• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 165
  • 75
  • 48
  • 20
  • 11
  • 8
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 384
  • 98
  • 78
  • 63
  • 51
  • 46
  • 41
  • 38
  • 36
  • 36
  • 34
  • 32
  • 31
  • 30
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Lokalisering av arbetsstycke för CNC-maskiner : Undersökning av alternativa givare / Workpiece Localisation for CNC machine : Investigation of alternative sensors

Berlin, Leonard, Vendel, Jonas January 2022 (has links)
I takt med att CNC-fräsmaskiner blivit mer tillgängliga för allmänheten, växerbehovet av billiga alternativ till marknadsledande mätprobar (TTP). Generiska sensorer med öppen hårdvara finns tillgängliga till låga priser, men det är okäntom en sensor för under 100 kr kan användas som komponent i en mätprob, där noggrannhetskravet kan vara i storleksordningen mikrometer. Detta skulle isåfallinnebära att det finns en möjlighet att tillverka mätprobar till tillgängligare priser än dagens marknadsledande probar. Denna studie avsåg att undersöka ifall dessa sensorer var lämpade för ändamålet. Därför bedömdes ett antal Arduinokompatibla sensorer utifrån deras prestanda och lämplighet som komponent i en automatisk mätprob för arbetsstyckeslokalisering i CNC-fräsmaskiner. Sensorerna och principerna som undersöktes var: mikrobrytare, induktiva sensorer, ultraljudssensorer, IR-sensorer och kontinuitetssensorer. Sensorerna testades i en fräsmaskin och deras spridning estimerades genom att beräkna standardavvikelsen hos mätdatan. Efter en litteratursökning och intervjuer med KTHs akademiker samt den tänkta målgruppen för mätproben Stockholm Makerspace, bekräftades kravbilden på sensorn. Där belystes vikten av det låga priset på slutprodukten samt ett krav på att osäkerheten ska vara runt 0.05 mm. Mikrobrytaren konstaterades vara den lämpligaste sensorn. Detta beror på dess låga pris, oberoendet av materialet på arbetsstycket och den höga repeterbarheten. Repeterbarheten beräknades vara 5 μm med en konfidensintervall på 95%. / Since CNC-milling machines have become more accessible to the public, so has the demand for economical alternatives to the market-leading product, Trigger Touch Probes (TTP). Generic sensors with open hardware are now obtainable for a low price, but it is unknown if a sensor with a cost of under 100 SEK can be used as a component in a measuring instrument. Especially where the required accuracy lies in microns. If that is the case, it would be possible to manufacture TTP at more accessible prices than the current standard. This study aimed to answer whether the low cost sensors were suitable for this application. A number of Arduino compatible sensors were therefore evaluated in terms of performance and suitability as a component in an automated measurement probe for workpiece localization in CNC-machines. The sensors/ principles that were evaluated were: micro switches, inductive sensors, ultrasound sensors, IR-sensors, and continuity sensors. The sensors were tested in a milling machine and their statistical dispersion (scattering) were estimated by calculating the standard deviation of the data. After a literature study and interviews with academia from KTH and the intended customer, Stockholm Makerspace, the requirements on the probe were decided. The importance of the low cost of the final product were brought to attention and the requirement of a variance around 0.05 mm. The micro switch was evaluated to be the most suitable sensor due to the low price, high repeatability, and the fact that it was independent of the workpiece’s material. The repeatability was measured to be 0.0052 mm with a confidence interval of 95%.
332

Design of a braiding machine : For micro-tubing used in reconfigurable fluidic wearables

Rishaug, Andreas, Sandberg, Joakim January 2022 (has links)
In this project the objective is to understand how to design a braiding machine capable of automated production of Omnifibre in a research environment. Automated production of Omnifibre is the key issue for the researchers as they want to increase the weaveabilty of the fibers and make it more suitable for use in active textiles. To achieve the necessary knowledge when designing a braiding machine, an extensive literature study was performed which focused on braids, braiding machines, and CNC manufacturing. An Interview with a researcher and with a manufacturing expert was conducted. Simulations of different braiding machine configurations were performed in TexMind braiding machine configurator. Solidworks was used to estimate the size of the braiding machine. A large amount of the machine’s parts were manufactured on a CNC mill and lathe to test manufacturability and to aid in designing optimal subsystems. The result is a proposed design for a braiding machine in the form of a 3-D model and a partially completed prototype used for testing and design evaluation. The conclusion is that Omnifibre is much like other ultra-fine braided threads, and the research on its applicability has a big impact on the braiding machine’s design, especially on flexibility in thread material and braiding patterns.
333

