1 |
Continuous-Time Quantum Monte Carlo Impurity Solvers: Improvements and Applications / Progrès méthodologiques pour traiter les éléctrons fortement correlésSémon, Patrick January 2014 (has links)
Abstract: Originally designed for the study of strong electronic correlations in model Hamiltonians, dynamical mean field theory (DMFT) has become, in combination with density functional theory (DFT), a powerful tool for ab initio simulations of real materials. At the heart of DMFT lies the solution of a quantum impurity problem. While only the continuous-time quantum Monte Carlo (CT-QMC) impurity solvers yield (statistically) exact solutions of a general impurity problem, they are quite complex and computationally expensive. Hence, in this thesis we are interested in improving the CT-QMC impurity solvers. After a short introduction to DMFT and its cluster extensions, we begin by reviewing two of the CT-QMC impurity solvers, the interaction expansion or “Rubtsov” solver (CT- INT) and the hybridization expansion solver (CT-HYB). Focussing on the latter, which is the algorithm of choice within real material simulations, we then show how to reduce a sign problem, allowing us to address the unusual criticality found in layered organic superconductors. With high-T c superconductivity as example, we further discuss how to ensure ergodicity of the CT-HYB solver in the context of broken symmetries. Finally, algorithmic optimizations of CT-HYB are presented and combined, leading to speedups of up to 500 within the context of real material simulations. // Résumé: Initialement conçue pour traiter les fortes corrélations électroniques dans des hamiltoniens modèles, la théorie du champ moyen dynamique (DMFT) est devenue, en combinaison avec la théorie de la densité fonctionnelle (DFT), un outil puissant pour la simulation de matériaux réels. Au cœur de la DMFT se trouve la solution d'un modèle d'impureté quantique. Seulement les solutionneurs d'impureté Monte Carlo en temps continu (CT-QMC) donnent des solutions exactes. En même temps, ces solutionneurs sont plutôt complexes et gourmands en temps de calcul. Le but de cette thèse est donc d'améliorer les solutionneurs d'impureté CT-QMC. Après une courte introduction à la DMFT et à ses extensions pour les amas, on commence par une revue de deux des solutionneurs CT-QMC, celui en développement d'interaction ou de "Rubtsov" (CT-INT) et celui en développement d'hybridation (CT-HYB). Mettant l'accent sur le dernier, qui est l'algorithme de choix dans le cadre des matériaux réels, on montre alors comment réduire un problème de signe, nous permettant ainsi de traiter la criticalité inhabituelle des organiques en couche. Avec la supraconductivité à haute température critique comme exemple, on discute ensuite comment assurer l'ergodicité du solutionneur CT-HYB dans le cadre des symétries brisées. Finalement, des optimisations algorithmiques sont présentées et combinées, amenant à des accélérations allant jusqu'à un facteur de 500 dans le contexte des matériaux réels.
|
2 |
Continuous-Time Quantum Monte Carlo Impurity Solvers: Improvements and ApplicationsSémon, Patrick January 2014 (has links)
Abstract: Originally designed for the study of strong electronic correlations in model Hamiltonians, dynamical mean field theory (DMFT) has become, in combination with density functional theory (DFT), a powerful tool for ab initio simulations of real materials. At the heart of DMFT lies the solution of a quantum impurity problem. While only the continuous-time quantum Monte Carlo (CT-QMC) impurity solvers yield (statistically) exact solutions of a general impurity problem, they are quite complex and computationally expensive. Hence, in this thesis we are interested in improving the CT-QMC impurity solvers. After a short introduction to DMFT and its cluster extensions, we begin by reviewing two of the CT-QMC impurity solvers, the interaction expansion or “Rubtsov” solver (CT- INT) and the hybridization expansion solver (CT-HYB). Focussing on the latter, which is the algorithm of choice within real material simulations, we then show how to reduce a sign problem, allowing us to address the unusual criticality found in layered organic superconductors. With high-T c superconductivity as example, we further discuss how to ensure ergodicity of the CT-HYB solver in the context of broken symmetries. Finally, algorithmic optimizations of CT-HYB are presented and combined, leading to speedups of up to 500 within the context of real material simulations. // Résumé: Initialement conçue pour traiter les fortes corrélations électroniques dans des hamiltoniens modèles, la théorie du champ moyen dynamique (DMFT) est devenue, en combinaison avec la théorie de la densité fonctionnelle (DFT), un outil puissant pour la simulation de matériaux réels. Au cœur de la DMFT se trouve la solution d'un modèle d'impureté quantique. Seulement les solutionneurs d'impureté Monte Carlo en temps continu (CT-QMC) donnent des solutions exactes. En même temps, ces solutionneurs sont plutôt complexes et gourmands en temps de calcul. Le but de cette thèse est donc d'améliorer les solutionneurs d'impureté CT-QMC. Après une courte introduction à la DMFT et à ses extensions pour les amas, on commence par une revue de deux des solutionneurs CT-QMC, celui en développement d'interaction ou de "Rubtsov" (CT-INT) et celui en développement d'hybridation (CT-HYB). Mettant l'accent sur le dernier, qui est l'algorithme de choix dans le cadre des matériaux réels, on montre alors comment réduire un problème de signe, nous permettant ainsi de traiter la criticalité inhabituelle des organiques en couche. Avec la supraconductivité à haute température critique comme exemple, on discute ensuite comment assurer l'ergodicité du solutionneur CT-HYB dans le cadre des symétries brisées. Finalement, des optimisations algorithmiques sont présentées et combinées, amenant à des accélérations allant jusqu'à un facteur de 500 dans le contexte des matériaux réels.
