• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 111
  • 58
  • 36
  • 15
  • 8
  • 7
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 621
  • 270
  • 155
  • 144
  • 109
  • 99
  • 79
  • 70
  • 50
  • 50
  • 46
  • 44
  • 43
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Electric field effect in metallic polymers

Hsu, Fang-Chi 07 October 2005 (has links)
No description available.
422

The Electrophoretic Deposition of Conjugated Polymer Functionalized Carbon Nanotubes for Photovoltaic Applications

Casagrande, Travis V. 10 1900 (has links)
<p><p lang="en-US">This experimental research thesis describes the combination of conjugated polymers and carbon nanotubes with the fields of electrophoretic deposition (EPD) and organic solar cells. Prior to these contributions, soluble conjugated polymers and carbon nanotubes that have been functionalized by them had not yet been deposited by EPD from solution or by using non-toxic solvents. Additionally, EPD had not yet been utilized to deposit the active layer in a solid organic photovoltaic device. <p lang="en-US">The EPD of soluble conjugated polymer functionalized carbon nanotubes from non-toxic solvents was achieved through an iterative process of experimentation and technique refinement. The developed EPD technique utilized the high pH region at the cathode substrate to neutralize positively charged weak polyelectrolytes macromolecules. Their functional groups were protonated using a minimized amount of acetic acid which also enabled their solubility. Deprotonation of the quaternary ammonium functional groups rendered them neutrally charged and insoluble tertiary amines. This mechanism facilitated the formation of coatings that were predictable and uniform in appearance and thickness. <p lang="en-US">Control over coating thickness was demonstrated by coatings spanning 100 nm to 10 μm. These coatings were produced by adjusting the applied voltage, solution concentration, and tuning the deposition duration. <p lang="en-US">Techniques for the fabrication of a photovoltaic device using an active layer produced by EPD were established though modifications of general organic photovoltaic device fabrication procedures. These modifications involved redesigning the photolithographic ITO etching pattern, adding an insulating barrier strip, thickening the aluminum electrode layer, and switching the top buffer layer from LiF to BCP.</p> / Master of Applied Science (MASc)
423

Synthesis of conjugated polymers from xanthene and alkenyl flanked diketopyrrolopyrrole monomers for high-performance electronic applications.

Wahalathantrige Don, Ranganath Wijesinghe 13 May 2022 (has links)
In traditional electronics, inorganic materials such as silicon and germanium are used as semiconductors due to their outstanding semiconducting properties. Unfortunately, inorganic materials are rigid due to their high crystalline nature, and processing these materials is complex and expensive. Furthermore, traditional semiconducting materials do not have favorable mechanical properties in applications such as wearable devices and large-area applications with complicated shapes. Conjugated conducting polymers (CCPs) are being explored as alternative materials to conventional semiconductors due to their mechanical properties and high conductivity. CCPs offer properties such as solution and low-temperature processability, flexibility, thermal and optical properties that traditional semiconductors could not provide. These characteristics are essential in Organic Light-Emitting Diodes (OLEDs), Organic Field-Effect Transistors (OFETs), and Photovoltaic (PVs) devices. This dissertation focuses on synthesizing rhodamine- and diketopyrrolopyrrole- containing CCPs. Chapter I focuses on the synthesis, and characterization of polyrhodamine (PRho), a semiconducting conjugated polymer containing the rhodamine core in the polymer’s backbone. PRho was synthesized by the Buchwald-Hartwig polycondensation and characterized for its optical and electrochemical properties. We have discovered that the polymer is electrochemically reversible and stable up to 1000 cycles as recorded by cyclic voltammetry between -0.4 and 1.0 V vs. Ag/AgCl and stable to extreme acidic and basic conditions without noticeable degradation. Remarkably, the polymer has a conductivity in the semiconductor range of 8.38 x 10-2 S cm–1 when treated with 20% HCl. Chapter II focuses on the synthesis and characterization of four different alkenyl flanked diketopyrrolopyrrole (DPP) polymers ( PDPPVTV, PDPPVTT, PDPPV3T, and PDPPV4T) synthesized via Stille polycondensation. Different pi-conjugated segments (alkenyl/ PDPPVTV, thiophene/ PDPPVTT, thienothiophene/ PDPPV3T, and dithienothiophene/ PDPPV4T) were used to tune the optoelectrical properties of the polymers. The effect of the alkenyl groups and different pi-conjugated segments on the optoelectrical and charge mobility properties were determined by UV/visible spectroscopy, cyclic voltammetry, and FET characteristics. Three of the four polymers, except PPP4T, showed good solubility in chloroform. All the polymers showed high thermal stabilities in TGA and semi-crystalline nature in X-Ray diffraction patterns. PDPPVTV and PDPPVTT exhibited hole mobilities of 1.8 x 10-3 cm2 V-1 s-1 and 0.25 cm2 V-1 s-1, respectively. .
424