Effect of nanocellulose reinforcement on the properties of polymer composites

Shikha Shrestha (6631748) 11 June 2019 (has links)
<div> <p><a>Polymer nanocomposites are envisioned for use in many advanced applications, such as structural industries, aerospace, automotive technology and electronic materials, due to the improved properties like mechanical strengthening, thermal and chemical stability, easy bulk processing, and/or light-weight instigated by the filler-matrix combination compared to the neat matrix. In recent years, due to increasing environmental concerns, many industries are inclining towards developing sustainable and renewable polymer nanocomposites. Cellulose nanomaterials (CNs), including cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs), have gained popularity due to their excellent mechanical properties and eco-friendliness (extracted from trees, algae, plants etc.). However, to develop CN-reinforced nanocomposites with industrial applications it is necessary to understand impact of hygroscopic swelling (which has very limited </a>quantitative study at present), aspect ratio, orientation, and content of CNs on the overall performance of nanocomposites; and overcome the low dispersibility of CNs and improve their compatibility with hydrophobic matrix. In this work, we attempt to understand the influence of single nanocrystals in the hygroscopic and optical response exhibited by nanostructured films; effect of CNCs on the properties of PVA/CNC fibers by experimental evidence with mathematical modeling predictions; and hydrophobized CNFs using a facile, aqueous surface modification to improve interfacial compatibility with epoxy. </p><p><br></p> <p>To evaluate the effect of CNC alignment in the bulk response to hygroscopic expansion, self-organized and shear-oriented CNC films were prepared under two different mechanisms. The coefficient of hygroscopic swelling (CHS) of these films was determined by using a new contact-free method of Contrast Enhanced Microscopy Digital Image Correlation (CEMDIC) that enabled the characterization of dimensional changes induced by hygroscopic swelling of the films. This method can be readily used for other soft materials to accurately measure hygroscopic strain in a non-destructive way. By calculating the CHS values of CNC films, it was determined that hygroscopic swelling is highly dependent on the alignment of nanocrystals within the films, with aligned CNC films showing dramatically reduced hygroscopic expansion than randomly oriented films. Finite element analysis was used to simulate moisture sorption and kinetics profile which further predicted moisture diffusion as the predominant mechanism for swelling of CNC films. </p> <p><br></p><p>To study the effects of different types and aspect ratios of CNCs on mechanical, thermal and morphological properties of polyvinyl alcohol (PVA) composite <a>fibers, CNCs extracted from wood pulp and cotton were reinforced into PVA to produce fibers by dry-jet-wet spinning. The fibers were collected as-spun and with first stage drawing up to draw ratio 2. </a>The elastic modulus and tensile strength of the fibers improved with increasing CNC content (5 – 15 wt. %) at the expense of their strain-to-failure. The mechanical properties of fibers with cotton CNC were higher than the fibers with wood CNC when the same amount of CNCs were added due to their higher aspect ratio. The degree of orientation along the spun fiber axis was quantified by 2D X-ray diffraction. As expected, the CNC orientation correlates to the mechanical properties of the composite fibers. Micromechanical models were used to predict the fiber performance and compare with experimental results. Finally, surface and cross-sectional morphologies of fibers were analyzed by scanning electron microscopy and optical microscopy.</p><p><br></p> <p>To improve the dispersibility and compatibility of CNFs with epoxy, CNFs were modified by using a two-step water-based method where tannic acid (TA) acts as a primer with CNF suspension and reacts with hexadecylamine (HDA), forming the modified product as CNF-TA-HDA. The modified (-m) and unmodified (-um) CNFs were filled into hydrophobic epoxy resin with a co-solvent (acetone), which was subsequently removed to form a solvent-free two component epoxy system, followed by addition of hardener to cure the resin. Better dispersion and stronger adhesion between fillers and epoxy were obtained for m-CNF than the um-CNF, resulting in better mechanical properties of nanocomposites at the same loading. Thermal stability and the degradation temperature of m-CNF/epoxy improved when compared to neat epoxy. </p> </div> <br>
334

Modelagem numérica e experimental dos erros térmicos de um centro de usinagem CNC 5 eixos. / Numerical and experimental modeling of thermal errors in a five-axis CNC machining center.

