• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 19
  • 10
  • 8
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 106
  • 106
  • 90
  • 29
  • 27
  • 20
  • 20
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Printed Circuit Board Design and Layout for Hobbyists, Engineers, and Students

Derrenbacher, Michael A 01 December 2021 (has links) (PDF)
Printed Circuit Boards (PCBs) are a ubiquitous element of virtually every electronic system manufactured world-wide. It is not a stretch of the imagination to say that if it’s electronic, there is a PCB in it. PCBs are necessary tools for electronics work, and tools need to have instructions. For better or worse, PCB knowledge is a deep and wide ocean. There is much to cover for even a surface level understanding, and there are deep areas rich in technical expertise. Navigating the ocean of knowledge is treacherous; common knowledge of yore can be downright dubious now. PCB manufacturing and electronics as a whole have seen incredible developments in the past few decades, and knowledge once true may be outdated. At the same time there is a downpour of new techniques to use and challenges to face. The storm of information deepens the sea and can make it seem impossible to get anywhere without getting utterly lost. There are islands of knowledge out there hiding in books and papers and websites, but no guide to get anywhere. This thesis aims to guide the reader through the sea of information and provides a map that charts the shallows of beginner knowledge, into the deep depths of advanced design, of how and where to learn more. This thesis serves as an aiding means through the exciting and vast world of PCB design and layout.
62

[pt] DESENVOLVIMENTO DE MODELOS MATEMÁTICOS PARA AVALIAÇÃO DE PROCESSOS CORROSIVOS EM PLACAS DE CIRCUITO IMPRESSO / [en] DEVELOPMENT OF MATHEMATICAL MODELS FOR THE EVALUATION OF CORROSION PROCESS IN THE PRINTED CIRCUIT BOARDS

TAMIRES PIMENTEL BEZERRA 24 June 2020 (has links)
[pt] O aumento do consumo de eletroeletrônicos e o desenvolvimento da tecnologia, proporcionou o surgimento de uma gama de produtos com diferentes funcionalidades, cada vez mais complexos e menores. As placas de circuito impresso (PCIs) são consideradas a parte principal dos dispositivos eletrônicos, sendo o cobre o seu componente elementar. O desenho e espessura das trilhas do circuito são determinantes para caracterizar a passagem de corrente elétrica nos equipamentos eletroeletrônicos e seu funcionamento está diretamente ligado a qualidade da confecção das trilhas do circuito. Este trabalho tem como objetivo estudar o processo de lixiviação do cobre, mediante a reação do ácido clorídrico, cloreto de cobre II e fluxo de ar. Além de investigar as condições experimentais ótimas do processo, que tem como principal característica a possibilidade de regeneração e reutilização da solução. Modelos para avaliar o efeito da concentração de ácido e fluxo de ar na corrosão das placas de circuito impresso foram desenvolvidos através da aplicação do planejamento experimental (pelo método clássico e por algoritmo genéticos em modelos polinomiais) e redes neurais artificiais. Visando encontrar as melhores condições experimentais para o sistema proposto, além de investigar a melhor técnica de predição do mesmo. Os resultados obtidos pelas previsões foram comparados com os resultados experimentais reais. As modelagens foram comparadas pela análise dos coeficientes de correlação (R2) e índices de erro (SSE, MSE e RMSE). Constatando-se que o modelo polinomial foi o mais adequado para prever a resposta. Através da investigação da superfície de resposta e curvas de contorno, foram identificadas as condições otimizadas para o processo. Das quais as concentrações ótimas de ácido clorídrico, cloreto de cobre II e fluxo de ar foram 1 mol.L-1, 0.3 mol.L-1 e 0.5 L/ min, respectivamente. / [en] The increased consumption of consumer electronics and the development of technology has led to the emergence of a range of products with different features, increasingly complex and smaller. Printed circuit boards (PCIs) are considered the main part of electronic devices, with copper being their elementary component. The design and thickness of the circuit tracks are crucial to characterize the passage of electric current in electronic equipment and its operation is directly linked to the quality of the circuit tracks. This work aims to study the copper leaching process through the reaction of hydrochloric acid, copper chloride II and airflow. In addition to investigating the optimal experimental conditions of the process, which has as its main feature the possibility of regeneration and reuse of the solution. Models to evaluate the effect of acid concentration and airflow on PCB corrosion were developed by applying experimental design (by the classical method and by the genetic algorithm in polynomial models) and artificial neural networks. Aiming to find the best experimental conditions for the proposed system, besides investigating the best prediction technique. The results obtained by the predictions were compared with the actual experimental results. The modeling was compared by analysis of correlation coefficients (R2) and error indices (SSE, MSE, and RMSE). Noting that the polynomial model was the most appropriate to predict the response. Through investigation of the response surface and contour curves, the optimized conditions for the process were identified. Of which the optimal concentrations of hydrochloric acid, copper chloride II and airflow were 1 mol.L-1, 0.3 mol.L-1 and 0.5 L / min, respectively.
63

