41 |
Caractérisation et modélisation des mémoires Flash embarquées destinées aux applications faible consommation et à forte contrainte de fiabilité. / Characterization and modeling of embedded Flash memories for low power and high reliability applicationsJust, Guillaume 24 May 2013 (has links)
De nombreuses applications industrielles spécifiques dans les secteurs tels que l'automobile, le médical et le spatial, requièrent un très haut niveau de fiabilité. Ce type d'applications fonctionnant sous des contraintes sévères (haute température, corrosion, vibration, radiations,…) impose aux industriels des spécifications particulières en termes de fiabilité et de consommation d'énergie. Dans ce contexte, les travaux menés ont pour objectif d'étudier la fiabilité des mémoires Flash embarquées pour des applications faible consommation et à forte contrainte de fiabilité. Après une introduction orientée sur les deux volets d'étude que sont la caractérisation électrique et le test de mémoires non volatiles, un modèle physique capable de modéliser le courant de SILC a été développé. Cet outil permet de répondre à la problématique de perturbations en lecture (read disturb) et donne aux designers et technologues un moyen d'estimer le taux de défaillance de cellules mémoires en fonction de paramètres physiques, géométriques et électriques ainsi que des moyens d'action afin de minimiser ce phénomène indésirable. La fiabilité (oxyde tunnel, endurance) et les performances (consommation énergétique) de la cellule Flash sont ensuite étudiées en explorant les variations de paramètres du procédé de fabrication et des conditions électriques de fonctionnement. Enfin, une étude originale menée en temps réel sur plus de 15 mois est consacrée à la fiabilité en rétention des mémoires Flash soumises aux effets des particules radiatives présentes dans l'environnement naturel terrestre. / Many specific applications used in automotive, medical and spatial activity domains, require a very high level of reliability. These kinds of applications, working under severe constraints (high temperature, corrosion, vibration, radiations…) challenge memory manufacturers and impose them particular specifications in terms of reliability and energy consumption. In this context, work presented in this thesis aim at studying embedded Flash memories reliability for low power and high reliability applications. After an introduction oriented on areas of electrical characterizations and Test of non-volatile memories, a physical model of SILC leakage current is developed. This tool is used to answer to disturbs problematic and gives to designers and technologists a way to estimate the failure rate of memory cells according to physical, geometrical and electrical parameters, giving leads to minimize this unwanted phenomenon. Reliability (tunnel oxide, cell endurance) and performances (energy consumption) of Flash memory cell are then studied exploring process parameters variations and electrical conditions optimizations. Finally, an original real-time experiment over more than 15 months is focused on Flash memories retention reliability due to irradiative particles effects of natural terrestrial environment.
|
42 |
Stratégie de modélisation des systèmes de valorisation énergétique : Application aux machines ORC et à absorption / Modeling strategy of energy recovery systems : Application of ORC and absorption machinesWang, Yunxin 20 July 2017 (has links)
La consommation énergétique dans l’industrie augmente de nos jours, avec l’amplification des activités industrielles dans le monde. En parallèle, la pénurie des énergies primaires et le réchauffement climatique obligent des exploitations sans cesse des énergies et des techniques alternatives, afin de développer durablement, et de satisfaire l’augmentation de la consommation. Ainsi, l’amélioration de l’utilisation énergétique dans l’industrie devient aussi un sujet important à développer et à étudier. Dans certains sites industriels, les rejets thermiques sont énormément dégagés dans l’environnement sans aucun traitement énergétique. Ses températures sont parfois, beaucoup plus élevées que l’ambiant. La valorisation de ces chaleurs est conseillée, par des systèmes de valorisation, pour la production de chaud, de froid et d’électricité. Ce traitement peut réduire significativement le gaspillage et améliorer l’efficacité énergétique dans l’industrie. C’est pour cette raison, plusieurs projets sont lancés. Le projet VALENTHIN (VALorisation ENergétique des rejets THermiques INdustriels) est pour but d’améliorer l’efficacité énergétique industrielle en valorisant les rejets thermiques ou en développant les processus industriels. Cette thèse concentre sur les études des systèmes de valorisation, particulièrement en ce qui concerne les différentes méthodes de simulation. Dans cette thèse, les bibliographies sont synthétisées, sur les différentes modélisations des systèmes de valorisation, surtout le système à absorption et le cycle de Rankine organique mentionnés dans ce projet. Par conséquent, une stratégie de modélisation est proposée et est montrée, pour les simulations des systèmes en régime permanent et en régime dynamique. Le choix des types de modélisation doit prendre en compte leurs avantages et leurs inconvénients, et aussi les besoins des utilisateurs, pour but de modéliser et développer des systèmes plus aisément et plus efficacement. / Energy consumption in industry is increasing today, with the amplification of industrial activities in the world. At the same time, the scarcity of primary energy and global warming are insist the use of alternative technologies and energies, in order to sustainably develop, and to satisfy the increase in consumption. Thus, improving energy use in industry is also becoming an important topic to be developed and studied. In some industrial sites, the waste heats are enormously released into the environment without any energy treatment. Its temperatures are sometimes, much higher than the ambient. The valorization of these heats is advised, by using the valorization systems, for the production of hot, cold and electricity. This treatment can significantly reduce the energy waste and improve energy efficiency in the industry. For this reason, several projects are being launched. The aim of the VALENTHIN project is to improve industrial energy efficiency by valorizing waste heat or by developing industrial processes. This thesis concentrates on the studies of valorization systems, particularly with regard to the different modeling methods. In this report, the bibliographies are synthesized, on the different models used for the valorization systems, especially the absorption system and the organic Rankine cycle mentioned in this project. Consequently, a modeling strategy is proposed and is shown for steady state simulations and dynamic regime systems. The choice of types of modeling must take into account their advantages and disadvantages and also the needs of the users, with the aim of modeling and developing systems more easily and efficiently.