Donor-Acceptor Conjugated Acetylenic Polymers for High- Performance Bifunctional Photoelectrodes

Borelli, Mino, An, Yun, Querebillo, Christine Joy, Morag, Ahiud, Neumann, Christof, Turchanin, Andrey, Sun, Hanjun, Kuc, Agnieszka, Weidinger, Inez M., Feng, Xinliang 05 August 2024 (has links)
Due to the drastic required thermodynamical requirements, a photoelectrode material that can function as both a photocathode and a photoanode remains elusive. In this work, we demonstrate for the first time that, under simulated solar light and without co-catalysts, donor-acceptor conjugated acetylenic polymers (CAPs) exhibit both impressive oxygen evolution (OER) and hydrogen evolution (HER) photocurrents in alkaline and neutral medium, respectively. In particular, poly(2,4,6-tris(4-ethynylphenyl)-1,3,5-triazine) (pTET) provides a benchmark OER photocurrent density of ~200 μA cm−2 at 1.23 V vs. reversible hydrogen electrode (RHE) at pH 13 and a remarkable HER photocurrent density of ~190 μA cm−2 at 0.3 V vs. RHE at pH 6.8. By combining theoretical investigations and electrochemical-operando Resonance Raman spectroscopy, we show that the OER proceeds with two different mechanisms, with the electron-depleted triple bonds acting as single-site OER in combination with the C4-C5 atoms of the phenyl rings as dual sites. The HER, instead, occurs via an electron transfer from the tri-acetylenic linkages to the triazine rings, which act as the HER active sites. This work represents a novel application of organic-based materials and contributes to the development of high-performance photoelectrochemical catalysts for the solar fuels’ generation.
425

Studies On The Photocytotoxic Effect Of Ferrocene-Conjugated Copper(II) Complexes

Goswami, Tridib Kumar 12 1900 (has links) (PDF)
The present thesis deals with different aspects of the chemistry and photo-biology of various ferrocene-conjugated metal complexes, their interaction with double helical DNA, DNA photocleavage and photo-enhanced cytotoxicity in visible light. Phenyl analogues of the active complexes have been synthesized and used for comparison in biological assays. Chapter I provides an introduction to the potential of metal complexes as photochemotherapeutic agents with special reference to organometallic compounds. A brief overview of Photodynamic Therapy (PDT) as a new modality of cancer treatment has been given. Various modes of non-covalent interactions of small molecules with duplex DNA are mentioned. Recent reports on the metal-based photocytotoxic and DNA cleaving agents including photoactivatable organometallic compounds are discussed. The objective of the present investigation is also presented in this chapter. Chapter II presents the synthesis, characterization, structure, DNA binding, DNA photocleavage, photocytotoxicity, mechanism of cell death and cellular localization of ferrocene-conjugated L-methionine reduced Schiff base Cu(II) complexes of phenanthroline bases. To explore the role of the ferrocenyl moiety the phenyl analogues of the ferrocenyl complexes are synthesized and used as controls for comparison purpose. Chapter III deals with the photo-induced DNA cleavage and photo-enhanced cytotoxicity of ferrocene-appended L-tryptophan Cu(II) complexes of heterocyclic bases. The synthesis, characterization, structural comparisons, DNA binding, DNA photocleavage, photocytotoxic activity and cell death mechanism in visible light are discussed in detail. Chapter IV describes the synthesis, characterization and structure of ferrocenylmethyl-L-tyrosine Cu(II) complexes of phenanthroline bases. The complexes are evaluated for DNA binding, DNA photocleavage and photocytotoxic activity in visible light. The cellular localization of the complexes and the mechanism of cell death induced by the complexes are also discussed. Chapter V presents the photocytotoxic effect of ferrocene-conjugated L-amino acid reduced Schiff base Cu(II) complexes of anthracenyl/pyrenyl imidazophenanthroline. The ability of the complexes to bind to double helical DNA and cleave it under photo-illumination conditions is described. Evaluation of the complexes as photochemotherapeutic agents and comparison with currently clinically available drug Photofrin are presented. The mechanism of cancer cell death and cellular localization of the complexes are studied by fluorescence microscopy. Chapter VI describes the synthesis, characterization and photochemotherapeutic efficacy of Cu(II) complexes having ferrocene-appended L-amino acid reduced Schiff base ligands and the naturally occurring polyphenol curcumin. Stabilization of curcumin by complexation to metal for improved photodynamic effect in cancer cells is described with comparison to the parent dye and clinically used drug Photofrin. The mechanism of cell death induced by the copper complexes and their localization in cancer cells are also presented. Finally, the summary of the dissertation and conclusions drawn from the present investigations are presented. The references in the text have been indicated as superscript numbers and compiled at the end of each chapter. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the structurally characterized complexes are given in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any unintentional omission that might have happened due to oversight or mistake is regretted.
426