Santos, Marcelo Otávio dos 12 July 2018 (has links)
Esta tese teve por objetivo desenvolver um algoritmo preciso e robusto capaz de compensar os erros térmicos volumétricos de um centro de usinagem 5 eixos em diferentes condições operacionais. O comportamento térmico da máquina foi modelado usando técnicas do método dos elementos finitos (MEF) com base na teoria do calor de atrito e calor de convecção, e validadas através dos vários campos de temperatura obtidos experimentalmente usando termopares e imagens térmicas. Os principais subsistemas da máquina foram inicialmente modelados, como o conjunto de fusos de esferas, guias lineares e motofuso, o que permitiu posteriormente a validação do comportamento termoelástico da máquina completa para onze ciclos de trabalho em vazio, seis ciclos de usinagem, nove ciclos de posicionamento e dois ciclos com temperatura ambiente variando, obtendo erros máximos inferiores a 9%, ao comparar os resultados numéricos com os resultados experimentais. A validação do modelo em elementos finitos permitiu usar os resultados obtidos para treinar e validar uma rede neural artificial (RNA) para prever os erros térmicos do centro de usinagem. Os desvios entre os erros térmicos previstos pela RNA e os calculados pelo MEF foram inferiores a 5%. Baseado nos resultados obtidos pelas medições das peças de trabalho usinadas foi possível formular e implementar um modelo de compensação dos erros térmicos no CNC do centro de usinagem, que obteve uma redução dos erros entre 62% e 100% nas peças usinadas com compensação. Foi também proposto um algoritmo de previsão e compensação dos erros térmicos para o centro de usinagem, baseado em todos os ciclos e simulações realizadas, e que se comparando com os resultados experimentais mostrou-se capaz de reduzir os erros térmicos entre 50% e 95%. Após sua validação, foi possível concluir que o algoritmo desenvolvido é uma ferramenta precisa e robusta para compensar os erros térmicos da máquina para várias condições de trabalho, podendo compensá-los mesmo com esta movendo-se a diferentes velocidades, em usinagem ou mesmo operando em temperatura ambiente variável. / This thesis aims to develop an accurate and robust algorithm capable of compensating the volumetric thermal errors of a 5-axis machining center under different operating conditions. The thermal behavior of the machine was first modeled using finite element method (FEM) techniques based on theory of friction heat and convection heat, and validated with the various experimentally raised temperature fields using thermocouples and thermal imaging. The main machine subsystems were initially modeled, such as the ball screw system, linear guides and spindle, which allowed for validating of the thermoelastic behavior of the entire machine for eleven no load duty cycles, six cycles of machining, nine cycles of positioning and two cycles with varying ambient temperature, obtaining errors lower than 9%, when comparing the numerical results with the experimental results. The validation of the finite element model allowed for the use of the results obtained to train and validate an artificial neural network (ANN) for predicting the thermal errors of the machining center. The deviations between the thermal errors predicted by ANN and the FEM simulation results were less than 5%. Based on the results obtained by the measurements of the machined workpieces, it was possible to formulate and implement a model of compensation of the thermal errors in the CNC of the machining center, which obtained a reduction of errors of 62% and 100% of the machined parts with compensation. It was also proposed a thermal error prediction and compensation algorithm for the machining center, based on all cycles and simulations performed, and that, comparing with the experimental results, it was able to reduce the thermal errors between 50% and 95%. After its validation, it was possible to conclude that the developed algorithm is an accurate and robust tool to compensate the thermal errors of the machine for various duty conditions, being able to compensate the errors even when it is moving at different speeds, in machining process or even operating in variable ambient temperature.
335

Uso de usinagem por jato de água, usinagem por controle numérico computadorizado e corte a laser no design de superfícies tácteis a partir de padrões modulares encaixáveis em ágata e cedro

