• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Damage Tolerance of Unidirectional Basalt/Epoxy Composites In Co-Cured Aramid Sleeves

Allen, Devin Nelson 12 December 2011 (has links) (PDF)
Unidirectional basalt fiber rods consolidated with an aramid sleeve were measured for compression strength after impact at various energy levels and compared to undamaged control specimens. These structural elements represent local members of open three-dimensional composite lattice structures (e.g., based on isogrid or IsoTruss® technologies) that are continuously fabricated using advanced three-dimensional braiding techniques. The unidirectional core specimens, nominally 8 mm (5/16") and 11 mm (7/16") in diameter, were manufactured using bi-directional braided sleeves or unidirectional spiral sleeves with full or partial (approximately half) coverage of the core fibers. The 51 mm (2") specimens were shorter than the critical buckling length, ensuring the formation of kink bands, typical of strength-controlled compression failure of unidirectional composites. The test results indicate an approximate decrease in the average undamaged compression strength of approximately 1/3 and 2/3 when impacted with 5 J (3.7 ft-lbs) and 10 J (7.4 ft-lbs) for the 8 mm (5/16") diameter specimens and 10 J (7.4 ft-lbs.) and 20 J (14.8 ft-lbs.) for the 11 mm (7/16") diameter specimens, respectively. The aramid sleeves improved the damage tolerance of the composite members, with the amount of coverage having the greatest effect; full coverage exhibiting up to 45% greater strength than partial coverage. Braided sleeves improved compression strength after impact by up to 23% over spiral sleeves, but generally had little effect on damage tolerance. Larger diameter specimens tend to be more resistant to damage than those specimens of a smaller diameter. The compressive material properties for undamaged basalt composites are also presented with the average compressive strength being 800 MPa (116 ksi).
12

Unconfined Compression Strength of Reinforced Clays with Carpet Waste Fibers

Mirzababaei, M., Miraftab, M., Mohamed, Mostafa H.A., McMahon, P. January 2013 (has links)
no / This paper presents results of a comprehensive investigation on the utilization of carpet waste fibers in reinforcement of clay soils. Effects of adding proportionate quantities of two different types of shredded carpet waste fibers to clay soils (i.e., 1, 3, and 5% by dry weight of the soil) were investigated and evaluated. The investigation was conducted on specimens prepared at their maximum dry unit weight and optimum moisture content, as well on specimens prepared at variable conditions of dry unit weight and moisture content. A comparison was also made on specimens prepared at the same fiber content by changing dry unit weight while moisture content was kept unchanged or by changing both dry unit weight and moisture content. The investigation revealed that inclusion of carpet waste fibers into clay soils prepared at the same dry unit weight can significantly enhance the unconfined compression strength (UCS), reduce postpeak strength loss, and change the failure behavior from brittle to ductile. The results also showed that the relative benefit of fibers to increase the UCS of the clay soils is highly dependent on initial dry unit weight and moisture content of the soil. Failure patterns were gradually transformed from the apparent classical failure for unreinforced soil specimens to barrel-shaped failures for reinforced specimens at 5% fiber content.
13

The Effect of Pallet Top Deck Stiffness on the Compression Strength of Asymmetrically Supported Corrugated Boxes