Electron-Lattice Dynamics in pi-Conjugated Systems

Hultell (Andersson), Magnus January 2007 (has links)
In this thesis we explore in particular the dynamics of a special type of quasi-particle in pi-conjugated materials termed polaron, the origin of which is intimately related to the strong interactions between the electronic and the vibrational degrees of freedom within these systems. In order to conduct such studies with the particular focus of each appended paper, we simultaneously solve the time-dependent Schrödinger equation and the lattice equation of motion with a three-dimensional extension of the famous Su-Schrieffer-Heeger (SSH) model Hamiltonian. In particular, we demonstrate in Paper I the applicability of the method to model transport dynamics in molecular crystals in a region were neither band theory nor perturbative treatments such as the Holstein model and extended Marcus theory apply. In Paper II we expand the model Hamiltonian to treat the revolution of phenylene rings around the sigma-bonds and demonstrate the great impact of stochastic ring torsion on the intra-chain mobility in conjugated polymers using poly[phenylene vinylene] (PPV) as a model system. Finally, in Paper III we go beyond the original purpose of the methodology and utilize its great flexibility to study radiationless relaxations of hot excitons. / Report code: LiU-TEK-LIC-2007:4.
427

Synthesis and characterisation of block copolymers and cyclic polymers containing poly(p-phenylenevinylene)s

Lidster, Benjamin John January 2015 (has links)
Conjugated organic polymers have attracted immense interest for use in the active layer of photovoltaic cells, electroluminescent displays and diagnostic sensors. Precise control of the chemical structure of these conjugated materials is essential to achieve better device performance and certain structural aspects which have received minimal investigation include; the nature of the end groups, the precise control of the molecular weight and the formation of novel polymer topologies. Absolute control of these factors, in particular the end groups, has the potential to further tune the electro-optical properties, eliminate charge trapping and reactive sites, and facilitate block copolymer formation. The ring opening metathesis polymerisation of highly strained cyclophanediene monomers has proven to be an advantageous route to obtain soluble poly(p-phenylenevinylene)s (PPVs). In an extension of this previous work PPVs with both a pristine polymer backbone microstructure and a range of well-defined functional end groups have been prepared. These polymers exhibited excellent degrees of functionality, relatively narrow unimodal distributions and degrees of polymerisation much higher than those attainable by alternate routes. In particular the incorporation of an α-bromoester end group directly resulted in PPVs which were effective macroinitiators in the atom transfer radical polymerisation of methyl methacrylate. The diblock copolymers prepared by this route were isolated with narrow polydispersities, unimodal distributions and were free from homopolymer impurities. This method of preparing rod-b-coil diblock copolymers, where the properties of the two segments can readily be modified, provides access to materials which are of interest for both their self-assembly ability and for the development of a much required phase diagram in this area. Cyclic PPVs are of synthetic interest both for the absence of any end groups and for an infinitely long π-conjugated backbone, both of which are expected to contribute to unique electro-optical properties. The preparation of these target polymers was investigated by the ring expansion metathesis polymerisation of the cyclophanediene monomers. The formation of purely cyclic, low molecular weight PPVs was found to be highly dependent on both the reaction conditions used and the nature of the solubilising substituents. For example the preparation of purely cyclic PPVs with alkoxy side chains was unsuccessful, however the incorporation of alkyl side chains allowed for the successful isolation of the desired cyclic polymers.
428