|
3 |
Couplage interplan et compétition de phases dans le modèle de Hubbard des cupratesVerret, Simon January 2014 (has links)
Il y a presque trente ans, un des problèmes les plus difficiles de la physique moderne voyait le jour: la supraconductivité à haute température critique dans les cuprates. Depuis, l'hypothèse nommée modèle Hubbard est rapidement devenu un des candidats les plus prometteurs à en détenir la solution. Dans ce contexte, ce mémoire présente des travaux de calculs numériques sur les phases de la matière prédites par le modèle de Hubbard. Le projet poursuit notamment deux objectifs. En premier lieu, on considère un couplage interplan dans le modèle, ce qui le rend plus réaliste que sa version 2D habituelle. Et en deuxième lieu, on laisse les phases antiferromagnétique et supraconductrice coexister avec en plus une autre phase supraconductrice de type pi-triplet. Plus de détails sur le contexte et ces deux objectifs sont présentés au chapitre 1 et le modèle de Hubbard est détaillé au chapitre 2.
Pour obtenir des solutions numériques au modèle, les méthodes utilisées sont la théorie de champ moyen dynamique sur amas (CDMFT) et l'approximation de l'amas variationnel (VCA). Ces méthodes ainsi que le formalisme nécessaire pour les aborder sont présentés au chapitre trois. Notons qu'on utilise ces méthodes pour amas avec des méthodes de diagonalisation exacte qui ne feront pas partie de la discussion.
Enfin, le dernier chapitre présente tous les résultats obtenus avec ce projet, qui mènent à deux conclusions principales. Premièrement, le couplage tridimensionnel tel qu'ajouté n'a pas fait ressortir de tendance nette dans les résultats. Cela indique une de deux choses: soit les effets interplans sont négligeables dans le modèle de Hubbard, soit il faudra les inclure d'une façon plus complète dans le futur. Deuxièmement, on observe que la phase pi-triplet apparaît lorsqu'il y a coexistence entre l'antiferromagnétisme et la supraconductivité dans le modèle mais que ces deux dernières phases se nuisent fortement l'une à l'autre, confirmant qu'il y a compétition de phases.
|
4 |
Couplage interplan et comp??tition de phases dans le mod??le de Hubbard des cupratesVerret, Simon January 2014 (has links)
Il y a presque trente ans, un des probl??mes les plus difficiles de la physique moderne voyait le jour: la supraconductivit?? ?? haute temp??rature critique dans les cuprates. Depuis, l'hypoth??se nomm??e mod??le Hubbard est rapidement devenu un des candidats les plus prometteurs ?? en d??tenir la solution. Dans ce contexte, ce m??moire pr??sente des travaux de calculs num??riques sur les phases de la mati??re pr??dites par le mod??le de Hubbard. Le projet poursuit notamment deux objectifs. En premier lieu, on consid??re un couplage interplan dans le mod??le, ce qui le rend plus r??aliste que sa version 2D habituelle. Et en deuxi??me lieu, on laisse les phases antiferromagn??tique et supraconductrice coexister avec en plus une autre phase supraconductrice de type pi-triplet. Plus de d??tails sur le contexte et ces deux objectifs sont pr??sent??s au chapitre 1 et le mod??le de Hubbard est d??taill?? au chapitre 2.
