• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 647
  • 232
  • 165
  • 116
  • 113
  • 60
  • 46
  • 18
  • 16
  • 13
  • 8
  • 7
  • 7
  • 6
  • 5
  • Tagged with
  • 1735
  • 616
  • 492
  • 346
  • 317
  • 308
  • 293
  • 288
  • 285
  • 274
  • 205
  • 191
  • 184
  • 174
  • 159
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Two-Phase Boost Converter

Gunawan, Tadeus 01 December 2009 (has links)
A boost converter is one of the most efficient techniques to step up DC input voltage to a higher needed DC output voltage. The boost converter has many possible applications, such as in a photovoltaic system, hybrid car and battery charger. The proposed prototype in this report is a proof of concept that a Two-Phase Boost Converter is a possible improvement topology to offer higher efficiency without compromising any advantages readily offered by a basic boost. The prototype is designed to be able to handle up to 200 watts of output power with an input of 36 volts and an output of 48 volts. This paper goes through step-by-step the calculation, design, build and test of a Two-Phase Boost Converter. Calculations found in this paper were done on Mathcad and the simulations were done on LTSpice and Pspice. These include converter’s efficiency and other measures of converter’s performance. Advantages, disadvantages as well as possible improvements of the proposed topology will be presented. Data collected and analyzed from the prototype were done on a bench test, not through an actual application.
62

Single-Submodule Open-Circuit Fault Diagnosis for a Modular Multi-level Converter Using Articial Intelligence-based Techniques

Ke, Ziwei 06 November 2019 (has links)
No description available.
63

Design of Extreme Efficiency Active Rectifier for More-electric Aircrafts

Wang, Qiong 30 July 2015 (has links)
The More-electric aircraft (MEA) concept has been raised since 1990s in order to increase fuel economy and reduce environmental impact of aircrafts. The fundamental of the concept is to replace pneumatic, hydraulic and mechanical systems in conventional aircrafts with its electrical equivalent that is lighter and more reliable. In this movement, power electronics technology plays a key role in interfacing the new types of electrical loads to the new aircraft electrical power system. One of the major tasks for power electronics circuits in MEA is to transfer aircraft variable frequency AC voltage into DC voltage, which could be conveniently utilized by different types of loads or power buses. The converters carrying out the task is commonly known as "rectifiers". This work aims at designing and constructing rectifiers that can work efficiently and reliably in more-electric aircrafts. One of the major challenge for these rectifiers comes from the complex aircraft environment. The ambient temperature could be as high as 70 ºC. Moreover, active cooling for converters may not be desirable. To deal with this, rectifiers should achieve extreme efficiency (especially at full load) so that all the components are not overheated without active cooling. This work aims at achieving extreme converter efficiency through advanced converter topologies and design. Both single-phase and three-phase rectifiers are discussed in this work. For single-phase rectifiers, this work focused on boost-type power factor correction (PFC) converters due to the promising efficiency and good PFC characteristics. The well-known two-level semi-bridgeless PFC boost rectifier, together with its interleaved and three-level counterparts, are studied and compared in this work. The operation principles of the converters are analyzed. Models and methods for converter efficiency evaluation are discussed. The efficiency evaluation of the topologies shows the advantage of three-level topologies and interleaved topologies in achieving higher efficiency and better thermal management. For three-phase rectifiers, two-level boost rectifier, three-level neutral point clamped (NPC) rectifier and Vienna rectifier are investigated. The evaluation shows the advantage of Vienna rectifier in achieving high efficiency due to reduced switching loss. Based on the evaluation of single-phase and three-phase active rectifiers, the author selected interleaved Vienna rectifier to achieve extreme efficiency and avoid overheating problem. The operation principle of the interleaved Vienna rectifier is introduced, with particular attention paid to the circulating current generated by interleaving operation. The design procedure for achieving maximum efficiency is described. Finally, a prototype of the proposed converter is constructed, which achieves 99.26% efficiency at nominal load. / Master of Science
64

