• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 647
  • 232
  • 165
  • 116
  • 113
  • 60
  • 46
  • 18
  • 16
  • 13
  • 8
  • 7
  • 7
  • 6
  • 5
  • Tagged with
  • 1735
  • 616
  • 492
  • 346
  • 317
  • 308
  • 293
  • 288
  • 285
  • 274
  • 205
  • 191
  • 184
  • 174
  • 159
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Study of Active Power-Factor Correction Controller Circuits

Wu, Chen-chia 05 July 2005 (has links)
This thesis aims at investigating the technologies of the active power-factor correction (PFC) circuit. The system originally in the article is based on a boost converter circuit as the structure, the control method is to adopt the average current mode. We doesn¡¦t only narrate the circuit principle of the systematic circuit in the article but also use the OrCAD PSpice A/D software to simulation. Finally, we implemented make a prototype circuit and verified the proposed method. The experimental result shows that it can reach the goal for the power-factor correction.
82

Bidirectional Charge Equalization Circuit for Series-Connected Batteries

Ou, Wen-Yi 19 July 2005 (has links)
A bidirectional charge equalization circuit based on a bidirectional flyback converter topology is proposed to achieve the balance charging and discharging in series-connected battery bank. The circuit comprises a multi-input transformer, in which the batteries bank are connected to the primary windings via associated active power switches. During discharging, the batteries transfer energy to the load by activating the primary power switches. On the contrary, the batteries are charged by activating the secondary power switch in which the load is replaced by a power source. In order to simplify the control circuit and provide a flexible modulation, a digital signal processor (DSP) with the associated sensors and interface circuits are used as the control kernel. It is used to monitor the variations of battery voltages, and to regulate the duty ratio of the converter to provide a balance charging or discharging among the batteries. A battery bank with four series connected lead-acid batteries is used for illustrating the operation of the bidirectional charge equalization circuit. The experimental results advocate the applicability of the proposed approach.
83

Narrow-Divergence Ridge Waveguide Laser

Leaow, Yi-Hong 25 August 2000 (has links)
Abstract We use InGaAlAs and InGaAsP as materials of 1.55mm multi-quantum-well spot-size converter ridge waveguide lasers. On lateral conversion, we fabricate a taper ridge waveguide. On vertical conversion, we add guard layers on each side of active layer. For InGaAlAs ridge waveguide lasers, simulation results show a far field 16o ¡Ñ 27o¡]lateral ¡Ñ vertical¡^at guard layer width S = 0.1 mm with 300-150-50 mm narrow-tapered waveguide structure. Due to large Zn background contamination in the MOCVD growth chamber, we did not fabricate the InGaAlAs lasers successfully. For the InGaAsP ridge waveguide lasers, we measure a far field 18o ¡Ñ 28o and a threshold current 23 mA for the 200-250-50 mm narrow-tapered waveguide structure; a far field 20o ¡Ñ 26o and a threshold current 22 mA for the 200-250-50 mm wide-tapered waveguide structure.
84

CMOS front-end amplifier for broadband DTV tuner

Zhang, Guang 29 August 2005 (has links)
In this work, the design of a CMOS broadband low noise amplifier with inherent high performance single-to-differential conversion is presented. These characteristics are driven by the double quadrature single conversion digital television tuner which requires accurately balanced differential signals to perform its function and to improve image rejection. A three-stage amplifier is designed to satisfy several requirements of front-end circuits at the same time. The resistive shunt-feedback topology is adopted to implement a single-ended broadband low-noise amplifier as the first stage. The second stage is an on-chip single-to-differential converter, which employs a novel method to improve its balancing performance. A fully differential buffer capable of driving heavy loads is used as the third stage to further suppress the phase and magnitude errors of output differential signals. Fabricated in 0.35??m TSMC standard CMOS technology, the designed broadband front-end amplifier manages to limit the phase error to within ??1.5?? and magnitude error ??0.75dB over 50~850 MHz frequency range, with 16dB gain and a noise figure of 4dB.
85