Pour obtenir des solutions num??riques au mod??le, les m??thodes utilis??es sont la th??orie de champ moyen dynamique sur amas (CDMFT) et l'approximation de l'amas variationnel (VCA). Ces m??thodes ainsi que le formalisme n??cessaire pour les aborder sont pr??sent??s au chapitre trois. Notons qu'on utilise ces m??thodes pour amas avec des m??thodes de diagonalisation exacte qui ne feront pas partie de la discussion.
Enfin, le dernier chapitre pr??sente tous les r??sultats obtenus avec ce projet, qui m??nent ?? deux conclusions principales. Premi??rement, le couplage tridimensionnel tel qu'ajout?? n'a pas fait ressortir de tendance nette dans les r??sultats. Cela indique une de deux choses: soit les effets interplans sont n??gligeables dans le mod??le de Hubbard, soit il faudra les inclure d'une fa??on plus compl??te dans le futur. Deuxi??mement, on observe que la phase pi-triplet appara??t lorsqu'il y a coexistence entre l'antiferromagn??tisme et la supraconductivit?? dans le mod??le mais que ces deux derni??res phases se nuisent fortement l'une ?? l'autre, confirmant qu'il y a comp??tition de phases.
|
5 |
Nouvelles approches en théorie du champ moyen dynamique : le cas du pouvoir thermoélectrique et celui de l'effet orbital d'un champ magnétiqueArsenault, Louis-François January 2013 (has links)
Les applications reliées à la génération d'énergie motivent la recherche de matériaux ayant un fort pouvoir thermoélectrique (S). De plus, S nous renseigne sur certaines propriétés fondamentales des matériaux, comme, par exemple, la transition entre l'état cohérent et incohérent des quasi-particules lorsque la température augmente. Empiriquement, la présence de fortes interactions électron-électron peut mener à un pouvoir thermoélectrique géant. Nous avons donc étudié le modèle le plus simple qui tient compte de ces fortes interactions, le modèle de Hubbard. La théorie du champ moyen dynamique (DMFT) est tout indiquée dans ce cas. Nous nous sommes concentrés sur un système tridimensionnel (3d) cubique à face centrée (fcc), et ce, pour plusieurs raisons. A) Ce type de cristal est très commun dans la nature. B) La DMFT donne de très bons résultats en 3d et donc ce choix sert aussi de preuve de principe de la méthode. C) Finalement, à cause de la frustration électronique intrinsèque au fcc, celui-ci ne présente pas de symétrie particule-trou, ce qui est très favorable à l'apparition d'une grande valeur de S. Ce travail démontre que lorsque le matériau est un isolant à demi-remplissage à cause des fortes interactions (isolant de Mott), il est possible d'obtenir de grands pouvoirs thermoélectriques en le dopant légèrement. C'est un résultat pratique important. Du point de vue méthodologique, nous avons montré comment la limite de fréquence infinie de S et l'approche dite de Kelvin, qui considère la limite de fréquence nulle avant la limite thermodynamique pour S, donnent des estimations fiables de la vraie limite continue (DC) dans les domaines de température appropriée. Ces deux approches facilitent grandement les calculs en court-circuitant la nécessité de recourir à de problématiques prolongements analytiques. Nous avons trouvé que la méthode de calcul à fréquence infinie fonctionne bien lorsque les échelles d'énergie sont relativement faibles. En d'autres termes, cette approche donne une bonne représentation de S lorsque le système devient cohérent. Les calculs montrent aussi que la formule Kelvin est précise lorsque la fonction spectrale des électrons devient incohérente, soit à plus haute température. Dans la limite Kelvin, S est essentiellement l'entropie par particule, tel que proposé il y a longtemps. Nos résultats démontrent ainsi que la vision purement entropique