Silveira, Flávia Lopes da January 2011 (has links)
Este trabalho tem por objetivo o design e a fabricação de superfícies tácteis a partir de padrões modulares encaixáveis. Estas superfícies foram construídas em diferentes materiais naturais (minerais e madeiras) e em distintos processos de fabricação inovadores (usinagem por jato de água, usinagem por controle numérico computadorizado ou CNC e corte a laser). A intenção foi desenvolver uma metodologia de design & tecnologia para aplicá-la em painéis de revestimento que possam ser produzidos em baixa escala de forma semi-industrial. A grande variedade de materiais naturais encontrados no estado do Rio Grande do Sul; a carência de design associado a estes materiais quando do produto final e o volume de rejeitos oriundos deste beneficiamento, foram os principais motivadores para a utilização destas matérias primas. O estudo de diferentes técnicas de design de superfície auxilia na transformação destes materiais, para que os mesmos passem a ter o formato de módulo. Dentro deste contexto, foram estudadas as técnicas desenvolvidas pelo artista Maurits Cornelis Escher. Ele dedicou boa parte de sua vida profissional à composição de desenhos que, justamente, partem da utilização da simetria, modularidade, continuidade e encaixe. Neste sentido, após a compreensão das técnicas utilizadas por Escher, alguns de seus desenhos foram aplicados nos materiais selecionados através dos processos de fabricação adequados, possibilitando a construção das diferentes superfícies tácteis. Os resultados obtidos identificam que a utilização de processos de fabricação inovadores para interferência nos materiais naturais são ferramentas importantes para a promoção de uma nova geração de produtos locais. Conclui-se que estas interferências viabilizam a fabricação de produtos com maior valor estético, social e econômico. / This work aims at the design and the manufacturing of tactile surfaces from modular plug patterns. These surfaces were built in different natural materials (mineral and wood) and in distinct innovative manufacturing processes (waterjet machining, computerized numerical control machining or CNC and laser cutting). The objective was to develop a design & technology methodology for applying it in coating panels that can be produced on a semiindustrial small scale. The huge variety of natural materials found in Rio Grande do Sul State, the lack of design associated to these materials as to the final product and the volume of waste from this processing were the main motivators for the use of these raw materials. The study of these different techniques of surface design helps the transformation of these materials in order that they start to have the modular format. Within this context, the techniques developed by the artist Maurits Cornelis Escher were studied. He devoted much of his professional life to the composition of drawings beginning exactly with the use of symmetry, modularity continuity and joint. In this sense, after understanding the techniques used by Escher, some of his drawings were applied in the materials selected through suitable manufacturing processes, enabling the construction of different tactile surfaces. The results obtained identify that the utilization of innovative manufacturing processes to interfere in the natural materials are important tools for the promotion of a new generation of local products. It is conclude that these interferences enable the manufacture of products with greater aesthetic, social and economic value.
336

A study of process planning for metal cutting / En studie av produktionsberedning för skärande bearbetning

Anderberg, Staffan January 2009 (has links)
<p>Process planning as a function for competitiveness is often neglected. However, as an intermediary between product development and manufacturing, it holds a key function in transforming product specifications and requirements into a producible process plan. Demands and requirements should be met concurrently as manufacturing costs and lead times are minimised. The focus of this thesis is the act of process planning, where the use of better methodologies, computer-aids and performance measurements are essential parts. Since process planning has the function of transforming demands and requirements, changing customer and regulative requirements are vital to regard. Since environmentally benign products and production increases in importance, the research presented in this thesis includes a CNC machining cost model, which relates machining costs to energy consumption.  The presented results in this thesis are based on quantitative and qualitative studies in the metal working industry.</p><p> </p><p>This thesis has contributed to an enhanced understanding of process planning to achieve better performance and important areas for improvements. Despite a 50 year history of computerised process planning aids, few of these are used in the industry, where manual process planning activities are more common. Process planning aids should be developed around the process planner so that non-value adding activities, such as information management and documentation are minimised in order to allow more resources for value adding activities, such as decision making. This thesis presents a study of systematic process planning in relation to perceived efficiency. This correlation could however not be verified, which opens up for further studies of other possible explanations for process planning efficiency. Process planning improvements in the industry are difficult to make, since there is little focus on process planning activities and limited knowledge about actual performance hereof. This means that measures taken regarding process planning development are difficult to verify.</p> / NFFP4
337

A study of process planning for metal cutting / En studie av produktionsberedning för skärande bearbetning

Anderberg, Staffan January 2009 (has links)
Process planning as a function for competitiveness is often neglected. However, as an intermediary between product development and manufacturing, it holds a key function in transforming product specifications and requirements into a producible process plan. Demands and requirements should be met concurrently as manufacturing costs and lead times are minimised. The focus of this thesis is the act of process planning, where the use of better methodologies, computer-aids and performance measurements are essential parts. Since process planning has the function of transforming demands and requirements, changing customer and regulative requirements are vital to regard. Since environmentally benign products and production increases in importance, the research presented in this thesis includes a CNC machining cost model, which relates machining costs to energy consumption.  The presented results in this thesis are based on quantitative and qualitative studies in the metal working industry.   This thesis has contributed to an enhanced understanding of process planning to achieve better performance and important areas for improvements. Despite a 50 year history of computerised process planning aids, few of these are used in the industry, where manual process planning activities are more common. Process planning aids should be developed around the process planner so that non-value adding activities, such as information management and documentation are minimised in order to allow more resources for value adding activities, such as decision making. This thesis presents a study of systematic process planning in relation to perceived efficiency. This correlation could however not be verified, which opens up for further studies of other possible explanations for process planning efficiency. Process planning improvements in the industry are difficult to make, since there is little focus on process planning activities and limited knowledge about actual performance hereof. This means that measures taken regarding process planning development are difficult to verify. / NFFP4
338