|
43 |
Fabrication de semiconducteurs poreux pour améliorer l'isolation thermique des MEMS / Fabrication of porous semicondutors for improved thermal insulation in MEMSNewby, Pascal 12 December 2013 (has links)
L'isolation thermique est essentielle dans de nombreux types de MEMS (micro-systèmes électro-mécaniques). Selon le type de dispositif, l'isolation permet de réduire la consommation d'énergie, diminuer le temps de réponse, ou augmenter sa sensibilité. Les matériaux d'isolation thermique actuellement disponibles sont difficiles à intégrer en couche épaisse dans des dispositifs en silicium. À cause de cela, l'approche la plus utilisée pour l'isolation est d'intégrer les zones à isoler sur des membranes minces (~ 1 µm). Cela assure une bonne isolation, mais est restrictif pour la conception du dispositif et la fragilité des membranes complique la fabrication et l'utilisation de celui-ci. Le silicium poreux est facile à intégrer puisqu'il est fabriqué par gravure électrochimique de substrats de Si cristallin. On peut aisément fabriquer des couches épaisses (100 µm) et sa conductivité thermique est 2-3 ordres de grandeur plus faible que celle du Si massif. Par contre sa porosité cause des problèmes : mauvaise résistance chimique, structure instable au-delà de 400°C, et tenue mécanique réduite. La facilité d'intégration des semiconducteurs poreux est un atout majeur, et nous visons donc de réduire les désavantages de ces matériaux afin de favoriser leur intégration dans des dispositifs en silicium. La première approche qui a été développée consiste à amorphiser le Si poreux en l'irradiant avec des ions à haute énergie (uranium, 110 MeV). Nous avons montré que l'amorphisation, même partielle, du Si poreux entraîne une diminution de sa conductivité thermique, sans endommager sa structure poreuse. On peut atteindre ainsi une réduction de conductivité thermique jusqu’à un facteur de trois. La seconde approche est de développer un nouveau matériau. Le SiC poreux a été choisi, puisque le SiC massif a des propriétés physiques exceptionnelles et supérieures à celles du silicium. Nous avons mené une étude systématique de la porosification du SiC en fonction de la concentration en HF et le courant, ce qui nous a permis de fabriquer des couches poreuses uniformes d’une épaisseur d’environ 100 µm. Nous avons implémenté un banc de mesure de la conductivité thermique par la méthode « 3 oméga » et l'avons utilisé pour mesurer la conductivité thermique du SiC poreux. Nos résultats montrent que la conductivité thermique du SiC poreux est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montré que le SiC poreux est résistant à tous les produits chimiques typiquement utilisés en microfabrication et est stable jusqu'à au moins 1000°C. / Thermal insulation is essential in several types of MEMS (Micro electro mechanical systems). Depending on the device, insulation can reduce the device’s power consumption, decrease its response time, or increase its sensitivity. Existing thermal insulation materials are difficult to integrate as thick layers in silicon-based devices. Because of this, the most commonly used approach is to integrate the areas requiring insulation on thin membranes. This provides effective insulation, but restricts the design of the device and the membrane’s fragility makes the device’s fabrication and use more complicated. Poreux silicon is easy to integrate as it is made by electrochemical etching of crystalline silicon substrates. 100 µm thick layers can easily be fabricated and its thermal conductivity is 2-3 orders of magnitude lower than that of bulk silicon. However, its porosity causes other problems : low chemical resistance, its structure is unstable above 400°C, and reduced mechanical stability. The ease of integration of porous semiconductors remains a major advantage, so we aim to reduce the disadvantages of these materials in order to help their integration in microfabricated devices. The first approach we developed was to amorphise porous Si by irradiating it with heavy ions. We have shown that amorphisation of porous Si, even partial, causes a reduction of its thermal conductivity without damaging its porous structure. In this way a reduction in thermal conductivity by up to a factor of three can be achieved. The second approach was to develop a new material. Porous SiC was chosen, as bulk SiC has exceptional physical properties which are superior to those of silicon. We carried out a systematic study of the porosification process of SiC versus HF concentration and current, which enabled us to make thick (100 µm) and uniform layers. We have implemented a system for measuring thermal conductivity using the “3 omega” technique and used it to measure the thermal conductivity of porous SiC. Our results show that the thermal conductivity of porous SiC is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is resistant to all chemical commonly used in microfabrication, and is stable up to at least 1000°C.