de S est la bonne dans le régime incohérent, alors que dans le régime cohérent, l'approche à fréquence infinie est meilleure. Nous avons utilisé une méthode à la fine pointe, soit le Monte-Carlo quantique en temps continu pour résoudre la DMFT. Pour permettre une exploration rapide du diagramme de phase, nous avons dû développer une nouvelle version de la méthode des perturbations itérées pour qu'elle soit applicable aussi à forte interaction au-delà de la valeur critique de la transition de Mott. Un autre sujet a aussi été abordé. L'effet orbital du champ magnétique dans les systèmes électroniques fortement corrélés est une question très importante et peu développée. Cela est d'autant plus essentiel depuis la découverte des oscillations quantiques dans les supraconducteurs à haute temperature (haut-T[indice inférieur c]). Par désir de développer une méthode la moins biaisée possible, nous avons dérivé la DMFT lorsqu'un champ se couplant à l'opérateur énergie cinétique par la substitution de Peierls est présent. Ce type d'approche est nécessaire pour comprendre entre autres l'effet de la physique de Mott sur des phénomènes tels que les oscillations quantiques. Nous avons obtenu un résultat très important en démontrant rigoureusement que la relation d'auto-cohérence de la DMFT et le système intermédiaire d'impureté quantique restent les mêmes. L'effet du champ peut être contenu dans la fonction de Green locale, ce qui constitue la grande différence avec le cas habituel. Ceci permet de continuer à utiliser les solutionneurs d'impuretés standards, qui sont de plus en plus puissants. Nous avons aussi développé la méthode pour le cas d'un empilement de plans bidimensionnels selon z, ce qui permet d'étudier l'effet orbital du champ dans des nanostructures et même dans les matériaux massifs, si le nombre de plans est suffisant pour obtenir la limite tridimensionnelle.
|
6 |
Couplage Spin-Orbite et Interaction de Coulomb dans l'Iridate de Strontium Sr2IrO4Martins, Cyril 26 November 2010 (has links) (PDF)
Cette thèse s'intéresse à l'interaction entre le couplage spin-orbite et les corrélations électroniques dans la matière condensée. En effet, de plus en plus de matériaux - tels que les isolants topologiques ou les oxydes de métaux de transition 5d à base d'iridium - présentent des propriétés pour lesquels l'interaction spin-orbite joue un rôle essentiel. Parmi eux, l'iridate de strontium (Sr2IrO4) a récemment été décrit comme un "isolant de Mott régi par les effets spin-orbite": dans cette image, l'interaction de Coulomb entre les électrons et le couplage spin-orbite se combinent pour rendre le composé isolant. Nous avons étudié la phase isolante paramagnétique de ce matériau avec l'approche LDA+DMFT, une méthode qui combine la théorie de la fonctionnelle de la densité dans l'approximation de la densité locale (LDA) avec la théorie du champ moyen dynamique (DMFT). Sr2IrO4 s'est avéré être un isolant de Mott pour une valeur raisonnable des corrélations électroniques une fois que le couplage spin-orbite et les distorsions structurales du cristal ont été pris en compte. En outre, nos résultats mettent en évidence les rôles respectifs joués par ces deux éléments dans l'obtention d'un état isolant et montrent que seule leur action conjointe permet d'ouvrir un gap de Mott dans un tel composé. Afin de réaliser cette étude, le couplage spin-orbite a dû être inclus au sein du formalisme LDA+DMFT. L'intérêt d'un tel développement technique dépasse le cas de Sr2IrO4, cette implémentation, dite "LDA+SO+DMFT", pouvant être aussi utilisée pour prendre en compte les corrélations électroniques dans d'autres oxydes de métaux de transition 5d ou même au sein des isolants topologiques.
