• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 24
  • 23
  • 8
  • 8
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 259
  • 128
  • 76
  • 71
  • 71
  • 47
  • 38
  • 32
  • 31
  • 30
  • 30
  • 24
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Increasing the Heat Transfer on a Grooved Surface Under Dry and Wet Conditions by Using of Jet Impingement

Alghamdi, Abdulrahman Saeed 15 June 2020 (has links)
An approach to hybrid cooling technique is proposed using air jets which impinge on a triangular grooved surface with dry grooves and grooves containing water. One major application is for condensers of thermoelectric power plants. The heat and mass transfer analogy were successfully used to evaluate the simultaneous heat and mass transfer. Results showed that hybrid jet impingement produced high heat flux levels at low jet velocities and flow rates. Experimental results were used to characterize the resulting heat transfer under different conditions such as flow open area percentage, array orifices diameter and array to surface stand-off distance. The results have shown that jet impingement is capable of delivering high transfer rates with lower cooling cost rates compared to current industry conventional techniques. Water is efficiently used in hybrid jet impingement because evaporative energy is absorbed directly from the surface instead of cooling air to near wet-bulb temperature. / Master of Science / Array jet impingement cooling experiments were conducted on a triangular grooved surface with the surface at a constant temperature. Results showed that jet impingement can provide high transfer rates with lower rates of cooling cost in comparison to contemporary conventional techniques in the industry. Experiments on the triangular grooved surfaces were performed at dry and wet surface conditions. Under the dry conditions, the objective is to characterize the resulting heat transfer under varying operational conditions such as jet speed, array orifice diameter, array to surface stand-off distance, and flow open area percentage. Results from the triangular surface when dry showed less improvement in heat transfer than the rectangular grooved surface. A hybrid cooling technique approach was proposed and developed by using air jets impinging on a triangular grooved surface with the grooves containing water. The approach is being suggested and experimentally tested for its viability as an alternative to thermoelectric power plant cooling towers. Convection heat and mass transfer coefficients were experimentally measured for different wet coverage of the surface. Results showed that the hybrid jet impingement produced high heat flux levels at low jet velocities and flow rates. The highest heat transfer was consistently found with a 50% coverage of the surface. Hybrid jet impingement showed an improvement up to 500% in heat transfer as compared to jet impingement on a dry grooved surface.
222

Augmentation of Jet Impingement Heat Transfer on a Grooved Surface Under Wet and Dry Conditions