Quesenberry, Chandler Blake 18 March 2020 (has links)
During unitized shipment, the components of unit loads are interacting with each other. During floor stacking of unit loads, the load on the top of the pallet causes the top deck of the pallet to bend which creates an uneven top deck surface resulting in uneven, or asymmetrical support of the corrugated boxes. This asymmetrical support could significantly affect the strength of the corrugated boxes, and it depends on the top deck stiffness of the pallet. This study is aimed at investigating how the variations of pallet top deck stiffness and the resulting asymmetric support, affects corrugated box compression strength. Pallet top deck stiffness was determined to have a significant effect on box compression strength. There was a 27-37% increase in box compression strength for boxes supported by high stiffness pallets in comparison to low stiffness pallets. The fact that boxes were weaker on low stiffness pallets could be explained by the uneven pressure distribution between the pallet deck and bottom layer of boxes. Pressure data showed that a higher percentage of total pressure was located under the box sidewalls that were supported on the outside stringers of low stiffness pallets in comparison to high stiffness pallets. This was disproportionately loading one side of the box. Utilizing the effects of pallet top deck stiffness on box compression performance, a unit load cost analysis is presented showing that a stiffer pallet can be used to carry boxes with less board material; hence, it can reduce the total unit load packaging cost. / Master of Science / Packaged products are primarily shipped as unit loads that consist of packaged products restrained to a platform, commonly a pallet. Paying particular attention to the design of the unit loads' components is necessary to safely ship products while still maintaining low packaging costs and sustainability initiatives. Stacking unit loads is a common practice to effectively use warehouse space, but warehouse stacking causes large amounts of weight for packaging to support. Pallets are not completely rigid and will deform because of this weight. The purpose of the study was to investigate the effect of pallet stiffness on the compression strength of corrugated boxes. Compression tests were completed on boxes supported by pallet designs having different deck stiffnesses. The top deck stiffness of a pallet was determined to have up to a 37% effect on the strength of corrugated boxes. Pressure data recorded between the bottom layer of boxes and the top deck of the pallet showed a larger percentage of pressure was located towards the outside edges of the unit load for boxes carried by a flexible pallet. Effectively, one side of the box was stressed more than the other causing package failure. Utilizing the effects of pallet top deck stiffness on box compression performance, a unit load cost analysis is presented showing that a stiffer pallet can be used to carry boxes with less board material; hence, it can reduce the total unit load packaging cost.
14

Naudojamų hidrotechnikos statinių (lengvų) gelžbetonių atraminių sienučių betono stiprio kitimo įtaka laikomąjai galiai / Bearing Capacity Of Reinforced Concrete Retaining Walls on Operating Hydraulic Structures Under The Influence Of Changing Compression Strength

Andrusevičius, Justinas 08 August 2007 (has links)
Naudojamų hidrotechnikos statinių konstrukcijos veikiamos įvairių apkrovų ir neigiamo aplinkos poveikio nudėvimos, susiformuoja pažeidos. Ypač pavojingos pažeidos, mažinančios pagrindinių konstrukcijų laikančiąją galią. Netekus laikomosios galios kyla grėsmė statinio patikimumui ir ilgaamžiškumui. Remiantis užšalimų – atšilimų ciklų įtakos hidrotechnikos statinių konstrukcijų betonui tyrėjų darbais nustatėme, kad mokslinėje literatūroje lig šiol nepakankamai aptarta atraminių sienučių ilgaamžiškumo nustatymo metodika, pagrįsta pagrindinių betono fizikinių – mechaninių savybių kitimo veikiant užšalimų – atšilimų ciklams, vertinimu. Darbo tikslas – įvertinti hidrotechnikos statinių gelžbetoninių atraminių sienučių betono stiprio kitimo įtaką laikomąjai galiai. 2006–2007 metais tyrinėtos 6 naudojamų žemių užtvankų, esančių Marijampolės rajone, atraminės sienutės. Atliekant tyrimus nustatytos labiausiai pažeistos atraminių sienučių vietos, pažeidų tipas, plotas ir gylis bei nustatyta pagrindinė tiriamoji charakteristika – gniuždomojo betono stipris. Skaičiavimais įvertintas Antanavo hidromazgo atraminių sienučių laikomosios galios rezervas, sudaryta jo priklausomybė nuo gniuždomojo betono stiprio. Remiantis gniuždomojo betono stiprio fc ir vandens įgėrio Wm tyrimų rezultatais, žinant leidžiamą ar prognozuojamą betono stiprio sumažėjimą Δ fc dėl šalčio poveikio, apskaičiuotas betono atsparumo šalčiui rodiklis F50 % bei pagal jį nustatytas ilgaamžiškumo rodiklis – galutinio... [toliau žr. visą tekstą] / Hydraulic structures are under the impacts of various loads and aggressive environment during exploitation, they deteriorate and forms pittings. Pittings decreasing bearing capacity of main constructions are very dangerous. After loosing bearing capacity the danger arises for the reliability and durability of the hydraulic structure in general. Analysis of various researchers’ works about frost cycles influence to the concrete of HS showed, that so far in the scientific literature is not sufficiently discussed the method for retaining walls durability determination based on evaluation of change of main physical– mechanical properties of the concrete under the influence of frost cycles. The aim of the work is to evaluate the bearing capacity of reinforced concrete retaining walls under the influence of changing compression strength. The reinforced concrete retaining walls of hydraulic structures in Marijampole district were investigated in 2006–2007. The following characteristics of these retaining walls were determined when carrying out the investigations: main deteriorations and defects, average depth and area of pittings, the actual quantities of main physical-mechanical properties of concrete – compression strength. Remainder of bearing capacity was evaluated by determination of Antanavas retaining walls compression strength. Using the research results of concrete compression strength fc and water absorbability Wm and knowing allowed or forecasted loss of the concrete... [to full text]
15