|
44 |
Modélisation des écoulements d’air et des transferts de chaleur dans un camion frigorifique : Etude des performances d’un dispositif de rideau d’air innovant pour le maintien de la chaîne du froid et la réduction des pertes à l’ouverture des portes / Modeling of airflow, heat and mass transfers in a refrigerated truck : Study of an innovative air curtain device to protect the cold chain and to reduce energy losses at the door openingLafaye de Micheaux, Téo 09 June 2016 (has links)
La préservation de la chaîne du froid est un paramètre particulièrement important dans le cadre de la distribution urbaine, où les fréquentes ouvertures de portes induisent une charge thermique d’infiltration. Afin de réduire les transferts de masse et de chaleur et de protéger l’ouverture, des rideaux d’air ont récemment été installés au niveau de l’ouverture des camions frigorifiques. L’objet de la présente étude est d’étudier ce type confinement. Deux modèles CFD ont été développés pour simuler les champs de températures et de vitesses dans un camion réfrigéré clos. Ils ont permis de montrer que la variation de la vitesse de soufflage ne modifie pas de manière significative la structure des écoulements. Différents conduits d’air sont modélisés. Les résultats numériques montrent que la configuration avec un conduit ouvert améliore fortement le renouvellement d’air. Puis, une étude numérique est réalisée dans le but d’étudier les infiltrations de chaleur et de masse au cours de l’ouverture des portes. Ces écoulements sont bien prédits par le modèle CFD, excepté à la transition entre les deux régimes d’infiltration. Une caisse expérimentale a été équipée d’un dispositif de rideau d’air composé d’un jet ambiant, d’un jet froid ou d’un jet double. En parallèle, un modèle numérique CFD a été développé pour étudier l’influence de différents paramètres. Une bonne concordance entre les résultats numériques et expérimentaux a été observée. L’efficacité du rideau d’air ambiant est maximale lorsque le point d’impact du rideau se situe dans le plan de l’ouverture. Le rideau double maintient efficacement l’homogénéité de la température pour de courtes ouvertures. Le rideau d’air froid est la meilleur configuration, il limite fortement l’augmentation de température de l’enceinte et permet des gains énergétiques importants. / Cold chain safety is a key parameter for urban distribution where the frequent door-opening induces a heat infiltration. In order to reduce heat and mass transfer, air curtain have recently been installed to protect the doorway of refrigerated truck. The aim of this work is to study this type of door insulation. Two CFD numerical models were developed to simulate the temperature and velocity fields in a closed refrigerated truck. These models showed that modifying the blowing velocity does not modify the air flow structure inside the cavity. Different air chutes were modelled. Numerical results demonstrate that the configuration with a convergent and an open duct strongly improves the air renewal. A numerical investigation was performed in order to study heat and mass infiltration rates during the opening. The infiltration flow rate is well predicted by the CFD model, except at the transition between both flow regimes. An experimental truck was equipped with an air curtain setup, composed by an ambient air jet, a cold air jet or a double jet. In parallel, a numerical CFD model was developed to study the influence of various parameters. Experimental and numerical results were found to be in good agreement. The maximum efficiency of the ambient air curtain is reached when the impact point of the jet occurs in the door plane at the ground level. This configuration is only relevant for short opening times. The double air curtain efficiently maintains the temperature homogeneity for short openings. The cold air curtain is the best configuration which strongly limits the temperature increase during the opening and allows important energy savings.