Alsaiari, Abdulmohsen Omar 27 November 2018 (has links)
Array jet impingement cooling experiments were performed on flat and grooved surfaces with the surface at a constant temperature. For the flat surface, power and temperature measurements were performed to obtain convection coefficients under a wide range of operating conditions such as jet speed, orifice to surface stand-of distance, and open area percentage. Cooling performance (CP) was calculated as the ratio between heat transfer and fan power. An empirical model was developed to predict jet impingement heat transfer taking into account the entrainment effects. Experimental results showed that jet impingement can provide high transfer rates with lower rates of cooling cost in comparison to contemporary conventional techniques in the industry. CP values over 279 were measured which are significantly higher than the standard values of 70 to 95 in current technology. The model enhanced prediction accuracy by taking into account the entrainment effects; an effect that is rarely considered in the literature. Experiments on the grooved surfaces were performed at dry and wet surface conditions. Under dry conditions, results showed 10%~55% improvement in heat transfer when compared to the flat surface. Improvement percentage tends to be higher at wider gaps between the array of orifices and the grooved surface. An improvement of 30%~40% was observed when increasing Re either by increasing orifice diameter or jet speed. Similar improvement was observed at higher flow open area percentages. No significant improvement in heat transfer resulted from decreasing the size of the grooves from 3.56mm to 2.54mm. Similarly, no noticeable change in heat transfer resulted from changing the relative position of the jets striking the surface at the top of the grooves to the bottom of the grooves. Deeper grooves with twice the depth gave statistically similar average heat transfer coefficients as shallower grooves. Under wet conditions, a hybrid cooling technique approach was proposed by using air jets impinging on a grooved surface with the grooves containing water. The approached is proposed and evaluated experimentally for its feasibility as an alternative for cooling towers of thermoelectric power plants. Convection heat and mass transfer coefficients were measured experimentally using the heat mass transfer analogy. Results showed that hybrid jet impingement provided high magnitudes of heat flux at low jet speeds and flow rates. High coefficients of performance CP > 3000, and heat fluxes > 8,000W/m2 were observed. Hybrid jet impingement showed 500% improvement as compared to jet impingement on a dry flat surface. CP values of hybrid jet impingement is 600% to 1,500% more as compared to performance of air-cooled condensers and wet cooling towers. Water use for hybrid jet impingement cooling is efficient since evaporation energy is absorbed from the surface directly instead of cooling air to near wet-bulb temperature. / PHD / This thesis explored the possibility of using air jets on the outside surface of a device that is used to condense steam. An experiment apparatus was used to imitate the conditions of steam condensation in the lab. A flat metallic surface was heated by placing an electric heater beneath it. The metallic surface was cooled using air jets coming out of orifices situated above the hot metallic surface. A fan, connected to an electric motor, was used to create the air jets. The amount of heat transfer was measured by measuring the electric power the heater consumed. This measured power was compared to the power needed to run the fan. The ratio of heat transfer to fan power is called the coefficient of performance CP. The CP values of more than 200 were obtained when air jets were used meaning that we need one kilowatt of mechanical power to remove 200 kilowatts of heat. This CP value is 300% more than the current technology used in the industry where CP ranges from 70 to 90. This means that we can build very efficient steam condensers for power plants. This type of condensers that uses air jets allows the power plant to be efficient and to be able to increase the amount of power generated without extra cost. Further enhancement of the CP can be achieved by making the hot surface grooved instead of flat with the grooves containing water. Air jets, coming out of orifices situated above the grooved surface, were used for cooling. The CP values of more than 3,000 were obtained when air jets were used with wet grooved surface. This CP values is 1,500% more than the current technology used in the industry. This type of condensers that uses air jets on wet grooves allows the power plant to be efficient and to be able to tremendously increase the amount of power generated without extra power and water costs.
223

Kondenzátor páry / Condenser

Juráš, Filip January 2017 (has links)
The Master´s thesis is dealing with water-cooled condensers and is splitted into three main parts. The first section provides general knowledge about condensers and heat exchangers, including the basic information of hydrophobic surfaces. These surfaces were used during verifying the impact of hydrophobicity on the heat exchange in water steam. The second section describes an experimental testing. It shows the difference between hydrophobic and nonhydrophobic surfaces and their impact on the heat exchange. The third and the last part of this thesis is design and calculation of water-cooled condenser. The design of the condenser is supported by drawings placed in attachement.
224

Comportement des déchets graphite en situation de stockage : Relâchement et répartition des espèces organiques et inogarniques du carbone 14 et du tritium en milieu alcalin / Nuclear graphite waste’s behaviour under disposal conditions : Study of the release and repartition of organic and inorganic forms of carbon 14 and tritium in alkaline media