HIGH FREQUENCY TRANSFORMER LINKED CONVERTERS FOR PHOTOVOLTAIC APPLICATIONS

LI, QUAN, q.li@cqu.edu.au January 2006 (has links)
This thesis examines converter topologies suitable for Module Integrated Converters (MICs) in grid interactive photovoltaic (PV) systems, and makes a contribution to the development of the MIC topologies based on the two-inductor boost converter, which has received less research interest than other well known converters. The thesis provides a detailed analysis of the resonant two-inductor boost converter in the MIC implementations with intermediate constant DC links. Under variable frequency control, this converter is able to operate with a variable DC gain while maintaining the resonant condition. A similar study is also provided for the resonant two-inductor boost converter with the voltage clamp, which aims to increase the output voltage range while reducing the switch voltage stress. An operating point with minimized power loss can be also established under the fixed load condition. Both the hard-switched and the soft-switched current fed two-inductor boost converters are developed for the MIC implementations with unfolding stages. Nondissipative snubbers and a resonant transition gate drive circuit are respectively employed in the two converters to minimize the power loss. The simulation study of a frequency-changer-based two-inductor boost converter is also provided. This converter features a small non-polarised capacitor in a second phase output to provide the power balance in single phase inverter applications. Four magnetic integration solutions for the two-inductor boost converter have also been presented and they are promising in reducing the converter size and power loss.
65

A new bidirectional AC-DC converter using matrix converter and Z-source converter topologies

You, Keping , Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2007 (has links)
This thesis proposes a new bidirectional three-phase AC-DC power converter using matrix converter and Z-source inverter topologies. Advantages of the AC-DC matrix converter are the inherently controllable power factor, the tight DC voltage regulation, the wide bandwidth with quick response to load variation, the single-stage buck-voltage AC-to-DC power conversion; advantages of the z-source inverter are the increased reliability by allowing the shoot-through between upper and lower power switches of one inverter leg, insensitivity to DC bus voltage due to the extra freedom of controlling DC-link voltage. The proposed Matrix-Z-source converter (MZC) marries up both advantages of AC-DC matrix converter and Z-source inverter. It can achieve voltage-boost DC-AC inversion capable of variable voltage variable frequency (VVVF) AC output; it can achieve voltage-buck AC-DC rectification capable of inherent control over AC current phase angle and DC output regulation with a (VVVF) AC source supply. Both foresaid performance in DC-AC inversion and AC-DC rectification can be implemented in a simple open-loop control manner. Three constraints of VSI, in the bidirectional AC-DC power conversion, are the peak AC voltages are always less than DC-link voltage, closed-loop control has to be employed when DC regulation and/or AC current phase angle control are required, and AC voltage is sensitive to the variation of the DC-link voltage in DC-AC inversion. The voltage-boost inversion and/or voltage-buck rectification of MZC overcomes the first constraint; thus MZC enables the AC machine voltage increased higher than DC-link voltage hence advantages of running AC machine at relatively high voltages are enabled. The direct DC voltage regulation and inherent AC-current-phase-angle control of MZC overcomes the second constraint in an open-loop manner; hence a simplified system design is obtained with sufficient room for the further improvement by closed-loop control schemes. The extra freedom in controlling DC-link voltage of MZC overcomes the third constraint hence a DC source voltage adaptable inverter is obtained. This thesis focuses on the study of the feasibility of the proposed MZC through theoretical analysis and experimental verification. At first, the proposed MZC is conceptually constructed by examining the quadrant operation of AC-DC matrix converter and Z-source inverter. After the examination of the operating principles of both AC-DC matrix converter and Z-source inverter, the configuration of MZC is then proposed. The MZC has two operating modes: DC-AC inversion and AC-DC rectification. Circuit analysis for both operating modes shows that the new topology does not impose critical conflict in circuit design or extra restriction in parameterization. On the contrary, one version of the proposed MZC can make full advantage of Z-source network components in both operating modes, i.e. a pair of Z-source inductor and capacitor can be used as low-pass filter in AC-DC rectification. The modulation strategy, average modeling of system, and features of critical variables for circuit design of the proposed MZC were examined for each operating mode. Simulations of the proposed MZC and its experimental verification have been presented. Analytical models of conduction and switching losses of the power-switch network in different operating mode have shown that the losses in the MZC compare favorably with conventional VSI for a range of power factor and modulation indices.
66

Time-based oversampled analog-to-digital converters in nano-scale integrated circuits