PCB-Based High-Power DC/DC Converters with Integrated Magnetics for Battery Charger Applications

Jin, Feng 07 June 2024 (has links)
Rising fuel costs and concerns about air pollution have significantly increased interest in electric vehicles (EVs). EVs are equipped with rechargeable batteries that can be fully recharged by connecting to an external electrical source. However, the wider adoption of EVs is hindered by the need for an on-board charger system that is both lightweight and efficient. EVs utilize two main charging methods: on-board chargers (OBC) for regular charging and off-board (fast) chargers for quick refills of battery pack. Most EVs currently use 400V battery packs paired with 6.6kW or 11kW OBCs, while larger vehicles with over 100 kWh battery packs employ 16.5kW or 19.2kW OBCs, constrained by household voltage and current limits. Some manufacturers are transitioning to 800V battery packs to lower costs and enhance fast charging capabilities, necessitating the development of 800V OBCs with high efficiency and power density. For household use, EVs can charge via OBC in a grid-to-vehicle transfer and can supply energy back to the home or grid (vehicle-to-grid) for emergency use or to support smart grid functionalities, requiring bidirectional OBCs. Advanced power semiconductor devices have been instrumental in advancing power conversion technology. The introduction of power semiconductor devices based on wide bandgap (WBG) materials marks a revolutionary shift, offering potential improvements over silicon-based devices. These WBG devices are capable of achieving higher efficiency, and higher power density in power conversion at higher operation frequency. Elevating the switching frequency diminishes the voltage-second across the transformer, facilitating the utilization of printed-circuit-board (PCB) technology for the windings as opposed to Litz wire implementations. Compared to traditional Litz wire-based transformers, the manufacturing process is significantly streamlined, and the management of parasitic is considerably more straightforward. Furthermore, the integration of resonant inductors with PCB-based transformer results in a reduction in the overall number of magnetic components and improved power density. This dissertation focuses on the DC/DC conversion stage of a bi-directional battery charger. It aims to achieve high power density and high efficiency using a PCB-based integrated transformer, enhancing manufacturing processes. The dissertation details the specific accomplishments in this area: Firstly, a two-stage on-board charger structure for 800 V battery EVs is proposed. The first stage is a four-phase bridgeless totem pole AC/DC converter working at critical conduction mode (CRM) so that soft switching can be achieved for all the fast switches. The second stage is single phase CLLC (1PCLLC) converter which is attractive due to its less component counts of devices and driver circuits. A novel matrix integrated transformer with controllable built-in leakage inductance for bi-directional 1PCLLC converter was proposed. Integrating three UI-core-based (1UI-based) elemental transformers with non-perfectly interleaved winding structures into one 3UI-based integrated transformer can reduce the core loss significantly with a smaller footprint compared with three EI-core-based integrated transformers. The proposed integrated magnetics can be scalable for higher voltage and higher power converters by assembling more 1UI-based elemental transformers. A SiC-based 1PCLLC converter prototype operating at 250-kHz switching frequency for 11-kW OBC applications was built with the proposed integrated transformer, and it can achieve a power density of 250 W/in3 with maximum efficiency of 98.4%. Secondly, the challenge of increased common mode (CM) noise after adopting PCB-based windings in the design was discussed. The inter-winding capacitors between the primary and secondary windings act as a conduction path for high dv/dt CM noise, which can lead to electromagnetic interference (EMI) issues. To address this, a winding cancellation method for an integrated matrix transformer in a 1PCLLC converter was proposed and validated. This approach was tested in an 11-kW 1PCLLC converter. The EMI measurement results align with the analysis, confirming the effectiveness of the proposed method, which achieved a reduction in CM noise by 17dB. Furthermore, the 1PCLLC converter, incorporating the proposed planar matrix integrated transformer and winding cancellation technique, attained a power density of 420 W/in³ and a peak efficiency of 98.5%. Thirdly, to enhance efficiency further, the 1PCLLC converter is substituted with the proposed three-phase CLLC (3PCLLC) resonant converter equipped with three-phase rectifiers. The 3PCLLC converter becomes more promising for high power applications as its lower RMS current stress and automatic current sharing capabilities. It can achieve soft switching under all conditions. In addition, due to the symmetrical resonant tank, it is more suitable for bi-directional operation. Variable DC-link voltage is adopted so that the DC/DC stage can always work at its optimized point, providing best efficiency for the entire battery voltage. An improved core structure for the three-phase integrated transformer was proposed to reduce the core loss and simplify the magnetic components by integrating three primary resonant inductors, three secondary resonant inductors and three transformers into one magnetic component. A systematic method of converter design which includes the