Vende, Ludivine 26 October 2012 (has links)
23000 tonnes de déchets graphites seront générés lors du démantèlement de la première filière de réacteurs en France (9 réacteurs Uranium Naturel Graphite Gas, UNGG). Ces déchets radioactifs sont classés dans la catégorie Faible Activité Vie Longue (FAVL). Dans le cadre de la loi, l’agence nationale pour la gestion des déchets radioactifs (Andra) étudie un concept de stockage à faible profondeur. Cette étude s’intéresse plus particulièrement au carbone 14, qui est un des principaux radionucléides à vie longue (5730 ans) dans les déchets graphite, mais aussi au tritium qui est l’un des principaux contributeurs de la radioactivité à court terme. Ces deux radionucléides ont la particularité d’exister sous différentes formes, aussi bien en phase gaz (14CO2, HT,…) qu’en phase liquide (14CO32-, HTO,…). Leur spéciation va influencer leur migration du stockage vers l’environnement. Des expériences de lixiviation en milieu alcalin (NaOH 0,1mol.L-1, simulant les conditions de stockage), ont été réalisées sur des échantillons de graphites irradiés provenant de deux réacteurs : SLA2 et G2, afin de quantifier leur relâchement et de définir leur spéciation. Les études montrent que le carbone se trouve aussi bien en phase gaz qu’en phase liquide. Dans la phase gaz, le relâchement est faible (< 0,1%), et correspond à des formes oxydables. Le carbone 14 est relâché majoritairement en phase liquide : 65% de la fraction d’inventaire relâchée est sous forme de carbone 14 inorganique, et 35% de carbone 14 organique. Deux formes de tritium ont été identifiées dans la phase gaz : HTO et HT/Tritium Organiquement Lié. Plus de 90% du tritium en phase gaz se trouve sous forme HT/TOL, mais ce relâchement est faible (<0,1%). Majoritairement le tritium est en phase liquide sous forme HTO. / 23000 tons of graphite wastes will be generated during dismantling of the first generation of French reactors (9 gas cooled reactors). These wastes are classified as Long Lived Low Level wastes (LLW-LL). As requested by the law, the French National Radioactive Waste Management Agency (Andra) is studying concepts of low-depth disposals.In this work we focus on carbon 14, the main long-lived radionuclide in graphite waste (5730y), but also on tritium, which is the main contributor to the radioactivity in the short term. Carbon 14 and tritium may be released from graphite waste in many forms in gaseous phase (14CO2, HT…) or in solution (14CO32-, HTO…). Their speciation will strongly affect their migration from the disposal site to the environment. Leaching experiments, in alkaline solution (0.1 M NaOH simulating repository conditions) have been performed on irradiated graphite, from Saint-Laurent A2 and G2 reactors, in order to quantify their release and characterize their speciation. The studies show that carbon 14 exists in both gaseous and aqueous phases. In the gaseous phase, release is weak (<0.1%) and corresponds to oxidizable species. Carbon 14 is mainly released into liquid phase, as both inorganic and organic species. 65% of released fraction is inorganic and 35% organic carbon. Two tritiated species have been identified in gaseous phase: HTO and HT/Organically Bond Tritium. More than 90% of tritium in that phase corresponds to HT/OBT. But release is weak (<0.1%). HTO is mainly in the liquid phase.
225

Magnetism in Ni80Fe20 and Ni80Fe20/NiO Nano-stripes

Mirza, Mueed 22 August 2012 (has links)
Ni80Fe20 and Ni80Fe20/NiO films and nano-stripes were characterized magnetically through AC and DC susceptibility measurements, and hysteresis loops as a function of field and temperature. While the near-pattern films were characterized in the in-plane configuration only, the nano-stripes were characterized in parallel, transverse and the perpendicular field configurations. The effects of the constrained geometry on the coercivity, exchange bias field, and the superparamagnetic blocking temperature were studied. It was determined that the coercivity, exchange bias field and the superparamagnetic blocking temperature can be controlled, not only by using a patterned media instead of a plane film, but also by the orientation of that pattern.
226

Deep burn strategy for the optimized incineration of reactor waste plutonium in pebble bed high temperature gas–cooled reactors / Serfontein D.E.