Jung, Woo Young 30 March 2015 (has links)
In this research, a time-based oversampling delta-sigma (ΔΣ) ADC architecture is introduced. This system uses time, rather than voltage or current, as the analog variable for its quantizer, and the noise shaping process is realized by modulating the width of a variable-width digital “pulse.” The ΔΣ loop integrator, the quantizer and digital-to-analog converter (DAC) are all time-based circuits and are implemented using digital gates only. Hence, no amplifier or voltage-based circuit is required. The proposed architecture not only offers a viable for nano-scale ‘digital’ IC technologies, but also enables improved circuit performance compared to the state-of-the-art. This is in contrast to conventional voltage-based analog circuit design, whose performance decreases with scaling due to increasingly higher voltage uncertainty due to supply voltage. The proposed architecture allows all digital implementation after the Voltage to Time Converter (VTC) and merged multi-bit quantizer/DAC blocks by taking advantage of delay lines reusable in both quantization and DAC operation. The novelty of this architecture is digital pulse width processing to implement the ΔΣ modulation. It is realized with small area and potentially can take advantage from the process scaling. A 3-bit prototype of this ADC in 0.18 μm CMOS process is implemented, tested, and presented. With an OSR of 36 and a bandwidth of 2 MHz, it achieves a SNDR of 34.6 dB while consuming 1.5 mA from a 1.8 V supply. The core occupies an area of 0.0275 mm² (110μm × 250μm = 0.0275 mm²). The second generation of the architecture was fabricated in IBM 45 nm SOI process. The oversampling frequency of this system is 705 MHz and oversampling ratio of 64. The expected performance is 7-bit effective resolution for a 5.5 MHz bandwidth while consuming 8mW of power and occupying a core area of less than 0.02 mm² (160μm × 120μm = 0.0192 mm²). / text
67

Switching Power Converter Techniques for Server and Mobile Applications

Singh, Manmeet 13 November 2020 (has links)
No description available.
68

Frekvensomriktarens påverkan i dagens industri

Tränstad, Andreas January 2023 (has links)
The purpose of the study was to cover the impact of variable frequency drives in to-day's industry. A partial aim was also to study perspectives regarding the advantages and disadvantages of the variable frequency drive, its function based on sustainability, production efficiency and demand. The study was based on a qualitative research method, and the empirical material has been based on six semi-structured interviews from industries that currently use variable frequency drives. The results and parts of the study’s purpose were analysed based on previous research and theoretical perspectives. The results mainly show that variable frequency drives contribute to energy savings in our industries. Energy saving was also seen as one of the component's main ad-vantages, followed by the fact that it was considered cost effective in relation to its long lifetime. The cost and complexity of the product were identified as the compo-nent's disadvantages. In relation to sustainability, variable frequency drives mainly match with two of the goals in Agenda 2030, sustainability goals 9 and 12. In this regard, the variable fre-quency drives energy saving is central to the product from a sustainability point of view. In relation to production efficiency, variable frequency drives were found to be more energy efficient, and for that reason affect the process flow for the better, which indicates increased production efficiency. The component was considered as a flexible production solution that enables flow control, as well as maintaining a con-sistent quality of the production flow. Based on the results of the study, the demand that exist today for variable frequency drives only seems to increase. It is stated that there is a great demand today, while depending on the nation, it only seems to be expanding.
69

Advanced Nonlinear Control Techniques for Wind Energy Conversions Systems

Mash, Jonathan S. 01 April 2013 (has links)
This thesis presents control methods to improve the efficiency and dynamic response of wind turbines that use a permanent magnet synchronous generator operating under a wide input and load range. Two new nonlinear controllers are developed and tested. These controllers are designed to overcome the limitations of the conventional vector control methods which exhibit slow performance and uncertain stability. The first controller is based on a control Lyapunov function (CLF) which increases performance and guarantees stability under all operating conditions but is limited by its dependence on system parameters. A novel adaptive passivity based controller (APBC) is designed to overcome the parameter dependence of the CLF controller while, again, increasing performance and guaranteeing stability under all operating conditions. These controllers are simulated and their performance is compared to that of the conventional controller. The APBC controller exhibits the best performance of the three followed closely by the CLF based controller. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2013-03-28 12:22:19.931
70

The Influence of Geometry on the Performance of Catalytic Converter

Najafi Marghmaleki, Amirhassan 11 1900 (has links)
In this thesis, the development and use of a transient heterogeneous 2D model for monolithic catalytic converter is presented. Study on the cold flow hydrodynamics, temperature effect and CO conversion and light off behaviour of different models is developed. Different models are studied based on different parameters such as monolith brick CPSI configuration, size of the converter, inlet cone sizing and inlet velocity of the converter. The results for both steady state and transient modes are presented in detail. It is shown that monolith brick CPSI has a significant effect on pressure drop and light-off behaviour of the converter. Also, converter size has a major effect on the performance of a converter. Inlet cone sizing showed to have a significant effect on the hydrodynamics of the converter but it did not have a major effect on light-off behaviour of the converter. / Chemical Engineering

Page generated in 0.0805 seconds