design of integrated transformer, converter loss optimization was adopted to design an 11kW 3PCLLC resonant converter. A SiC-based 3PCLLC converter prototype operating at 250-kHz switching frequency for 11-kW OBC applications was built with the proposed integrated transformer, and it can achieve a power density of 330 W/in3 with peak efficiency of 98.7%. Fourthly, the power level of OBC continues to increase to make up the large capacitance battery pack inside the EVs to relief the concern of mileage range. To address this challenge of higher power, a scalable matrix integrated transformer for multi-phase CLLC converter was proposed. A universal method of integrating magnetizing inductance with built-in leakage inductance based on multiple perfectly coupled transformers (PCTs). The integration of built-in leakage inductance can be achieved by connecting several PCTs using a standardized core type for cost considerations or can be further integrated into a customized core with interleaved magnetomotive force polarities across transformer legs to achieve better flux distribution and smaller core loss. The proposed concept can be applied to single-input single-output, and multiple-inputs multiple-outputs integrated transformer applications. A 3x3 PCTs-based integrated transformer built with PCB windings was designed for a 3PCLLC resonant converter, which integrates three primary resonant inductors, three secondary resonant inductors, and three transformers into one magnetic core to simplify the complexity of the converter. The effectiveness of the proposed concept was demonstrated through a high-efficiency, high-power density 3PCLLC DC/DC converter for an 800V 16.5kW OBC. The designed converter can achieve a power density of 500 W/in3 and a peak efficiency of 98.8%. / Doctor of Philosophy / Rising fuel costs and concerns about air pollution have significantly increased interest in electric vehicles (EVs). EVs are equipped with rechargeable batteries that can be fully recharged by connecting to an external electrical source. However, the wider adoption of EVs is hindered by the need for an on-board charger system that is both lightweight and efficient. The dissertation presents advances in OBC technology to address these challenges, focusing on the development of efficient, high-power density OBCs suitable for various EV applications. EVs utilize two main charging methods: on-board chargers (OBC) for regular charging and off-board (fast) chargers for quick refills of battery pack. Most EVs currently use 400V battery packs paired with 6.6kW or 11kW OBCs, while larger vehicles with over 100 kWh battery packs employ 16.5kW or 19.2kW OBCs, constrained by household voltage and current limits. Some manufacturers are transitioning to 800V battery packs to lower costs and enhance fast charging capabilities, necessitating the development of 800V OBCs with high efficiency and power density. For household use, EVs can charge via OBC in a grid-to-vehicle transfer and can supply energy back to the home or grid (vehicle-to-grid) for emergency use or to support smart grid functionalities, requiring bidirectional OBCs. Advanced power semiconductor devices have been instrumental in advancing power conversion technology. The introduction of power semiconductor devices based on wide bandgap (WBG) materials marks a revolutionary shift, offering potential improvements over silicon-based devices. These WBG devices are capable of achieving higher efficiency, and higher power density in power conversion at higher operation frequency. Elevating the switching frequency diminishes the voltage-second across the transformer, facilitating the utilization of printed circuit board (PCB) technology for the windings as opposed to Litz wire implementations. Compared to traditional Litz wire-based transformers, the manufacturing process is significantly streamlined, and the management of parasitic is considerably more straightforward. Furthermore, the integration of resonant inductors with PCB-based transformer results in a reduction in the overall number of magnetic components and improved power density. Addressing cost concerns, a novel, cost-effective single-phase converter design was proposed, achieving high efficiency with integrated magnetics. Additionally, the research tackled the challenge of electromagnetic interference (EMI) through a winding cancellation technique, significantly reducing common-mode noise and further improving the converter's performance. The research introduces an improved core structure for a three-phase integrated transformer, significantly reducing core loss and simplifying the design by combining multiple components into a single unit. This approach facilitated the creation of a high-efficiency, SiC-based converter prototype, demonstrating remarkable power density and peak efficiency compared with state-of-the-art solutions. To accommodate the increasing power requirements of OBCs, a scalable, matrix integrated transformer design was developed for multi-phase converters, optimizing cost and performance. This design simplifies the converter architecture, enhancing efficiency and power density, and is adaptable to both single and multiple output applications. These advancements offer promising solutions to the challenges hindering the wider adoption of EVs. The dissertation underscores the potential of advanced power conversion technologies, including the application of WBG devices, integrated magnetics to streamline converter design and enhance both the efficiency and power density of battery chargers.
64