|
45 |
On the interactions between urban structures and air flows : A numerical study of the effects of urban morphology on the building wind environment and the related building energy loads / Interactions entre les villes et l'aérodynamique : Etude numérique des effets de la morphologie urbaine sur l'environnement aéraulique urbain et leur impact sur les sollicitations énergétiques des bâtimentsMerlier, Lucie 04 September 2015 (has links)
Cette thèse exploratoire pose les bases scientifiques et méthodologiques d’une approche transversale visant à étudier l’énergétique urbaine et le bio-climatisme. Elle fait appel à des concepts et des outils de l’architecture et l’urbanisme, et à la physique du bâtiment et de la ville. Cette thèse étudie les relations entre la morphologie urbaine et les processus aérodynamiques qui se développent dans la canopée urbaine et leurs effets sur la demande énergétique des bâtiments induite par les infiltrations d’air et les échanges thermiques convectifs. Les spécificités de l’aérodynamique et de la physique urbaines sont d’abord synthétisées et la morphologie de tissus urbains réels est analysée. Une typologie générique de bâtiments isolés et une autre d’îlots urbains en sont déduites. Le modèle CFD est ensuite validé par comparaison des prédictions du modèle avec des résultats expérimentaux et numériques, et des expérimentations numériques sont réalisées sur les différents types morphologiques. Les écoulements moyens sont analysés dans leurs rapports avec la morphologie bâtie, et la distribution des coefficients de pression sur les façades des bâtiments est analysée. Ensuite, les échanges thermiques sont couplés aux processus aérodynamiques. L’amélioration des estimations des échanges convectifs des bâtiments grâce à la CFD est vérifiée par comparaison des résultats de simulation avec des données expérimentales et numériques, ainsi qu’avec les valeurs standard. Une adaptation des fonctions de paroi relatives au transfert thermique est proposée sur la base d’études existantes, et la distribution des échanges convectifs sur les façades de bâtiments est analysée. Enfin, la demande énergétique des bâtiments due aux infiltrations d’air et à la transmission de chaleur au travers de leur envelope est estimée pour différents types morphologiques, et comparée avec les valeurs estimées suivant une approche réglementaire. Les résultats de cette thèse mettent en évidence les effets des propriétés topologiques et métriques des bâtiments et ensembles bâtis sur le développement de recirculations d’air dans la canopée urbaine. Celles-ci induisent une distribution et intensité hétérogènes des coefficients de pression et d’échange convectif sur les façades des bâtiments, qui influent sur le comportement thermique des bâtiments non isolés et perméables à l’air. Par ailleurs, l’estimation de leur demande énergétique diffère suivant si celle-ci est basée sur les valeurs simulées ou standard des coefficients de pression et d’échange convectif. Cependant, l’influence relative de la structure bâtie sur la demande énergétique des bâtiments apparaît plus importante pour les bâtiments isolés thermiquement. La différence entre la demande énergétique par unité de surface de plancher, due aux infiltrations d’air et pertes thermiques au travers de l’enveloppe peut varier de 18% à 47% suivant si le bâtiment est isolé ou situé dans un environnement bâti. / This thesis is an exploratory study that lays the scientific and methodological foundations of a transverse approach for studying urban energy and bio-climatic issues. This approach involves concepts and tools of building and urban physics as well as urban planning and architecture. It addresses the relations between urban morphology and aerodynamic processes, and studies their effects on the building energy loads due to infiltration and convective heat losses. This thesis is divided into three main parts. The first part synthesizes the specificities of urban aerodynamics and urban physics, and analyzes existing urban fabrics from a morphological point of view. Generic typologies of isolated buildings and urban blocks for small scale aerodynamic studies are deduced. The second part validates the computational fluid dynamics (CFD) model (steady RANS RSM) against detailed experimental and numerical data, and presents the numerical experiments performed on the different morphological types. Mean flow structures that develop according to the construction shape and built environment, as well as pressure distribution on the building outer walls are examined. The last part couples heat and air fluxes to evaluate the contribution of urban air flows on the building energy loads. The improvement brought by CFD to the assessment of building convective heat transfers is verified by comparing numerical results to experimental data, detailed numerical studies and standard correlations. An enhanced temperature wall-function adapted for forced convection problems is adjusted to the model based on existing studies, and the convective heat transfers distribution on building facades is analyzed. Finally, the building energy loads due to air infiltration and heat transmission are estimated for typical constructions and compared to standard values. The results of this thesis show strong effects of the topology and dimensionality of constructions and urban structures on the development of recirculation phenomena within the urban canopy layer. The related aerodynamic conditions yield heterogeneous pressure and convective heat transfer intensities and distributions on building facades, which depend upon the considered built morphology. Their effects on building energy loads are logically particularly important in absolute value for buildings that are neither insulated nor air tight. Nonetheless, the estimates of the building energy needs based on standard or simulated pressure and convective heat transfer coefficients often show substantial deviation. Focusing on the relative contribution of the built structure, the effects of the aerodynamic context appear more influential for insulated buildings. Essentially, switching from an exposed to a sheltered building may decrease the energy needs per surface unit of floor due to air infiltration and heat transmission through outer walls by 18% up to 47% according to simulation.
|
Page generated in 0.1336 seconds