311 |
Growth and characterization of HfON thin films with the crystal structures of HfO2Lü, Bo January 2011 (has links)
HfO2 is a popular replacement for SiO2 in modern CMOS technology. It is used as the gate dielectric layer isolating the transistor channel from the gate. For this application, certain material property demands need to be met, most importantly, a high static dielectric constant is desirable as this positively influences the effectiveness and reliability of the device. Previous theoretical calculations have found that this property varies with the crystal structure of HfO2; specifically, the tetragonal structure possesses the highest dielectric constant (~70 from theoretical calculations) out of all possible stable structures at atmospheric pressure, with the cubic phase a far second (~29, also calculated). Following the results from previous experimental work on the phase formation of sputtered HfO2, this study investigates the possibility of producing thin films of HfO2 with the cubic or tetragonal structure by the addition of nitrogen to a reactive sputtering process at various deposition temperatures. Also, a new physical vapor deposition method known as High Power Impulse Magnetron Sputtering (HiPIMS) is employed for its reported deposition stability in the transition zone of metal-oxide compounds and increased deposition rate. Structural characterization of the produced films shows that films deposited at room temperature with a low N content (~6 at%) are mainly composed of amorphous HfO2 with mixed crystallization into t-HfO2 and c-HfO2, while pure HfO2 is found to be composed of amorphous HfO2 with signs of crystallization into m-HfO2. At 400o C deposition temperature, the crystalline quality is enhanced and the structure of N incorporated HfO2 is found to be c-HfO2 only, due to further ordering of atoms in the crystal lattice. Optical and dielectric characterization revealed films with low N incorporation (< 6 at%) to be insulating while these became conductive for higher N contents. For the insulating films, a trend of increasing static dielectric constant with increasing N incorporation is found.
|
312 |
Gas flow observer for a Scania Diesel Engine with VGT and EGRJerhammar, Andreas, Höckerdal, Erik January 2006 (has links)
Today’s diesel engines are complex with systems like VGT and EGR to be able to fulfil the stricter emission legislations and the demands on the fuel consumption. Controlling a system like this demands a sophisticated control system. Furthermore, the authorities demand on self diagnosis requires an equal sophisticated diagnosis system. These systems require good knowledge about the signals present in the system and how they affect each other. One way to achieve this is to have a good model of the system and based on this calculate an observer. The observer is then used to estimate signals used for control and diagnosis. Advantages with an observer instead of using just sensors are that the sensor signals often are noisy and need to be filtered before they can be used. This causes time delay which further complicates the control and diagnosis systems. Other advantages are that sensors are expensive and that some engine quantities are hard to measure. In this Master’s thesis a model of a Scania diesel engine is developed and an observer is calculated. Due to the non-linearities in the model the observer is based on a constant gain extended Kalman filter.
|
313 |
Implementering av 1D-DCTZilic, Edmin January 2006 (has links)
IDCT (Inverse Discrete Cosine Transform) is a common algorithm being used with image and sound decompression. The algorithm is a Fourier related transform which can occur in many different types like, one-dimensional, two-dimensional, three-dimensional and many more. The goal with this thesis is to create a fast and low effect version of two-dimensional IDCT algorithm, where techniques as multiple-constant multiplication and subexpression sharing plus bit-serial and bit-parallel arithmetic are used. The result is a hardware implementation with power consumption at 19,56 mW.
|
314 |
Design and Analysis of Metastable-Hardened, High-Performance, Low-Power Flip-FlopsLi, David 19 July 2011 (has links)
With rapid technology scaling, flip-flops are becoming more susceptible to metastability due to tighter timing budgets and the more prominent effects of process, temperature, and voltage variation that can result in frequent setup and hold time violations. This thesis presents a detailed methodology and analysis on the design of metastable-hardened, high-performance, and low-power flip-flops.
The design of metastable-hardened flip-flops is focused on optimizing the value of τ mainly due to its exponential relationship with the metastability window δ and the mean-time-between-failure (MTBF). Through small-signal modeling, τ is determined to be a function of the load capacitance and the transconductance in the cross-coupled inverter pair for a given flip-flop architecture. In most cases, the reduction of τ comes at the expense of increased delay and power. Hence, two new design metrics, the metastability-delay-product (MDP) and the metastability-power-delay-product (MPDP), are proposed to analyze the tradeoffs between delay, power and τ. Post-layout simulation results have shown that the proposed optimum MPDP design can reduce the metastability window δ by at least an order of magnitude depending on the value of the settling time and the flip-flop architecture.