Design of Buck LED Driver Circuits with Power Factor Correction

Wu, Chih-Hung 15 October 2008 (has links)
In the thesis, a LED driver circuit that is applied in low power LED lighting with constant output current and Power Factor Correction (PFC) is presented. For power stage of LED driver, a non-insulated switching Buck power converter without transformer is used, and develop equivalent mathematical model and block diagram of Buck converter while its inductor current operating in Continuous Conduction Mode(CCM). Furthermore, the closed loop PFC control circuit is designed by time-domain and frequency-domain analysis. In addition, because of the classical PFC control configuration needs the expensive multiplier, a LED driver circuit with PFC without multiplier is presented in this thesis in order to reduce the system cost and space of the circuit. Then, we confirm the designed circuit by simulation and experiment. By the results, the proposed system achieves constant output current control and power factor can reach to 0.92.
86

Study and Implement of Flyback LED Drivers with Power Factor Correction Using Inductor Voltage Sensing Technology

Yeh, Su-hong 24 September 2009 (has links)
In the thesis, an LED driver circuit with Power Factor Correction (PFC) and constant output current is presented. For open-loop LED driver, an insulated switching Flyback power converter is designed, and the Flyback converter will be operated in Continuous Conduction Mode(CCM). One develops equivalent mathematical model for the drivers system. The main part of this thesis is about the design and the study of a closed loop PFC control circuit using inductor voltage sensing technology. In addition, one introduces another traditional inductor current sensing control technique is included to compare with the designed control circuit. Then, one confirms the designed circuits by simulation and the experiment. From the results, the power factor can reach to 0.97, and the expected constant output current control has also been achieved.
87

An Interleaved Twin-Buck Converter with Zero-Voltage-Transition

Chen, Yu-Jen 11 August 2009 (has links)
A twin-buck converter with zero-voltage-transition (ZVT) is proposed in this thesis. The converter comprises two identical buck conversion units connected in parallel by an interleaved inductor. The ZVT is accomplished by the resonating the currents between the interleaved inductor and the parasitic capacitances of the power MOSFETs. The circuit efficiency can be further improved by introducing synchronous rectification to reduce the condition loss on the diodes. The detailed circuit analysis and operation characteristics are provided. A laboratory circuit rated at 300 W is designed and tested. Experimental results show that the switching losses can be effectively reduced by smoothly transiting the currents of the active power switches.
88

Design of Buck LED Driver Circuits with Single-stage Power Factor Correction

Liao, Hsuan-yi 25 September 2009 (has links)
This thesis is to design an LED driver circuit with constant output current and Power Factor Correction(PFC) control. Switching power converter is applied for power stage of the LED driver circuit, a non-insulated Buck converter without transformer is used, and the inductor current of Buck converter is operating in Continuous Conduction Mode(CCM). According to the operating principle of Buck converter, the equivalent mathematical model and system block diagram is developed to establish the traditional closed loop PFC control circuit. The controller parameters are set up by time-domain and frequency-domain analysis to achieve the goal with constant output current and PFC control. Furthermore, the thesis presents a more effective PFC control method to reduce the cost of multiplier used in traditional PFC control method and overcome the congenital defect of Buck converter. Both two PFC control methods are confirmed and compared by simulation and experiment. The results show that the proposed control method has more effective performance and achieve constant output current for LED with high power factor by 0.966 under full-load condition.
89