Serfontein, Dawid Eduard. January 1900 (has links)
In this thesis advanced fuel cycles for the incineration, i.e. deep–burn, of weapons–grade plutonium, reactor–grade plutonium from pressurised light water reactors and reactor–grade plutonium + the associated Minor Actinides in the 400 MWth Pebble Bed Modular Reactor Demonstration Power Plant was simulated with the VSOP 99/05 diffusion code. These results were also compared to the standard 9 g/fuel sphere U/Pu 9.6% enriched uranium fuel cycle. The addition of the Minor Actinides to the reactor–grade plutonium caused an unacceptable decrease in the burn–up and thus an unacceptable increase in the heavy metal (HM) content in the spent fuel, which is intended for direct disposal in a deep geological repository, without chemical reprocessing. All the Pu fuel cycles failed the adopted safety limits in that either the maximum fuel temperature of 1130°C, during normal operation, or the maximum power of 4.5 kW/sphere was exceeded. All the Pu cycles also produced positive Uniform Temperature Reactivity Coefficients, i.e. the coefficient where the temperature of the fuel and the graphite moderator in the fuel spheres are varied together. these positive temperature coefficients were experienced at low temperatures, typically below 700°C. This was due to the influence of the thermal fission resonance of 241Pu. The safety performance of the weapons–grade plutonium was the worst. The safety performance of the reactor–grade plutonium also deteriorated when the heavy metal loading was reduced from 3 g/sphere to 2 g or 1 g. In view of these safety problems, these Pu fuel cycles were judged to be not licensable in the PBMR DPP–400 reactor. Therefore a redesign of the fuel cycle for reactor–grade plutonium, the power conversion system and the reactor geometry was proposed in order to solve these problems. The main elements of these proposals are: v 1. The use of 3 g reactor–grade plutonium fuel spheres should be the point of departure. 232Th will then be added in order to restore negative Uniform Temperature Reactivity Coefficients. 2. The introduction of neutron poisons into the reflectors, in order to suppress the power density peaks and thus the temperature peaks. 3. In order to counter the reduction in burn–up by this introduction of neutron poisons, a thinning of the central reflector was proposed. / Thesis (PhD (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2012.
227

Magnetism in Ni80Fe20 and Ni80Fe20/NiO Nano-stripes

Mirza, Mueed 22 August 2012 (has links)
Ni80Fe20 and Ni80Fe20/NiO films and nano-stripes were characterized magnetically through AC and DC susceptibility measurements, and hysteresis loops as a function of field and temperature. While the near-pattern films were characterized in the in-plane configuration only, the nano-stripes were characterized in parallel, transverse and the perpendicular field configurations. The effects of the constrained geometry on the coercivity, exchange bias field, and the superparamagnetic blocking temperature were studied. It was determined that the coercivity, exchange bias field and the superparamagnetic blocking temperature can be controlled, not only by using a patterned media instead of a plane film, but also by the orientation of that pattern.
228

Deep burn strategy for the optimized incineration of reactor waste plutonium in pebble bed high temperature gas–cooled reactors / Serfontein D.E.

Serfontein, Dawid Eduard. January 1900 (has links)
In this thesis advanced fuel cycles for the incineration, i.e. deep–burn, of weapons–grade plutonium, reactor–grade plutonium from pressurised light water reactors and reactor–grade plutonium + the associated Minor Actinides in the 400 MWth Pebble Bed Modular Reactor Demonstration Power Plant was simulated with the VSOP 99/05 diffusion code. These results were also compared to the standard 9 g/fuel sphere U/Pu 9.6% enriched uranium fuel cycle. The addition of the Minor Actinides to the reactor–grade plutonium caused an unacceptable decrease in the burn–up and thus an unacceptable increase in the heavy metal (HM) content in the spent fuel, which is intended for direct disposal in a deep geological repository, without chemical reprocessing. All the Pu fuel cycles failed the adopted safety limits in that either the maximum fuel temperature of 1130°C, during normal operation, or the maximum power of 4.5 kW/sphere was exceeded. All the Pu cycles also produced positive Uniform Temperature Reactivity Coefficients, i.e. the coefficient where the temperature of the fuel and the graphite moderator in the fuel spheres are varied together. these positive temperature coefficients were experienced at low temperatures, typically below 700°C. This was due to the influence of the thermal fission resonance of 241Pu. The safety performance of the weapons–grade plutonium was the worst. The safety performance of the reactor–grade plutonium also deteriorated when the heavy metal loading was reduced from 3 g/sphere to 2 g or 1 g. In view of these safety problems, these Pu fuel cycles were judged to be not licensable in the PBMR DPP–400 reactor. Therefore a redesign of the fuel cycle for reactor–grade plutonium, the power conversion system and the reactor geometry was proposed in order to solve these problems. The main elements of these proposals are: v 1. The use of 3 g reactor–grade plutonium fuel spheres should be the point of departure. 232Th will then be added in order to restore negative Uniform Temperature Reactivity Coefficients. 2. The introduction of neutron poisons into the reflectors, in order to suppress the power density peaks and thus the temperature peaks. 3. In order to counter the reduction in burn–up by this introduction of neutron poisons, a thinning of the central reflector was proposed. / Thesis (PhD (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2012.
229