Printed Circuit Board Design for Frequency Disturbance Recorder

Wang, Lei 19 January 2006 (has links)
The FDR (Frequency Disturbance Recorder) is a data acquisition device for the power system. The device is portable and can be used with any residential wall outlet for frequency data collection. Furthermore, the FDR transmits calculated frequency data to the web for access by authorized users via Ethernet connection. As a result, Virginia Tech implemented Frequency Monitoring Network (FNET) with these FDR devices. FNET is a collection of identical FDRs placed in different measurement sites to allow for data integration and comparison. Frequency is an important factor for power system control and stabilization. With funding and support provided by ABB, TVA and NSF the FDRs are placed strategically all over the United States for frequency analysis, power system protection and monitoring. The purpose of this study is to refine the current FDR hardware design and establish a new design that will physically fit all the components on one Printed Circuit Board (PCB). At the same time, the software that is to be implemented on the new board is to be kept similar if not the same as that of the current design. The current FDR uses the Axiom CME555 development board and it is interfaced to the external devices through its communication ports. Even through the CME555 board is able to meet the demands of the basic FDR operations, there are still several problems associated with this design. This paper will address some of those hardware problems, as well as propose a new board design that is specifically aimed for operations of FDR. / Master of Science
65

[en] SIGNALS INTEGRITY IN HIGH SPEED PRINTED CIRCUIT BOARDS / [pt] INTEGRIDADE DE SINAIS EM PLACAS DE CIRCUITO IMPRESSO DE ALTAS TAXAS

VANESSA PRZYBYLSKI RIBEIRO MAGRI 14 February 2008 (has links)
[pt] Este trabalho tem como objetivo avaliar a viabilidade técnica para fabricação de placas de circuito impresso de múltiplas camadas com espessuras reduzidas mantendo a integridade dos sinais que se propagam em conexões inter- chip, nas taxas de transmissão de 1Gb/s e 10Gb/s para aplicações em redes de comunicações nos padrões 1GB Ethernet e 10GB Ethernet. A avaliação inclui o projeto de uma placa de 6 camadas de planos condutores, com espessura total de 1,29mm. A placa desenvolvida contém linhas de transmissão, vias e curvas, microcapacitores , microresistores e conectores I/O adequados para a faixa de freqüência em questão. / [en] The main purpose of this work is to evaluate the technical reliability to fabricate a Printed circuit board (PCB) with reduced thickness multilayer keeping signal Integrity on inter-chip connections in 1Gb/s and 10Gb/s (1GB Ethernet and 10GB Ethernet network communications). This evaluation includes the development of a PCB project with 06 layers and 1,29mm thickness. The PCB contains several transmission lines, vias, bends, microcapacitors, microresistors, connectors (I/O) suitable to this frequency band.
66