Temperature Dependency of the Rheological Properties and Strength of Cemented Paste Backfill That Contains Sodium Silicate

Ali, Ghada Abdulbaqi 12 April 2021 (has links)
Over the past decades, cemented paste backfill (CPB) has become a common, environmentally friendly method of managing mine wastes (such as tailings). This technology allows up to 60% of the total amount of tailings to be reused and filled in the mine stopes after converting them into cemented material. Beside reducing the environmental risks associated with the traditional disposal of these materials, turning them into cemented material and placing them in the underground mine stopes can also provide secondary support for these stopes in addition to minimizing the risk of ground subsidence in the mine area. CPB is an engineered mixture of tailings, water, and hydraulic binder (such as cement, blast furnace slag, and fly ash) that is mixed in the paste plant and delivered into the mine stopes through a gravity or pumping based transportation system. During the transportation of CPB through the delivery system pipelines, the flowability of CPB depends on the rheology of the transported CPB, which is affected by different factors, such as the transportation time, temperature variation, binder type, and chemical composition of these mixtures. In addition, the performance of CPB, after placing the CPB mixture into the mine stopes, is mainly dependent on the role of the hydraulic binder, as it increases the mechanical strength of the mixture through the process of cement hydration. The mechanical strength is also influenced by different factors, such as time progress, temperature variation, and presence of chemical additives. It has previously been found that fresh CPB transported and/or placed in the mine stopes can be susceptible to temperature variation of different sources, such as the climatic effects, heat generated from the surrounding rocks, and heat generated during the process of cement hydration. Unsuitable flowability of CPB through the delivery system might lead to significant financial losses due to clogging of pipelines with unexpected hardening of CPB during transportation, which will cause delay in work and possible damages to the pipelines. Also, failure of CPB structure in the mine stopes due to inappropriate mechanical strength may cause casualties to the mine workers as well as significant environmental and economic damages. Many researchers studied the rheological properties and/or strength development of CPB under the individual effect of any of the aforementioned factors. Additionally, many researchers have evaluated the coupled effect of some of these factors on the rheology and mechanical strength of CPB material. Hitherto, there are currently no studies that addressed the combined effect of all these conditions on the rheological properties and strength development of CPB. At the first stage of this M.A.Sc. study, a series of experimental tests was conducted on fresh CPB in order to determine the combined effect of time, temperature, binder content, and chemical additives on the rheological properties of CPB. These experiments include rheological properties test (yield stress and viscosity), microstructural analysis (thermal analysis and XRD), chemical analysis (pH and Zeta potential), and monitoring tests (electrical conductivity), which were conducted on 125 CPB samples that were mixed and prepared at different temperatures (2oC, 20oC, 35oC) and cured for different curing time (0 hrs., 0.25 hrs., 1 hr., 2hrs, and 4 hrs.). These samples were prepared with different blends of hydraulic binders (PCI, PCI/Slag, and PCI/FA) and contained different dosages of sodium silicate (0%, 0.1%, 0.3%, and 0.5%). The results obtained show that rheology of CPB increases with the progress of curing time. It also increases with the increase in the initial (mixing and curing) temperature and content of sodium silicate. It was also found that the partial usage of slag and FA reduces the rheological properties. However, CPBs containing PCI/FA as binder have lower rheological properties, and thus better flowability, than those that contain PCI/Slag as binder. At the second stage of this M.A.Sc. study, in order to understand the combined effect of time, temperature and sodium silicate content on the strength development of slag-CPB, unconfined compression (UCS) test, microstructural analysis (thermal analysis and MIP), and monitoring tests (electrical conductivity, suction, and volumetric water content) were conducted on 72 CPB samples that were prepared with PCI-Slag as a binder, cured for different times (1 day, 3 days, 7 days, and 28 days) under different curing temperatures of (2oC, 20oC, 35oC), and contained different dosages of sodium silicate (0%, 0.3% and 0.5%). The results obtained at this stage showed that the strength development of slag-CPB increases with the progress of curing time and temperature. It also increases with the increase in the sodium silicate content. Also, the combined effect of high temperature, high dosage of sodium silicate and longer curing time showed significant enhancement in the mechanical strength of slag-CPB. The findings of this M.A.Sc. research will contribute to cost effective, efficient, and safer design of CPB structures in the mine areas. It will also help in minimizing financial loss associated with unsuitable flowability of CPB transported in the CPB delivery system besides reducing the risks of human loss, and the environmental and economic damages associated with the failure of CPB structures.
16