In this work, we have proposed two new flip-flop designs: the pre-discharge flip-flop (PDFF) and the sense-amplifier-transmission-gate (SATG) based flip-flop.
Both flip-flop architectures facilitate the usage in both single and dual-supply systems as reduced clock-swing flip-flop and level-converting flip-flop. With a cross-coupled inverter in the master-stage that increases the overall transconductance and a small load transistor associated with the critical node, the architecture of both the PDFF and the SATG is very attractive for the design of metastable-hardened, high-performance, and low-power flip-flops. The amount of overhead in delay, power, and area is all less than 10% under the optimum MPDP design scheme when compared to the traditional optimum PDP design.
In designing for metastable-hardened and soft-error tolerant flip-flops, the main methodology is to improve the metastability performance in the master-stage while applying the soft-error tolerant cell in the slave-stage for protection against soft-error. The proposed flip-flops, PDFF-SE and SATG-SE, both utilize a cross-coupled inverter on the critical path in the master-stage and generate the required differential signals to facilitate the usage of the Quatro soft-error tolerant cell in the slave-stage.
|
315 |
Effectiveness of energy wheels from transient measurementsAbe, Oyetope Omobayode 22 June 2005 (has links)
<p>Certification of energy wheel effectiveness by a selected international laboratory for many types and sizes of wheel produced by each manufacturer has proven to be very expensive and has been prone to large uncertainties. This research uses a new, low-cost, transient method to predict the effectiveness using only data obtained from transient measurements.</p><p>In this thesis, an analytical model is presented for predicting the effectiveness of rotating energy wheels using only the characteristics measured on the same non-rotating wheels exposed to a step change in temperature and humidity. A relationship between the step response and the periodic response of an energy wheel is developed using first order linear system design theory. This allows the effectiveness of an energy wheel to be predicted when the characteristics of a step response are known. The effectiveness correlations and uncertainty bounds for sensible and latent effectiveness of energy wheels determined from transient measurements are thus presented.</p><p>The experimental transient testing method and experimental verification of the effectiveness model for several different wheels are also presented in this thesis. The results obtained from the new effectiveness model are shown to agree, within uncertainty bounds, with the results obtained from the standard steady state experimental testing method and numerical simulations.</p>
|
316 |
New Approaches To Studying Non-Covalent Molecular Interactions In Nano-Confined EnvironmentsCarlson, David Andrew January 2010 (has links)
<p>The goal of this work is to develop novel molecular systems, functionalization techniques, and data collection routines with which to study the binding of immobilized cognate binding partners. Our ultimate goal is the routine evaluation of thermodynamic parameters for immobilized systems through interpretation of the variation of the binary probability of binding as a function of soluble ligand concentration. The development of both data collection routines that minimize non-specific binding and functionalization techniques that produce stable ordered molecular systems on surfaces are of paramount importance towards achievement of this goal. Methodologies developed here will be applied to investigating the thermodynamics of multivalent systems.</p><p>In the first part of this work, the effect of contact force on molecular recognition force microscopy experiments was investigated. Increased contact forces (>250 pN) resulted in increased probabilities of binding and decreased blocking efficiencies for the cognate ligand-receptor pair lactose-G3. Increased contact force applied to two control systems with no known affinity, mannose-G3 and lactose-KDPG aldolase resulted in non-specific ruptures that were indistinguishable from those of specific lactose-G3 interactions. Thus, it is essential to design data collections routines that minimize contact forces to ensure that ruptures originate from specific, blockable interactions.</p><p>In the second part of this work we report the first example of the preparation of stable self assembled monolayers through hydrosilylation of a protected aminoalkene onto hydrogen-terminated silicon nitride AFM probes and subsequent conjugation with biomolecules for force microscopy studies. Our technique can be used as a general attachment technique for other molecular systems.