Applications of active materials

Edqvist, Erik January 2009 (has links)
Energy efficiency is a vital key component when designing and miniaturizing self sustained microsystems. The smaller the system, the smaller is the possibility to store enough stored energy for a long and continuous operational time. To move such a system in an energy efficient way, a piezoelectrical locomotion module consisting of four resonating cantilevers has been designed, manufactured and evaluated in this work. The combination of a suitable substrate, a multilayered piezoelectric material to reduce the voltage, and a resonating drive mechanism resulted in a low power demand. A manufacturing process for multilayer cantilever actuators made of P(VDF-TrFE) with aluminum electrodes on a substrate of flexible printed circuit board (FPC), has been developed. An important step in this process was the development of an etch recipe for dry etching the multilayer actuators in an inductive plasma equipment. Formulas for the quasi static tip deflection and resonance frequency of a multilayered cantilever, have been derived. Through theses, it was found that the multilayered structures should be deposited on the polymer side of the FPC in order to maximize the tip deflection. Both a large and a miniaturized locomotion module were manufactured and connected by wires to verify that the three legged motion principal worked to move the structures forward and backward, and turn it right and left. By touching and adding load, to a fourth miniaturized cantilever, its ability to act as a contact sensor and carry object was verified. The presented locomotion module is part of a multifunctional microsystem, intended to be energy efficient and powered by a solar panel with a total volume of less than 25 mm3 and weight 65 mg. The whole system, consisting of a solar cell, an infra red communication module, an integrated circuit for control, three capacitors for power regulating, the locomotion module and an FPC connecting the different modules, was surface mounted using a state of the art industrial facility. Two fully assembled systems could be programmed both through a test connector and through optical sensors in the multifunctional solar cell. One of these was folded together to the final configuration of a robot. However, the entire system could not be tested under full autonomous operating conditions. On the other hand, using wires, the locomotion module could be operated and used to move the entire system from a peak-to-peak voltage of 3.0 V.
67

Testing and evaluation of the integratability of the Senior processor / Testning och evaluering av Senior processorns integrerbarhet

Hedin, Alexander January 2011 (has links)
The first version of the Senior processor was created as part of a thesis projectin 2007. This processor was completed and used for educational purposes atLinköpings University. In 2008 several parts of the processor were optimized andthe processor expanded with additional functionality as part of another thesisproject. In 2009 an EU funded project called MULTI-BASE started, in which theComputer Division at the Department of Electrical Engineering participated in.For their part of the MULTI-BASE project, the Senior processor was selected tobe used. After continuous revision and development, this processor was sent formanufacturing. The assignment of this thesis project was to test and verify the different func-tions implemted in the Senior processor. To do this a PCB was developed fortesting the Senior processor together with a Virtex-4 FPGA. Extensive testingwas done on the most important functions of the Senior processor. These testsshowed that the manufactured Senior processor works as designed and that it alonecan perform larger calculations and use external hardware accelerators with thehelp of its various interfaces. / Den första versionen av Senior processorn skapades som en del i ett examensarbe-te under 2007, denna processor färdigställdes och användes i utbildningssyfte påLinköping Universitet. 2008 optimerades flera delar av processorn och utökadesmed extra funktionalitet som del av ytterligare ett examensarbete. 2009 startadeett EU finansierat projekt vid namn MULTI-BASE, som ISYs Datortekniks avdel-ning deltar i. Till deras del av MULTI-BASE projektet valdes Senior processorn attanvändas, efter ytterligare utveckling skickades denna processor för tillverkning. Detta examensarbete hade i uppgift att testa och verifiera de olika funktionernasom Senior processorn har implementerats med. För att göra detta tillverkades ettkretskort som ska användas för att testa Senior processorn tillsammans med enVirtex-4 FPGA. Utförliga tester gjordes på de viktigaste funktionerna hos Seniorprocessorn, dessa tester visade att den tillverkade Senior processorn fungerar somplanerat. Den kan på egen hand utföra större beräkningar och använda sig avexterna hårdvare acceleratorer med hjälp av sina olika gränssnitt.
68

Design of an Autonomous Underwater Vehicle with Vision Capabilities

Jebelli, Ali January 2016 (has links)
In the past decade, the design and manufacturing of intelligent multipurpose underwater vehicles has increased significantly. In the wide range of studies conducted in this field, the flexibility and autonomy of these devices with respect to their intended performance had been widely investigated. This work is related to the design and manufacturing of a small and lightweight autonomous underwater vehicle (AUV) with vision capabilities allowing detecting and contouring obstacles. It is indeed an exciting challenge to build a small and light submarine AUV, while making tradeoffs between performance and minimum available space as well as energy consumption. In fact, due to the ever-increasing in equipment complexity and performance, designers of AUVs are facing the issues of limited size and energy consumption. By using a pair of thrusters capable to rotate 360o on their axis and implementing a mass shifter with a control loop inside the vehicle, this later can efficiently adapt its depth and direction with minimal energy consumption. A prototype was fabricated and successfully tested in real operating conditions (in both pool and ocean). It includes the design and embedding of accurate custom multi-purpose sensors for multi-task operation as well as an enhanced coordinated system between a high-speed processor and accustomed electrical/mechanical parts of the vehicle, to allow automatic controlling its movements. Furthermore, an efficient tracking system was implemented to automatically detect and bypass obstacles. Then, fuzzy-based controllers were coupled to the main AUV processor system to provide the best commands to safely get around obstacles with minimum energy consumption. The fabricated prototype was able to work for a period of three hours with object tracking options and five hours in a safe environment, at a speed of 0.6 m/s at a depth of 8 m.
69