Damage Tolerance of Unidirectional Carbon and Fiberglass Composites with Aramid Sleeves

Sika, Charles Andrew 14 March 2012 (has links) (PDF)
Unidirectional carbon fiber and fiberglass epoxy composite elements consolidated with aramid sleeves were radially impacted at 5 J (3.7 ft-lbs) and 10 J (7.4 ft-lbs), tested under compression, and compared to undamaged control specimens. These structural elements represent local members of open three-dimensional composite lattice structures (e.g., based on isogrid or IsoTruss® technologies). Advanced three-dimensional braiding techniques were used to continuously fabricate these specimens. The unidirectional core specimens, 8 mm (5/16 in) in diameter, were manufactured with various sleeve patterns. Bi-directional braided sleeves and unidirectional spiral sleeves ranged from a nominal full to half coverage. These specimens were tested for compression strength after impact. This research used an unsupported length of 50.8 mm (2.0 in) specimens to ensure a strength-controlled compression failure. Compression strength of undamaged unidirectional carbon fiber and fiberglass epoxy composites is virtually unaffected by sleeve type and sleeve coverage. Fiberglass/epoxy configurations exhibited approximately 1/2 and 2/3 reduction in compression strength relative to undamaged configurations after impact with 5 J (3.7 ft-lbs) and 10 J (7.4 ft-lbs), respectively. Increasing aramid sleeve coverage and/or increasing the interweaving of an aramid sleeve (i.e., braid vs. spiral) increases the damage tolerance of fiberglass/epoxy composite elements. Damaged carbon/epoxy composites exhibited an approximate decrease in strength of 70% and 75% after 5 J and 10 J of impact, respectively, relative to undamaged configurations. The results verify that an aramid sleeve, regardless of type (braid or spiral), facilitates consolidation of the carbon fiber and fiberglass epoxy core. Not surprisingly, full coverage configurations exhibit greater compression strength after impact than half coverage configurations.
17

Evaluation of mechanical and fluoride ion release properties of a resin based restorative material, “Cention”

Hulsart, Line, Hongseethong, Chawanrat January 2022 (has links)
Background: A new permanent dental restorative material, Cention Forte, have recently been introduced. The manufacturer claims that this material has higher compressive strength than glass ionomer as well as positive ion release properties. Aim: To evaluate compressive strength, hardness and fluoride ion release properties of a new resin based dental restauration material, Cention Forte, in comparison with frequently used dental restoration materials.  Methods: Comparisons among Ceram.X Spectra ST (resin composite), GC Fuji II LC (glass ionomer) and Cention Forte (alkasite) were performed. Compression strength, Vickers hardness test and cumulative fluoride ion release for 2 days, 7 days in a pH4 water solution were tested. Results: Resin composites and Cention Forte showed no significant differences in compression strength, while glass ionomers showed a lower compression strength. The Vickers hardness test presented no significant difference between Cention Forte and the other two materials. Significant differences were found among the three materials in fluoride ion release. Resin composites released least amount of fluoride ions compared to Cention Forte and glass ionomer. After 2 days, Cention Forte release less fluoride than glass ionomer, but no differences in fluoride concentration after 7 days between these two materials.  Conclusions: Cention Forte showed equivalent mechanical properties to composite resin and comparable fluoride release property to glass ionomers.
18