</p><p>In the third part of this work we develop novel molecular systems for tethering oriented vancomycin and its cognate binding partner L-Lys-D-Ala-D-Ala to surfaces and AFM tips. Unbinding experiments demonstrated that traditional methods for forming low surface density amine layers (silanization with APTMS and etherification with ethanolamine) provided molecular constructs which displayed probabilities of binding that were too low and showed overall variability too high to use for probabilistic evaluation of thermodynamics parameters. Instability and heat-induced polymerization of APTMS layers on tips and surfaces also prohibited their utility. Formation of Alkyl SAMs on silicon provides a more reliable, stable molecular system anchored by Si-C bonds that facilitates attachment of vancomycin and is capable of withstanding prolonged exposure to heated organic and aqueous environments. It follows that covalent immobilization of KDADA to silicon nitride AFM tips via Si-C bonds using hydrosilylation chemistry will be similarly advantageous. These methods offer great promise for probabilistic evaluation of thermodynamic parameters characterizing immobilized binding partners and will permit unambiguous determination of the role of multivalency in ligand binding, using an experimental configuration in which intermolecular binding and aggregation are precluded.</p> / Dissertation
|
317 |
Characterizing selectin-ligand bonds using atomic force microscopy (AFM)Sarangapani, Krishna Kumar 14 July 2005 (has links)
The human body is an intricate network of many highly regulated biochemical processes and cell adhesion is one of them. Cell adhesion is mediated by specific interactions between molecules on apposing cell surfaces and is critical to many physiological and pathological processes like inflammation and cancer metastasis. During inflammation, blood-borne circulating leukocytes regularly stick to and roll on the vessel walls, which consist in part, adhesive contacts mediated by the selectin family of adhesion receptors (P-, E- and L-selectin). This is the beginning of a multi-step cascade that ultimately leads to leukocyte recruitment in areas of injury or infection.
In vivo, selectin-mediated interactions take place in a hydrodynamic milieu and hence, it becomes imperative to study these interactions under very similar conditions in vitro. The goal of this project was to characterize the kinetic and mechanical properties of selectin interactions with different physiologically relevant ligands and selectin-specific monoclonal antibodies (mAbs) under a mechanically stressful milieu, using atomic force microscopy (AFM).
Elasticity studies revealed that bulk of the complex compliance came from the selectins, with the ligands or mAbs acting as relatively stiffer components in the stretch experiments. Furthermore, molecular elasticity was inversely related to selectin length with the Consensus Repeats (CRs) behaving as Hookean springs in series. Besides, monomeric vs. dimeric interactions could be clearly distinguished from the elasticity measurements. L-selectin dissociation studies with P-selectin Glycoprotein Ligand 1 (PSGL-1) and Endoglycan revealed that catch bonds operated at low forces while slip bonds were observed at higher forces. These results were consistent with previous P-selectin studies and suggested that catch bonds could contribute to the shear threshold for L-selectin-mediated rolling By contrast, only slip bonds were observed for L-selectin-antibody interactions, suggesting that catch bonds could be a common characteristic of selectin-ligand interactions. Force History studies revealed that off-rates of L-selectin-sPSGL-1 (or 2-GSP-6) interactions were not just dependent on applied force, as has been widely accepted but in fact, depended on the entire history of force application, thus providing a new paradigm for how force could regulate bio-molecular interactions.
Characterizing selectin-ligand interactions at the molecular level, devoid of cellular contributions, is essential in understanding the role played by molecular properties in leukocyte adhesion kinetics. In this aspect, data obtained from this project will not only add to the existing body of knowledge but also provide new insights into mechanisms by which selectins initiate leukocyte adhesion in shear.
|
318 |
Site Specific Optimization of Rotor/Generator Sizing of Wind TurbinesMartin, Kirk Alan 25 August 2006 (has links)
The optimum configuration of rotor-to-generator size for wind turbines is dependent upon the wind resource and is the configuration that produces the most electrical energy at a fixed capital cost. This optimization study held the combined cost of the rotor plus generator constant, but varied the respective sizes of the rotor and generator within this constraint. Total annual electrical energy was computed for each configuration at a series of wind resources each defined by a different Weibull probability distribution. In each case the configuration that produced the most electrical energy was determined to be the optimum. The fixed capital cost was also varied to see the effect on the optimum at each wind resource. It was found that the optimal rotor-to-generator size decreased as the average wind speed at a resource increased, and increased as Weibull shape parameter k increased. The optimal rotor-to-generator size decreased at a constant wind resource as the fixed capital cost increased. In each case there was a corresponding optimal capacity factor which never exceeded 0.5. Capacity factors above this optimum resulted in less electrical energy being produced for the same capital cost. The final product of the study is a series of graphs showing the optimum rotor size for a given generator size at a series of wind resources.