|
7 |
Multi-Orbital Physics in Materials with Strong Electronic Correlations : Hund's Coupling and Inter-Shell Interactions / Physique multi-orbitalaire dans les matériaux corrélés : Couplage de Hund et interactions inter-couchesSteinbauer, Jakob 24 October 2019 (has links)
Les matériaux corrélés offrent une richesse de nouveaux phénomènes, dont beaucoup ne sont pas encore - ou seulement partiellement - compris. Au centre de cette thèse sont des modèles multi-orbitalaires que j'etudie à travers une palette de méthodes, dont la théorie du champ moyen dynamique. Dans le modèle de Hubbard multi-orbitalaire proche de la transition de Mott, je mets en évidence un régime de mauvais métal induit par le couplage de Hund. Les propriétés de la transition de Mott dans ce système sont analysées. Dans un deuxèime temps, je traite un modèle élargi pour inclure des degrés de liberté des ligands dans les oxydes. Plus spécifiquement, cette thèse étudie les effets des interactions inter-couches entre orbitales corrélés d'un atome de métal de transition et les orbitales p des ligands. Une partie du travail est dédiée au développement de nouvelles méthodes dont une approche de rotateurs esclaves à ce problème. Le dernier chapitre concerne le domaine de la spintronique moléculaire, où j'étudie la physique du "spin-state switching" en fonction de l'hybridation d'un ion de métal de transition avec ses ligands dans les molecules organométalliques du type porphyrine de nickel. / The physics of correlated materials offers a wealth of new phenomena, many of which are not yet - or only partially - understood. In this thesis, we focus on multi-orbital models, which we study using various methods, including dynamical mean-field theory. We show that in the multi-orbital Hubbard model close to the Mott transition, Hund's coupling gives rise to a bad metal regime the properties of which we analyze. Furthermore, we consider a more general class of models that include oxygen ligands. More specifically, we study the effect of inter-shell interactions between correlated metal- and ligand p-orbitals. In this context, we develop and test a new slave-rotor approach to treat such interactions in an effective manner. The final chapter constitutes an excursion to the field of molecular spintronics, where we study the physics of the hybridization-induced spin-state switching in organometallic nickel porphyrin molecules.
|
8 |
Many-electron effects in transition metal and rare earth compounds : Electronic structure, magnetic properties and point defects from first principles / Physique à N corps des électrons dans les composés de métaux de transition et de terres rares : Structure électronique, propriétés magnétiques et défauts cristallins ponctuels à partir des premiers principesDelange, Pascal 29 September 2017 (has links)
Le sujet de cette thèse est la théorie à partir des premiers principes de la structure électronique de matériaux présentant de fortes corrélations électroniques. D’importants progrès ont été faits dans ce domaine grâce aux implémentations modernes de Théorie de la Fonctionelle de Densité (DFT). Néanmoins, la méthode DFT a certaines limitations. D’une part, elle est faite pour décrire les propriétés de l’état fondamental mais pas des états excités des matériaux, bien que ces derniers soient également importants. D’autre part, les approximations de la fonctionnelle employées en pratique réduisent la validité de la DFT, conceptuellement exacte : en particulier elles décrivent mal les matériaux aux effets de corrélations les plus importants.Depuis les années 1990, différentes théoriques quantiques à N corps ont été utilisées pour améliorer ou compléter les simulations à base de DFT. Une des plus importantes est la Théorie du Champ Moyen Dynamique (DMFT), dans laquelle un modèle sur réseau est relié de manière auto-cohérente à un modèle plus simple d’impureté, ce qui donne de bons résultats à condition que les corrélations soient principalement locales. Nous présentons brièvement ces théories dans la première partie de cette thèse. Les progrès récents de la DMFT visent, entre autres, à mieux décrire les effets non-locaux, à comprendre les propriétés hors équilibre et à décrire de vrais matériaux plutôt que des modèles.Afin d’utiliser la DMFT pour décrire de vrais matériaux, il faut partir d’un calcul de structure électronique traitant tous les électrons au même niveau, puis appliquer une correction traitant les effets à N corps sur un sous-espace de basse énergie d’orbitales autour niveau de Fermi. La définition cohérente d’un tel sous-espace nécessite de tenir compte de la dynamique des électrons en-dehors de cet espace. Ces derniers, par exemple, réduisent la répulsion de Coulomb entre électrons dans le sous-espace. Néanmoins, combiner la DFT et la DMFT n’est pas aisé car les deux n’agissent pas sur la même observable. Dans la deuxième partie de cette thèse, nous étudions les modèles de basses énergies, comme la technique échange écranté + DMFT récemment proposée. Nous analysons l’importance de l’échange non-local et des interactions de Coulomb retardées, et illustrons cette théorie en l’appliquant aux états semi-cœur dans les métaux d10 Zn et Cd.Dans la dernière partie, nous utilisons ces méthodes pour étudier trois matériaux corrélés importants d’un point de vue technologique. Dans un premier temps, nous nous intéressons à la