Misturas cinza volante - cal de carbureto : durabilidade, resistência à tração e compressão / Fly ash - carbide lime blends : durability, tensile and compressive strength

Novaes, Jéssica Flesch January 2016 (has links)
Assunto cada vez mais em pauta nos foros nacionais e internacionais e nas comunidades ao redor do mundo, a questão ambiental tem sido a grande responsável pela geração de produtos novos. A construção de obras de infraestrutura é um dos maiores consumidores de recursos naturais, gerando uma enorme quantidade de resíduos, acaba também por ser um setor causador do impacto ambiental. Tais resíduos, se descartados de maneira incorreta geram problemas ambientais, em contraponto o descarte em aterros sanitários tem um custo bastante elevado. Partindo dessas premissas, buscar a utilização de resíduos como matéria prima para a indústria da construção de obras de infraestrutura é o objetivo global desta pesquisa, visando benefícios ambientais e econômicos. Para tal, foram utilizados a cinza volante, obtida através da queima do carvão nas termelétricas e rica em sílica e alumina e a cal de carbureto, oriunda da produção do gás acetileno e que possui grande quantidade de óxido de cálcio. Através de ensaios de laboratório, busca-se nesta pesquisa avaliar a influência da quantidade de cal e da porosidade, isoladamente, na durabilidade, resistência à tração e resistência à compressão e a relação resistência à tração/resistência à compressão, objetiva-se ainda avaliar a utilização do parâmetro porosidade/teor volumétrico de cal na estimativa de resistência e verificar a existência de uma relação única para este parâmetro versus a perda de massa acumulada/número de ciclos. Para isto, foram escolhidos os pesos específicos aparentes secos de 10,6, 11,6 e 12,6 kN/m³ com os respectivos teores de umidade de 36,6%, 31,3% e 25 %, sendo os teores de cal de carbureto adotados de 5, 8 e 11%. Todas as amostras foram curadas por um período de 28 dias em câmara úmida a 23°C. Os resultados apontam que o incremento da quantidade de cal e do peso específico aparente seco provocam aumentos na resistência à tração por compressão diametral, na resistência à compressão simples e na durabilidade da mistura. A utilização de um expoente como ajuste para a relação porosidade/teor volumétrico de cal [η/( ) , ] apresentou-se adequada para a formulação de equações para a previsão da resistência do material cimentado e para a estimativa da perda de massa acumulada/número de ciclos. Além disso, a existência de relações únicas para o controle da resistência à tração na compressão diametral e da resistência à compressão simples em função da porosidade e teor volumétrico de cal mostraram-se úteis para as formulações de dosagem. / The environmental issue is increasingly been responsible for the generation of new products. Infrastructure construction is one of the largest consumers of natural resources. Looking for the use of industrial residues as material for the construction industry is the overall objective of this research, aiming at environmental and economic benefits. For this, present study has used fly ash (obtained by burning coal in thermoelectric power plants) and carbide lime (originated from the production of acetylene gas) to fabricate a novel material. Through laboratory tests, one aim in this research was to evaluate the influence of the amount of lime and porosity of the blend on durability, splitting tensile strength and unconfined compressive strength, as well as on tensile/compressive ratio. Another objective was to further evaluate the use of the porosity/lime index in the estimation of strength and checking for a unique relationship for this parameter versus accumulated loss of mass/number of cycles. For such study were chosen dry unit weights of 10.6 kN/m³, 11.6 kN/m³ and 12.6 kN/m³ with the respective moisture contents of 36.6%, 31.3% and 25.0% and carbide lime contents of 5%, 8% and 11%. All samples were cured for a period 28 days in a moist chamber at 23°C. The results show that increasing dry unit weight and the amount of carbide lime cause increases in durability and splitting tensile and unconfined compressive strength of the studied blends. The use of an exponent as an adjustment to the porosity/lime index [η/( ) . ] showed to be appropriate for formulating equations for predicting the strength of cemented material and to estimate the accumulated loss of mass/number of cycles. Furthermore, the existence of unique relationships for the control of splitting tensile tests and unconfined compression strength as a function of porosity and volumetric lime content proved useful for the dosage formulations.
19