|
319 |
High Dielectric Constant Nickel-doped Titanium Oxide Films by Liquid Phase DepositionChiu, Shih-chen 11 August 2011 (has links)
In this study, the characteristics of Nickel-doped LPD-TiO2 films on silicon substrate were investigated. In our experiment, we do some measurement about physical, chemical and electrical properties for undoped and Nickel-doped LPD-TiO2 films and discussed with them. The TiO2 film thickness was characterized by field emission scanning electron microscopy ( FE-SEM ), structure was characterized by X-ray diffraction (XRD), chemical properties was characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and electrical properties was characterized by leakage current: current-voltage (B1500A) and dielectric constant: capacitance-voltage (4980A). For the electrical property improvements, we investigated the Ni-doped LPD-TiO2 films by the post-anneal treatments in nitrogen, oxygen and nitrous oxide ambient.
For nickel doping, the nickel chloride was used as the doping solution and the electrical characteristics were improved. After thermal annealing in nitrous oxide at 700 oC, the dielectric constant of polycrystalline titanium oxide film is 29 and can be improved to 94 with nickel doping.
|
320 |
Study of Titanium Oxide and Nickel Oxide Films by Liquid Phase DepositionFan, Cho-Han 27 October 2011 (has links)
An uniform titanium oxide film was grown on indium tin oxide/glass substrate with the aqueous solutions of ammonium hexafluoro-titanate and boric acid. The as-deposition titanium oxide film shows good electrochromic property because of fluorine passivation on defects and dangling bonds. The transmittance of as-grown titanium oxide on indium tin oxide/glass with a thickness of 270 nm is about 85% at the wavelength of 550 nm. By 50 times electrochromic cycling test, the transparency ratio of TiO2 film is kept at 45% between fully colored state and fully bleached state at the wavelength of 550 nm.
Under ultraviolet illumination, the growth of titanium oxide film grown is enhanced. The root mean squared value of surface roughness is improved from 3.723 to 0.523 nm. Higher fluorine concentration from (NH4)2TiF6 passivate defects and dangling bonds of titanium oxide during the growth. After 50 times electrochromic cycling test, the transparency ratio UV-TiO2 is improved from 37.5% to 42.4% at the wavelength of 550 nm.
The electrical characteristics of nickel-doped titanium oxide films on p-type (100) silicon substrate by liquid phase deposition were investigated. For nickel doping, the nickel chloride was used as the doping solution and the electrical characteristics were improved. After thermal annealing in nitrous oxide at 700 oC, the dielectric constant of polycrystalline titanium oxide film is 29 and can be improved to 94 with nickel doping.
Uniform nickel oxide film was grown on a conducting glass substrate with the aqueous solution of saturated NiF2¡E4H2O solution and H3BO3. The quality of NiO is improved after thermal annealing at 300 oC in air from the decrease of oxygen vacancy and better F ion passivation on defects and dangling bonds. The transmittance of as-deposited NiO/ITO/glass with a thickness of 100 nm is about 78% and improved to 88% after annealing at the wavelength of 550 nm. By the electrochromic cycling test 50 times on annealed NiO film, the transparency ratio is kept at 48% between fully colored state and fully bleached state at the wavelength of 550 nm. By the memory time test, the annealed LPD-NiO film has shorter memory time.
The growth of nickel oxide film grown on indium-tin oxide/glass substrate by liquid phase deposition is enhanced under ultraviolet photo-irradiation was studied. a-Ni(OH)2 dominates the composition of as-grown NiO film. After thermal treatment at 300 oC,a-Ni(OH)2 is transformed into NiO. For thermally treated NiO under ultraviolet photo-irradiation, the recrystallization and the colored and bleached transmittance after 50 times electrochromic test were improved. Both improvements come from fluorine passivation.
Transparent and conductive thin films consisting of p-type nickel oxide (NiO) semiconductors were prepared by liquid phase deposition. A resistivity of 8 x 10-1 -cm was obtained for NiO films prepared at liquid phase deposition. The transmittance of NiO is almost 70 % in the 550 nm wavelength was obtained for a 384.3 nm thick NiO film.
|
Page generated in 0.064 seconds