physique des mono-lacunes dans la phase paramagnétique du fer. De façon surprenante pour un défaut aussi simple, son énergie de formation n’a toujours pas été obtenue de manière cohérente par la théorie et l’expérience. Nous démontrons que cela est dû à de subtils effets de corrélations autour de la lacune dans la phase paramagnétique à haute température : cette phase est plus fortement corrélée que la phase ferromagnétique, où des calculs de DFT ont été faits.Dans un deuxième temps, nous étudions la transition métal-isolant dans la phase métastable VO2 B. Nous montrons que cette transition ressemble à celle entre la phase conventionnelle rutile et la phase M2 de VO2, mettant en jeu à la fois des liaisons covalentes dans les dimères et une transition de Mott sur les atomes V restants. Nous étudions également l’effet de lacunes d’oxygène sur la structure électronique de VO2.Enfin, nous proposons une technique au-delà de la DFT pour calculer le champ cristallin dans les oxydes et alliages de terres rares. Bien que l’amplitude de ce champ soit faible pour les orbitales localisées 4f des lanthanides, il est crucial pour leur caractère d’aimant permanent. En modifiant l’approximation Hubbard I pour résoudre les équations de DMFT, nous évitons une erreur d’auto-interaction faible en valeur absolue mais physiquement importante, démontrant l’importance de modèles de basse énergie correctement définis. / The topic of this thesis is the first-principles theory of the electronic structure of materials with strong electronic correlations. Tremendous progress has been made in this field thanks to modern implementations of Density Functional Theory (DFT). However, the DFT framework has some limits. First, it is designed to predict ground state but not excited state properties of materials, even though the latter may be just as important for many applications. Second, the approximate functionals used in actual calculations have more limited validity than conceptually exact DFT: in particular, they are not able to describe those materials where many-electron effects are most important.Since the 1990's, different many-body theories have been used to improve or complement DFT calculations of materials. One of the most significant non-perturbative methods is Dynamical Mean-Field Theory (DMFT), where a lattice model is self-consistently mapped onto an impurity model, producing good results if correlations are mostly local. We briefly review these methods in the first part of this thesis. Recent developments on DMFT and its extensions were aimed at better describing non-local effects, understanding out-of-equilibrium properties or describing real materials rather than model systems, among others. Here, we focus on the latter aspect.In order to describe real materials with DMFT, one typically needs to start with an electronic structure calculation that treats all the electrons of the system on the same footing, and apply a many-body correction on a well-chosen subspace of orbitals near the Fermi level. Defining such a low-energy subspace consistently requires to integrate out the motion of the electrons outside this subspace. Taking this into account correctly is crucial: it is, for instance, the screening by electrons outside the subspace strongly reduces the Coulomb interaction between electrons within the subspace. Yet it is a complex task, not least because DFT and DMFT are working on different observables. In the second part of this thesis, we discuss low-energy models in the context of the recently proposed Screened Exchange + DMFT scheme. In particular, we study the importance of non-local exchange and dynamically-screened Coulomb interactions. We illustrate this by discussing semi-core states in the d10 metals Zn and Cd.In the third and last part, we use the methods described above to study the electronic structure of three fundamentally and technologically important correlated materials. First, we discuss the physics of point defects in the paramagnetic phase of bcc Fe, more precisely the simplest of them: the monovacancy. Surprisingly for such a simple point defect, its formation energy had not yet been reported consistently from calculations and experiments. We show that this is due to subtle but nevertheless important correlation effects around the vacancy in the high-temperature paramagnetic phase, which is significantly more strongly correlated than the ferromagnetic phase where DFT calculations had been done.Second, we study the metal-insulator phase transition in the metastable VO2 B phase. We show that this transition is similar to that between the conventional rutile and M2 VO2 phases, involving both bonding physics in the dimer and an atom-selective Mott transition on the remaining V atoms. Motivated by recent calculations on SrVO3, we study the possible effect of oxygen vacancies on the electronic structure of VO2.Finally, we propose a scheme beyond DFT for calculating the crystal field splittings in rare earth intermetallics or oxides. While the magnitude of this splitting for the localized 4f shell of lanthanides does not typically exceed a few hundred Kelvin, it is crucial for their hard-magnetic properties. Using a modified Hubbard I approximation as DMFT solver, we avoid a nominally small but important self-interaction error, stressing again the importance of carefully tailored low-energy models.