Electrically conductive textile coatings with PEDOT:PSS

Åkerfeldt, Maria January 2015 (has links)
In smart textiles, electrical conductivity is often required for several functions, especially contacting (electroding) and interconnecting. This thesis explores electrically conductive textile surfaces made by combining conventional textile coating methods with the intrinsically conductive polymer complex poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS). PEDOT:PSS was used in textile coating formulations including polymer binder, ethylene glycol (EG) and rheology modifier. Shear viscometry was used to identify suitable viscosities of the formulations for each coating method. The coating methods were knife coating, pad coating and screen printing. The first part of the work studied the influence of composition of the coating formulation, the amount of coating and the film formation process on the surface resistivity and the surface appearance of knife-coated textiles. The electrical resistivity was largely affected by the amount of PEDOT:PSS in the coating and indicated percolation behaviour within the system. Addition of a high-boiling solvent, i.e. EG, decreased the surface resistivity with more than four orders of magnitude. Studies of tear strength and bending rigidity showed that textiles coated with formulations containing larger amounts of PEDOT:PSS and EG were softer, more ductile and stronger than those coated with formulations containing more binder. The coated textiles were found to be durable to abrasion and cyclic strain, as well as quite resilient to the harsh treatment of shear flexing. Washing increased the surface resistivity, but the samples remained conductive after five wash cycles. The second part of the work focused on using the coatings to transfer the voltage signal from piezoelectric textile fibres; the coatings were first applied using pad coating as the outer electrode on a woven sensor and then as screen-printed interconnections in a sensing glove based on stretchy, warp-knitted fabric. Sensor data from the glove was successfully used as input to a microcontroller running a robot gripper. These applications showed the viability of the concept and that the coatings could be made very flexible and integrated into the textile garment without substantial loss of the textile characteristics. The industrial feasibility of the approach was also verified through the variations of coating methods.
429

New materials and processes for flexible nanoelectronics

Ingram, Ian David Victor January 2013 (has links)
Planar electronic devices represent an attractive approach towards roll-to-roll printed electronics without the need for the sequential, precisely aligned, patterning steps inherent in the fabrication of conventional ‘3D’ electronic devices. Self-switching diodes (SSDs) and in-plane-gate field-effect transistors (IPG-FETs) can be patterned using a single process into a substrate precoated with semiconductor.These devices function in depletion mode, requiring the semiconductor to be doped in order for the devices to function. To achieve this, a reliable and controllable method was developed for doping organic semiconducting polymers by the immersion of optimally deposited films in a solution of dopant. The process was shown to apply both semicrystalline and air-stable, amorphous materials indicating that the approach is broadly applicable to a wide range of organic semiconductors.Simultaneously with the development of the doping protocol specialised hot-embossing equipment was designed and constructed and a high-yielding method of patterning the structures of IPG-FETs and SSDs was arrived at. This method allowed for consistent and reliable patterning of features with a minimum line-width of 200nm.Following the development of these doping and patterning processes these were combined to fabricate controllably doped, functioning planar devices. SSDs showed true zero-threshold rectification behaviour with no observed breakdown in the reverse direction up to 100 V. IPG-FETs showed switching behaviour in response to an applied gate potential and were largely free of detectable gate leakage current, verifying the quality of the patterning process.Furthermore, high-performance semiconducting polymer PAAD was synthesised and characterised in field-effect transistors as steps towards its use in planar electronic devices. It was also shown that this material could be doped using the developed immersion doping protocol and that this protocol was compatible with top-gated device architectures and the use of fluoropolymer CYTOP as a dielectric.
430

Développement de nouveaux matériaux conjugués aux propriétés opto-électroniques modulables : de l’électrochromisme à la fluorescence.