Tratamento a plasma para melhoria na metalização de placas de circuito impresso / Plasma treatment for improved metallization of printed circuit boards

Laraia, André Bianchi 31 July 2018 (has links)
Submitted by André Bianchi Laraia (andreblaraia@yahoo.com.br) on 2018-08-29T22:49:26Z No. of bitstreams: 1 Dissertacao-Andre-Bianchi-Laraia.pdf: 2142300 bytes, checksum: 9264414d38ac4ce5ec3be46acb98ca44 (MD5) / Rejected by Pamella Benevides Gonçalves null (pamella@feg.unesp.br), reason: Solicitamos que realize correções na submissão seguindo as orientações abaixo: • Necessário fazer ajuste no sumario na lateral direita nas numerações. • A palavra APÊNDICE A deve ser centralizada A palavra APÊNDICE A deve ser centralizada • Referências. A palavra Referências deve ser centralizada, As referencias devem ser justificadas, espaço simples com um espaço simples(enter) entre elas. • Sobre a elaboração das referencias e citações favor solicitar orientação para ajuste com a bibliotecária Pâmella - pamella.benevides@unesp.br • A palavra APÊNDICE A deve ser centralizada Mais informações acesse o link: http://www2.feg.unesp.br/Home/Biblioteca21/diretrizes-2016.pdf Agradecemos a compreensão. on 2018-08-30T12:07:55Z (GMT) / Submitted by André Bianchi Laraia (andreblaraia@yahoo.com.br) on 2018-09-12T01:58:28Z No. of bitstreams: 1 Tese-Andre-Bianchi-Laraia-v20-converted.pdf: 2144718 bytes, checksum: eef37a1c04c8a387ddbff2e31f67db35 (MD5) / Approved for entry into archive by Pamella Benevides Gonçalves null (pamella@feg.unesp.br) on 2018-09-12T17:38:03Z (GMT) No. of bitstreams: 1 laraia_ab_me_guara.pdf: 2144718 bytes, checksum: eef37a1c04c8a387ddbff2e31f67db35 (MD5) / Made available in DSpace on 2018-09-12T17:38:03Z (GMT). No. of bitstreams: 1 laraia_ab_me_guara.pdf: 2144718 bytes, checksum: eef37a1c04c8a387ddbff2e31f67db35 (MD5) Previous issue date: 2018-07-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho apresenta o desenvolvimento de um processo de tratamento com plasma para melhorar ametalização química de placas de circuito impresso (PCI). A pluma de plasma é gerada em argônio a partir da descarga de barreira dielétrica (DBD) promovida entre uma agulha cirúrgica e um cilindro usando capilar de borosilicato como dielétrico. A tensão picoa-pico aplicada foi de 5 kV, com forma de onda senoidal na frequência de 37 kHz e potência de descarga em torno de 765 mW. O substrato é um composto de fibra de vidro e resina epóxi. Com incidência perpendicular da pluma de plasma na superfície, o diâmetro da área tratada circular é de 10 mm. Desta forma, o ângulo de contato reduz de 75 ° a 45 ° com 3 s de interação entre superfície da amostra e a ponta do plasma e o ângulo atinge o mínimo de 33 ° após 180 s de tempo de tratamento. A metalização química foi feita com banhos seqüenciais de solução de paládio e finalizada com banho de solução aquosa de cobre. Testes de adesão padrão mostraram uma forte adesão das camadas de metal nas superfícies previamente tratadas com as plumas de plasma. Esta adesão melhora com o tempo de tratamento. A melhoria na metalização foi observada em superfície plana e também em furos usados para conectar diferentes camadas em PCIs. A área metalizada na superfície dos buracos é maior nos orifícios tratados. Quanto maior o tempo de tratamento, maior é essa área. Todos os resultados indicaram que a técnica de tratamento por plasma de placas de fibra de vidro melhora a sua metalização química pelo cobre, levando a uma adesão mais uniforme e eficaz do metal à superfície com um método ambientalmente amigável / This work reports the development of a plasma treatment process to improve the chemical metallization of printed circuit boards (PCB). The plasma plume is generated in argon from a dielectric barrier discharge (DBD) promoted between a surgical needle and a cylinder using a borosilicate capillary as dielectric. The applied peak-to-peak voltage was 5 kV, with sinusoidal waveform at 37 kHz frequency and power in the discharge around 765 mW. The substrate was a composite of fiberglass and epoxy resin. With perpendicular incidence of the plasma plume on the surface the diameter of the circular treated area was 10 mm. In this area the contact angle reduces from 75° to 45° with 3 s of the plasma-surface interaction and the angle reaches the minimum of 33° after 180 s of treatment time. Chemical metallization was made with sequential baths of solution of palladium and finished with bath of aqueous solution of copper. Standard adhesion tests showed a strong adhesion of the metal layer on surfaces previously treated with the plasma plumes. This adhesion improves with the treatment time. The improvement in the metallization was observed on flat surface and also in holes used to connect different layers in PCB’s. The metallized area on the surface of the holes is larger in treated holes. The longer the treatment time the larger is this area. All these results indicated that the technique of plasma treatment of fiberglass boards improves its chemical metallization by copper leading to a more uniform and effective adhesion of the metal to the surface with an environmental friendly method
70