Electrical behaviour of submerged arc furnace’s charge materials

Hietava, A. (Anne) 01 June 2018 (has links)
Abstract When producing ferrochrome, a submerged arc furnace (SAF) is used. The charge of an SAF consists of chromite pellets, coke, lumpy ore and quartzite as a slag modifier. The charge is pre-heated before it descends into the SAF where the charge eventually reduces and melts. The electrical conductivity of the charge is important because, among other things, it affects the productivity of the furnace. The electrical conductivity of the charge should ideally be low on the higher parts of the furnace and high near the electrode tip. This is to ensure that the electric current path travels through the metal bath via arcing, which provides the most effective heat transfer. Another option for the current path would be through the solid feed material via ohmic conduction, but since this zone is less reactive, the heat energy would be mostly wasted. This work brings forth new information about the electrical behaviour of coke and chromite pellet is produced. The electrical conductivity was measured at room temperature for different simulated process conditions (different coke textures, different reduction degrees of chromite pellets, sulphur in atmosphere and replacing the coke used in chromite pellet production with charcoal). It was found out that unlike gasification with a CO/CO2 mixture, heat treatment at 950°C increased the degree of graphitization and changed the electrical behaviour of coke. Furthermore, it was observed that increasing the chromite pellets’ reduction degree reduced the electrical conductivity measured at room temperature. In the case of chromite pellets and sulphur in the atmosphere it was found that sulphur has an effect on the pellets’ electrical behavior and structure during reduction, which - in turn - has an effect on the SAF performance when raw materials with varying sulphur contents are used. Lastly, it was found that substituting coke with charcoal when producing chromite pellets affects the sintering behaviour, cold compression strength, and electrical conductivity of the chromite pellets. / Tiivistelmä Uppokaariuuni on osa ferrokromin valmistusprosessia. Uppokaariuuniin panostetaan kromiittipellejä, koksia, palarikastetta ja kvartsiittia. Etukuumennusuunista panos laskeutuu uppokaariuuniin, jossa se pelkistyy ja lopulta sulaa. Uppokaariuunin panoksen sähkönjohtavuus on tärkeää uunin toiminnan kannalta, koska se vaikuttaa suoraan esimerkiksi tuottavuuteen. Jotta virran kulku tapahtuisi optimaalisesti sulan metallin kautta, panoksen sähkönjohtavuuden tulee olla pieni uunin yläosissa ja suuri alaosassa lähellä elektrodien päitä. Mikäli virran kulku tapahtuu uunin yläosassa, hukataan lämpöenergiaa ja uunin toiminta hankaloituu. Tässä työssä on selvitetty koksin ja kromiittipellettien sähköisiä ominaisuuksia. Sähkönjohtavuutta on tutkittu useilla simuloiduilla prosessiolosuhteilla (koksin eri tekstuurit, kromiittipellettien eri pelkistysasteet, rikin pitoisuus atmosfäärissä ja kromiittipellettien valmistuksessa on korvattu koksi puuhiilellä). Nämä mittaukset on tehty huonelämpötilassa. Huomattiin, että toisin kuin koksin kaasutus, koksin lämpökäsittely (950°C) nosti grafitoitumisastetta ja vaikutti sähköisiin ominaisuuksiin. Kromiittipelletin pelkistymisasteen noustessa huonelämpötilassa mitattu sähkönjohtavuus laski. Kun kromiittipelletit altistetaan atmosfäärille, jossa on rikkiä, pellettien sähköiset ominaisuudet muuttuvat samoin kuin rakenne pelkistyksen aikana. Tämä vaikuttaa uppokaariuunin toimintaan, kun käytetään raaka-aineita, joissa rikkipitoisuus vaihtelee. Kun kromiittipellettien valmistuksessa käytettävä koksi korvataan puuhiilellä, tämä vaikuttaa sintrausprosessiin, kylmälujuuteen ja sähköisiin ominaisuuksiin.
20

