facteurs FOXKs doivent être étroitement contrôlés pour maintenir une homéostasie cellulaire normale et prévenir le cancer. / The tumor suppressor BAP1 is one of the most frequently mutated deubiquitinase in human cancer. This latter is involved in the regulation of the E2F target genes, which are central regulators of cellular proliferation by controlling, cell cycle checkpoints, mitosis, DNA repair, and apoptosis. Importantly, in the BAP1 complex, we note several chromatin-binding proteins, such as FOXKs transcription factors, which are known to recruit BAP1 to its target genes. Indeed, the BAP1 complex is recruited to chromatin to ensure its deubiquitinating function of the repressive histone mark H2AK119ub and thus regulating gene expression. In this study, we sought to investigate the BAP1-FOXKs axis in regulating associated cellular functions. Interestingly, FOXK1 but not FOXK2, is known to have oncogenic properties as higher expression levels of FOXK1 has been observed in a variety of cancers and is correlated with tumor progression, invasion, and metastasis. These results raise many questions about the nature of the regulation between these proteins, including whether there is a cooperative or antagonistic relationship between the tumor suppressor BAP1 and the oncogene FOXK1? Interestingly, we found that FOXK1 and FOXK2 proteins are mutually exclusive for their interactions with the BAP1 complex, which suggests that they have distinct molecular and cellular functions within this complex. Our functional studies using human primary fibroblasts show that FOXK1 and FOXK2 regulate differentially cell proliferation, cellular senescence, and oncogenic transformation. Indeed, FOXK1, but not FOXK2, promotes cellular proliferation through the activation of the expression of E2F1 and its target genes. As a consequence, FOXK1 delays cellular senescence and promotes prolonged primary cell replication. In addition, overexpression of FOXK1 promotes oncogenic transformation of primary fibroblasts transduced by E1A and RAS V12G oncogenes, by increasing tumor penetrance and decreasing latency of tumor formation. These results confirm that these factors have distinct cellular signalling functions and suggest that they are regulated differentially on the molecular level. To further investigate the molecular mechanism, which could distinguish FOXK1 and FOXK2 cellular functions, we sought to study posttranslational modifications of these factors. Interestingly, our mass spectrometry data revealed that only FOXK1, but not FOXK2, is modified by O-GlcNAcylation, a protein posttranslational modification catalyzed by the enzyme OGT. Our in vitro data shows that this modification regulates FOXK1 function in cellular proliferation as the expression of the O-GlcNAc mutant reduces the proliferative potential of FOXK1. Our in-vivo data, using human cancer cell xenografts on mice, confirms that FOXK1 O-GlcNAcylation promotes tumor growth. More interestingly, FOXK1 O-GlcNAcylation mutants affect the oncogenic transformation of primary fibroblasts expressing E1A and RAS V12G by increasing tumor latency and decreasing tumor size. At the chromatin level, O-GlcNAcylation of FOXK1 promotes the recruitment of BAP1 to target genes of E2Fs factors in order to deubiquitinate H2AK119Ub and allow their expression. In conclusion, O-GlcNAcylation is a key mechanism that regulates the function of FOXK1 in cell proliferation, which contributes to its oncogenic activity. In another perspective of this study, and in order to investigate the importance of BAP1- FOXKs signaling axis in the tumor suppression function of BAP1, we sought to study the functional role of BAP1-FOXKs interaction in a murine model. We generated a mouse model using the CRISPR/Cas9 gene-editing system by mutating BAP1-threonine 492 into alanine and thus disrupting the interaction between FOXKs and BAP1. Heterozygous offspring of Bap1T492A/+ were crossed to generate homozygous litters to study their phenotypes. Interestingly, our results show that homozygous Bap1T492A/T492A mice are embryonic lethal. Moreover, a few homozygous Bap1T492A/T492A mice can escape the embryonic lethality (representing only 4.7% instead of 25%), are remarkably smaller, and some of them showed developmental abnormalities. Moreover, when analyzing the immune system of adult homozygous Bap1T492A/T492A mice, we found a significant reduction of NKT cells proportions, which could be central fighters against cancer cell development. Altogether, these data show that BAP1-FOXKs axis is important for development and provide novel insights into how signaling events between the tumor suppressor BAP1 and FOXKs should be tightly controlled to maintain normal cellular homeostasis and prevent cancer.

Page generated in 0.0956 seconds