An Exploration into Biomimicry and its Application in Digital & Parametric [Architectural] Design

Panchuk, Neal January 2006 (has links)
Biomimicry is an applied science that derives inspiration for solutions to human problems through the study of natural designs, systems and processes. This thesis represents an investigation into biomimicry and includes the development of a design method based on biomimetic principles that is applied to the design of curved building surfaces whose derived integral structure lends itself to ease of manufacture and construction. <br /><br /> Three design concepts are produced that utilize a selection of natural principles of design outlined in the initial biomimetic investigation. The first design visualizes the human genome as a template on which the process of architectural design and construction can be paralleled. This approach utilizes an organizational structure for design instructions, the adherence to an economy of means, and a holistic linking of all aspects of a design characteristic of the genetic parallel. The advancement of the first design concept is illustrated through the use of a particular form of parametric design software known as GenerativeComponents. The second design concept applies the biomimetic design approach outlined in concept one to the development of ruled surfaces with an integral structure in the form of developable flat sheets. The final concept documents the creation of arbitrary curved surfaces consisting of an integral reinforcing structure in the form of folded sheet chevrons.
339

An Exploration into Biomimicry and its Application in Digital & Parametric [Architectural] Design

Panchuk, Neal January 2006 (has links)
Biomimicry is an applied science that derives inspiration for solutions to human problems through the study of natural designs, systems and processes. This thesis represents an investigation into biomimicry and includes the development of a design method based on biomimetic principles that is applied to the design of curved building surfaces whose derived integral structure lends itself to ease of manufacture and construction. <br /><br /> Three design concepts are produced that utilize a selection of natural principles of design outlined in the initial biomimetic investigation. The first design visualizes the human genome as a template on which the process of architectural design and construction can be paralleled. This approach utilizes an organizational structure for design instructions, the adherence to an economy of means, and a holistic linking of all aspects of a design characteristic of the genetic parallel. The advancement of the first design concept is illustrated through the use of a particular form of parametric design software known as GenerativeComponents. The second design concept applies the biomimetic design approach outlined in concept one to the development of ruled surfaces with an integral structure in the form of developable flat sheets. The final concept documents the creation of arbitrary curved surfaces consisting of an integral reinforcing structure in the form of folded sheet chevrons.
340

Distributed Control System For Cnc Machine Tools

Kanburoglu, Furkan A. 01 June 2009 (has links) (PDF)
&ldquo / Numerically Controlled&rdquo / (NC) machine tools, which are automatically operated by encoded (digital) commands, are capable of machining components with quality and quantity. Manufacturing industry heavily depends on these machines. Many different control architectures have been adapted in today&rsquo / s CNC technology. Centralized control system is quite popular in industry due to its ease of implementation. If the number of controlled axes on a CNC machine tool (&gt / 3), increases so does the computational burden on the central processors. Hence, more powerful processors are needed. An alternative architecture, which is not commonly used in CNC technology, is the decentralized (distributed) control. In this topology, the tasks handled by the distributed controllers that are interconnected to each other by a communication network. As the need arises, a new controller can be added easily to the network without augmenting the physical configuration. Despite its attractive features, this architecture has not been fully embraced by the CNC industry. Synchronization among the axes in the coordinated motion is proven to be quite challenging. In this thesis, alternative distributed controller architecture was proposed for CNC machine tools. It was implemented on a 3-axis CNC milling machine. Open-loop control performance was investigated under various conditions. Different communication protocols along with different physical communication interfaces and a number of controller hardware were devised. An industry-standard network (RS-485) was set up by interconnecting these distributed controllers. Different data transmission protocols were devised in order to establish appropriate communication methods. Also, computer software (a.k.a. graphical user interface), which can coordinate the interconnected controllers, interpret NC part programs and generate reference position data for each axis, was designed within the scope of this thesis.

Page generated in 0.0688 seconds