Estudo de dosagem e avaliação de concreto celular com fins estruturais / Dosage and evaluation study of celular concrete whit structural purposes

Silva, Cledson André de Oliveira 26 May 2015 (has links)
The use of cellular concrete in buildings has been increasing recently due to its advantages (low density, better thermal comfort, among others). Some norms already regulate its application for walls of one floor buildings, and normative projects, still under development, which will regulate its application with structural purposes for walls of multi-level buildings. However, there still is not a specific dosage method that relates the formulation with the compression strength for cellular concrete manufacture, moreover, there are many variables (additive dosage, generation process of air bubbles, diameter, density and volume of bubbles, use of coarse aggregates, etc.), which influence the production process that needs a better understanding. Therefore, this study had as objective to evaluate the obtaining and properties of different types of cellular concrete, with the application intensio for structural purposes in construction walls. Thus, three types of cellular concrete procedures were developed adopting dosage procedures and different materials and compositions. The first with foam generated by generators (CESP), using foaming agent chemical additive (AESP), without coarse aggregate. The second with chemical additives incorporating the air bubbles through the mechanical action of the mixer (CBAM), also without coarse aggregate. And the third with coarse aggregates (CBAMG), and incorporating additives of air bubbles. The properties were evaluated in the fresh state (density, consistency and incorporating air content) and in the hardened state (compression strength). Based on results, the production of CESP was found to be made difficult by the use of foam-generator, damaging their manufacture, despite in agreement with the normative requirements for construction applications. CBAM presented a lower variability in the manufacturing process providing a better performance. Finally, CBAMG presented an improvement in workability compared to the CBAM concrete. The highest compression strength of cellular concrete CESP, CBAM and CBAMG, at 28 days, were 6.5 MPa, 19.5 MPa and 23.5 MPa, respectively, this can be applied in walls with structural purposes. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Atualmente o uso de concreto celular em edificações vem crescendo devido as suas vantagens (baixa densidade, melhor conforto ambiental e outras). Algumas normas já regularizam sua aplicação em paredes para edificações térreas, e projetos de normas, ainda em elaboração, que irão regularizar sua aplicação com fins estruturais em paredes de edificações de vários pavimentos. Entretanto, para a obtenção de concretos celulares ainda não existem métodos de dosagens que relacionem sua formulação com a resistência à compressão, além disso, há muitas variáveis (dosagem de aditivo, processo de geração das bolhas de ar, diâmetro, densidade e volume das bolhas, uso de agregados graúdos, etc.) que influenciam no processo de produção necessitando de um melhor entendimento. Neste sentido, o presente estudo teve como objetivo avaliar a obtenção e as propriedades de diferentes tipos de concretos celulares, com o intuito de aplicação para fins estruturais em paredes de edificações. Para isso, três tipos de concretos celulares foram desenvolvidos adotando diferentes procedimentos de dosagens, materiais e composições. O primeiro com formação de espumas geradas através de geradores (CESP), utilizando aditivo químico espumígeno (AESP), sem agregado graúdo. O segundo com aditivo químico incorporador de bolhas de ar através da ação mecânica do misturador (CBAM), também sem agregado graúdo. E o terceiro com agregados graúdos (CBAMG) e aditivos incorporadores de bolhas de ar. Foram avaliadas as propriedades no estado fresco (densidade, consistência e teor de ar incorporado) e no estado endurecido (resistência à compressão). Com base na análise dos resultados verificou-se que a produção do CESP foi dificultada pelo uso dos geradores de espuma, prejudicando sua obtenção, apesar de atender os requisitos normativos para aplicações em edificações. Já o CBAM apresentou menor variabilidade no processo de obtenção proporcionando um melhor desempenho. Quanto ao CBAMG este apresentou uma melhora na trabalhabilidade comparado aos concretos de referência CBAM. As maiores resistências à compressão dos concretos celulares CESP, CBAM e CBAMG, aos 28 dias, foram, 6,5 MPa, 19,5 MPa e 23,5 MPa, respectivamente, podendo estes serem aplicados em paredes com fins estruturais.

Page generated in 0.1691 seconds