Étude multicritère pour l'enfouissement partiel ou total de convertisseurs d'électronique de puissance dans un circuit imprimé / Multi-criteria study for partial or complete Printed Circuit Board embedding of power electronic converters

Pascal, Yoann 22 October 2019 (has links)
Les travaux présentés dans ce manuscrit traitent de l’enfouissement dans un circuit imprimé de convertisseurs de puissance, paradigme visant l’insertion de composants électroniques au sein du circuit imprimé.Une structure simple et économique de composant inductif enfoui, pouvant être employé comme inductance, coupleur, ou résonateur monolithique, est tout d’abord décrite. Un modèle analytique complet est développé. Des prototypes sont réalisés, validant le modèle et démontrant l’intérêt de la topologie.L’agencement des composants de puissance constituant une cellule de commutation est ensuite étudié. En particulier, un modèle analytique permettant une compréhension intuitive des mécanismes oscillatoires dans le cadre de l’emploi de transistors rapides est décrit.Une technique de reprise de contact de face avant pour puce enfouie, basée sur un morceau de mousse pressée, est proposée. Une étude préliminaire, à forte composante expérimentale, est présentée. Elle démontre que certains prototypes enfouis présentent des caractéristiques électriques et une fiabilité similaires à celles obtenus avec des fils de bonding.Enfin, les résultats de l’étude sur l’agencement des composants d’une cellule de commutation sont appliqués pour concevoir et réaliser un hacheur basé sur des transistors SiC connectés par mousse pressée. La structure délivre 3 kW sous 600 V en continu, démontrant la viabilité du procédé de reprise de contact proposé. / This thesis deals with Printed-Circuit Board (PCB) embedding of power converters, paradigm according to which electronic components are placed within the substrate itself.First, a simple and economical structure of inductive component, which can be used either as an inductor, a coupler, or a monolithic resonator, is described. A comprehensive analytical model is developed. Prototypes are manufactured, validating the analytical model and highlighting the value of the topology.The arrangement of the power components of a switching cell is then studied. In particular, an analytical model offering an intuitive understanding of the oscillation mechanisms in cells using fast transistors is proposed.A simple and economical top-side connection technic for PCB-embedded power dies using a pressed piece of metal foam is described. A preliminary study, with strong experimental component, is proposed. It shows that the embedded prototypes have electrical performances and a reliability close to that of wire-bonded dies.Finally, the results from the study on the arrangement of the components of a switching cell are used to design and manufacture a chopper based on SiC transistors connected using a piece of pressed metal foam. This chopper proved to be able to continuously deliver 3 kW under 600 V to a load, thereby validating the proposed top-side connection technic.

Page generated in 0.0696 seconds