|
9 |
Mat��riaux Corr��l��s et Structure Electronique ab initio : interaction de Hubbard et couplage de HundVaugier, Loig 08 December 2011 (has links) (PDF)
Cette th��se propose une nouvelle impl��mentation de "l'approximation de la phase al��atoire avec polarisation contrainte" (constrained Random Phase Approximation, cRPA). Notre impl��mentation repose sur la th��orie de la fonctionnelle de la densit��, d��velopp��e dans une base d'ondes planes augment��es (linearized augmented plane wave, LAPW). Cette m��thode, appliqu��e �� des mat��riaux fortement corr��l��s, permet de calculer de facon r��aliste la matrice d'interaction coulombienne effective, qui pourra ��tre trait��e par la suite au moyen de l'approche �� N-corps souhait��e. En particulier, les valeurs de l'interaction de Hubbard, U , et de l'��change de Hund, J, sont d��termin��es de mani��re ab initio, ainsi que leur d��pendance en fr��quence qui r��sulte des effets dynamiques de l'��crantage. Comme dans la th��orie du groupe de renormalisation de Wilson, l'interaction coulombienne effective d��pend du choix du sous-espace corr��l�� pour lequel est construit un Hamiltonien effectif de basse ��nergie, alors que les valeurs des observables physiques n'en d��pendent pas. Afin de g��n��raliser la cRPA aux mat��riaux dont la structure ��lectronique exhibe des or- bitales corr��l��es et itin��rantes intriqu��es, une m��thode bas��e sur la projection sur le sous-espace corr��l�� est ��galement introduite. Diff��rentes classes de mat��riaux sont envisag��es comme applications : i) pnictures �� base de fer, LaOFeAs et BaFe2As2, et chalcog��nides, FeSe (Chapitre 6), ii) m��taux de transition 3d afin de valider notre m��thode de projection (Chapitre 6), iii) oxydes de m��taux de transition p��rovskites, SrMO3 (M = V, Cr, Mn, Nb, Mo, Tc), et p��rovskites en couches, Sr2MO4 (M = Mo, Tc, Ru, Rh) (Chapitre 7). L'Hamiltonien d'interaction cRPA est ��galement coupl�� �� la th��orie du champ moyen dynamique (LDA+cRPA+DMFT) afin de d��crire l'isolant de Mott induit par le couplage spin-orbite, Sr2IrO4, et le pigment �� base de terre rare, CeSF (Chapitre 8).
|
10 |
Matériaux Corrélés et Structure Electronique ab initio : interaction de Hubbard et couplage de HundVaugier, Loig 08 December 2011 (has links) (PDF)
Cette thèse propose une nouvelle implémentation de "l'approximation de la phase aléatoire avec polarisation contrainte" (constrained random phase approximation, cRPA). Notre implémentation repose sur la théorie de la fonctionnelle de la densité, développée dans une base d'ondes planes augmentées (linearized augmented plane wave, LAPW). Cette méthode, appliquée à des matériaux fortement corrélés, permet de calculer de facon réaliste la matrice d'interaction coulombienne effective, qui pourra être traitée par la suite au moyen de l'approche à N-corps souhaitée. En particulier, les valeurs de l'interaction de Hubbard, U , et de l'échange de Hund, J, sont déterminées de manière ab initio, ainsi que leur dépendance en fréquence qui résulte des effets dynamiques de l'écrantage. Comme dans la théorie du groupe de renormalisation de Wilson, l'interaction coulombienne effective dépend du choix du sous-espace corrélé pour lequel est construit un Hamiltonien effectif de basse énergie, alors que les valeurs des observables physiques n'en dépendent pas. Afin de généraliser la cRPA aux matériaux dont la structure électronique exhibe des orbitales corrélées et itinérantes intriquées, une méthode basée sur la projection sur le sous-espace corrélé est également introduite. Différentes classes de matériaux sont envisagées comme applications : i) pnictides à base de fer, LaOFeAs et BaFe2As2, et chalcogénides, FeSe (Chapitre 6), ii) métaux de transition 3d afin de valider notre méthode de projection (Chapitre 6), iii) oxydes de métaux de transition pérovskites, SrMO3 (M = V, Cr, Mn, Nb, Mo, Tc), et pérovskites en couches, Sr2MO4 (M = Mo, Tc, Ru, Rh) (Chapitre 7). L'Hamiltonien d'interaction cRPA est également couplé à la théorie du champ moyen dynamique (LDA+cRPA+DMFT) afin de décrire l'isolant de Mott induit par le couplage spin-orbite, Sr2IrO4, et le pigment à base de terre rare, CeSF (Chapitre 8).
|
Page generated in 0.0808 seconds