Piezoelectric Kinetic Energy-harvesting ICs

Kwon, Dongwon 04 March 2013 (has links)
Wireless micro-sensors can enjoy popularity in biomedical drug-delivery treatments and tire-pressure monitoring systems because they offer in-situ, real-time, non-intrusive processing capabilities. However, miniaturized platforms severely limit the energy of onboard batteries and shorten the lifespan of electronic systems. Ambient energy is an attractive alternative because the energy from light, heat, radio-frequency (RF) radiation, and motion can potentially be used to continuously replenish an exhaustible reservoir. Of these sources, solar light produces the highest power density, except when supplied from indoor lighting, under which conditions the available power decreases drastically. Harnessing thermal energy is viable, but micro-scale dimensions severely limit temperature gradients, the fundamental mechanism from which thermo piles draw power. Mobile electronic devices today radiate plenty of RF energy, but still, the available power rapidly drops with distance. Harvesting kinetic energy may not compete with solar power, but in contrast to indoor lighting, thermal, and RF sources, moderate and consistent vibration power across a vast range of applications is typical. Although operating conditions ultimately determine which kinetic energy-harvesting method is optimal, piezoelectric transducers are relatively mature and produce comparatively more power than their counterparts such as electrostatic and electromagnetic kinetic energy transducers. The presented research objective is to develop, design, simulate, fabricate, prototype, test, and evaluate CMOS ICs that harvest ambient kinetic energy in periodic and non-periodic vibrations using a small piezoelectric transducer to continually replenish an energy-storage device like a capacitor or a rechargeable battery. Although vibrations in surrounding environment produce abundant energy over time, tiny transducers can harness only limited power from the energy sources, especially when mechanical stimulation is weak. To overcome this challenge, the presented piezoelectric harvesters eliminate the need for a rectifier which necessarily imposes threshold limits and additional losses in the system. More fundamentally, the presented harvesting circuits condition the transducer to convert more electrical energy for a given mechanical input by increasing the electromechanical damping force of the piezoelectric transducer. The overall aim is to acquire more power by widening the input range and improving the efficiency of the IC as well as the transducer. The presented technique in essence augments the energy density of micro-scale electronic systems by scavenging the ambient kinetic energy and extends their operational lifetime. This dissertation reports the findings acquired throughout the investigation. The first chapter introduces the applications and challenges of micro-scale energy harvesting and also reviews the fundamental mechanisms and recent developments of various energy-converting transducers that can harness ambient energy in light, heat, RF radiation, and vibrations. Chapter 2 examines various existing piezoelectric harvesting circuits, which mostly adopt bridge rectifiers as their core. Chapter 3 then introduces a bridge-free piezoelectric harvester circuit that employs a switched-inductor power stage to eliminate the need for a bridge rectifier and its drawbacks. More importantly, the harvester strengthens the electrical damping force of the piezoelectric device and increases the output power of the harvester. The chapter also presents the details of the integrated-circuit (IC) implementation and the experimental results of the prototyped harvester to corroborate and clarify the bridge-free harvester operation. One of the major discoveries from the first harvester prototype is the fact that the harvester circuit can condition the piezoelectric transducer to strengthen its electrical damping force and increase the output power of the harvester. As such, Chapter 4 discusses various energy-investment strategies that increase the electrical damping force of the transducer. The chapter presents, evaluates, and compares several switched-inductor harvester circuits against each other. Based on the investigation in Chapter 4, an energy-investing piezoelectric harvester was designed and experimentally evaluated to confirm the effectiveness of the investing scheme. Chapter 5 explains the details of the IC design and the measurement results of the prototyped energy-investing piezoelectric harvester. Finally, Chapter 6 concludes the dissertation by revisiting the challenges of miniaturized piezoelectric energy harvesters and by summarizing the fundamental contributions of the research. With the same importance as with the achievements of the investigation, the last chapter lists the technological limits that bound the performance of the proposed harvesters and briefly presents perspectives from the other side of the research boundary for future investigations of micro-scale piezoelectric energy harvesting.
90

Stability of a 24-bus power system with converter interfaced generation

Weldy, Christopher 08 June 2015 (has links)
The objective of this Masters Thesis is to investigate the system stability implications of integration of power electronic converter interfaced generation (CIG) into conventional power systems. Due to differences between conventional generation and (CIG), the power system fault currents, voltage response, and frequency response will likely change with increased penetration of (CIG). This research has employed state of the art software tools to perform simulations on the IEEE 24-Bus Reliability Test System (RTS-24), appropriately modified to include converter interfaced generation. Time-domain dynamic simulations and fault calculations have been performed for the system. A comprehensive set of simulations has been performed on the base case, comprised entirely of conventional generation. Conventional generation was replaced by (CIG) in the model, one generating station at a time until (CIG) penetration reached one-hundred percent. The comprehensive set of simulations has been performed at each level of (CIG) penetration. The results have been compared to the base case, with a focus on voltage response, frequency response, and fault current levels of the power system.

Page generated in 0.0564 seconds