Bolduc, Andréanne 10 1900 (has links)
Les matériaux conjugués sont au centre de la recherche de pointe grâce à leurs propriétés photophysiques et électrochimiques intéressantes, permettant leur inclusion dans divers dispositifs de l’électronique plastique. Les grands défis pour la synthèse de ces nouveaux composés sont la reproductibilité et la purification des matériaux, ainsi que le design intelligent de molécules ayant des propriétés désirées. Afin de pallier à ces problèmes, il est impératif de développer une méthode de synthèse qui ne nécessite pas l’utilisation de conditions drastiques, ni de catalyseurs métalliques dispendieux. L’utilisation de liens azométhines est une solution intéressante, puisque ceux-ci sont formés d’une simple condensation entre une amine et un aldéhyde, que leur seul sous-produit est de l’eau, qu’ils peuvent être synthétisés avec un minimum d’étapes de purifications et qu’ils sont isoélectroniques à leurs analogues vinyliques dont les propriétés sont connues. L’objectif principal de cette thèse est d’évaluer l’effet de l’ajout de groupements électro-donneurs 3,4-éthylène dioxythiophène (EDOT) sur les propriétés opto-électroniques des azométhines dans le but ultime d’incorporer ces matériaux dans des dispositifs électrochromiques stables et efficaces. Ainsi, les propriétés photophysiques et électrochimiques de divers trimères EDOT-azométhine seront présentées. Des analogues vinyliques à des azométhines déjà connus seront développés afin de pouvoir affirmer leur comportement isoélectroniques d’un point de vue opto-électronique. Ces nouveaux composés vinyles permettront d’obtenir un diamino-thiophène pouvant être utilisé comme module pour la synthèse de polyazométhines sur surface. Ces polyazométhines seront inclus dans des dispositifs électrochromiques. Finalement, comme les azométhines ne sont pas fluorescents, l’exaltation de l’émission de bithiophènes modèles à l’aide d’un système donneur-accepteur sera présentée, dans le but ultime de pouvoir appliquer les connaissances obtenues sur les azométhines. En somme, cette thèse explore diverses modulation des propriétés afin d’améliorer le design intelligent de matériaux conjugués. / Conjugated materials have received much attention lately owing to their photophysical and electrochemical properties that make them suitable for use in plastic electronics applications. The challenges for the creation of new materials are to have reproducible synthetic methods that lead to easily purified products, as well as the intelligent design of molecules that have the desired properties. It is important do develop a synthetic method to created conjugated materials that doesn’t require harsh reaction conditions or expensive metal catalysts. Azomethine bonds are a good way to resolve this problem, since they are formed by a simple condensation between an amine and an aldehyde with water as the only by-product. They can also be synthetised with little to no purification steps and they are isoelectronic to vinyl bonds that are well-known and understood. It is also of crucial importance to understand clearly the effet of adding electron-donating and electron-withdrawing groups in the conjugated backbones of such materials. The main objective of this project is to better comprehend the effect of the added 3,4-ethylenedioxythiophene (EDOT) electron-donnating group on the opto-electronic properties of azomthine triads for the incorporation of these materials in stable and efficient electrochromic devices. Therefore, the photophysical and electrochemical properties of these materials will be presented. A series of vinyl analogs will be synthesized to confirm their isoelectronic behavior to azomethines in an opto-electronic point of view. These new vinyl compounds lead to the synthesis of a new amino-thiophene derivative that will be used as a building block for on-surface polymerization of azomethines. These polyazomethines will be incorporated in electrochromic devices and their performances will be discussed. Finally, since the azomethines are known not to be highly fluorescent, the fluorescence enhancement of push-pull bithiophene systems will be presented. The knowledge obtained about fluorescence can be used to enhance the fluorescence quantum yields of azomtehines.This thesis will therefore explore diverse tuning of material’s properties to better understand how to cleverly design conjugated materials. / La thèse est divisée en deux parties, soit le texte principal et les annexes afin d'alléger la taille des documents.

Page generated in 0.0561 seconds