A safety and dynamics analysis of the subcritical advanced burner reactor: SABR

Sumner, Tyler Scott 03 June 2008 (has links)
As the United States expands its quantity of nuclear reactors in the near future, the amount of spent nuclear fuel (SNF) will also increase. Closing the nuclear fuel cycle has become the next major technical challenge for the nuclear energy industry. By separating the transuranics (TRU) from the SNF discharged by Light Water Reactors, it is possible to fuel Advanced Burner Reactors to minimize the amount of SNF that must be stored in High Level Waste Repositories. One such ABR concept is the Subcritical Advanced Burner Reactor (SABR) being developed at the Georgia Institute of Technology. SABR is a subcritical, sodium-cooled fast reactor with a fusion neutron source capable of burning up to 25% of the TRU fuel over an 8.2 year residence time. In the SABR concept an annular core with a thickness of 0.6 m and an active height of 3.2 m surrounds the toroidal fusion neutron source. Neutron multiplication varies during the lifetime of the reactor from keff = 0.95 at the beginning of reactor life to 0.83 at the end of an equilibrium fuel cycle. Sixteen control rods worth 9$ are symmetrically positioned around the reactor. This thesis describes the dynamic safety analysis of the coupled neutron source, reactor core and reactor heat removal systems. A special purpose simulation model was written to predict steady-state conditions and accident scenarios in SABR by calculating the coupled evolution of the power output from the fusion and fission cores and the axial and radial temperature distributions of a fuel pin in the reactor. Reactivity Feedback was modeled for Doppler and sodium coolant voiding. SABR has a positive temperature reactivity feedback coefficient. A series of accident scenarios were simulated to determine how much time exists to implement corrective measures during an accident before damage to the reactor occurs.
230

Development of a binary mixture gas composition instrument for use in a confined high temperature environment

Cadell, Seth R. 28 November 2012 (has links)
With recent advancements in material science, industrial operations are being conducted at higher and higher temperatures. This is apparent in the nuclear industry where a division of the field is working to develop the High Temperature Gas Reactor and the Very High Temperature Gas Reactor concurrently. Both of these facilities will have outlet gas temperatures that are at significantly higher temperatures than the typical water cooled reactor. These increased temperatures provide improved efficiency for the production of hydrogen, provide direct heating for oil refineries, or more efficient electricity generation. As high temperature operations are being developed, instruments capable of measuring the operating parameters must be developed concurrently. Within the gas reactor community there is a need to measure the impurities within the primary coolant. Current devices will not survive the temperature and radiation environments of a nuclear reactor. An instrument is needed to measure the impurities within the coolant while living inside the reactor, where this instrument would measure the amount of the impurity within the coolant. There are many industrial applications that need to measure the ratio of two components, whether it be the amount of particulate in air that is typical to pneumatic pumping, or the liquid to gas ratio in natural gas as it flows through a pipeline. All of the measurements in these applications can be met using a capacitance sensor. Current capacitance sensors are built to operate at ambient temperatures with only one company producing a product that will handle a temperature of up to 400 °C. This maximum operating temperature is much too low to measure the gas characteristics in the High Temperature Gas Reactor. If this measurement technique were to be improved to operate at the expected temperatures, the coolant within the primary loop could be monitored for water leaks in the steam generator, carbon dust buildup entrained in the flow, or used to measure the purity of the coolant itself. This work details the efforts conducted to develop such an instrument. While the concept of designing a capacitance sensor to measure a gas mixture is not unique, the application of using a capacitance sensor within a nuclear reactor is a new application. This application requires the development of an instrument that will survive a high temperature nuclear reactor environment and operate at a sensitivity not found in current applications. To prove this technique, instrument prototypes were built and tested in confined environments and at high temperatures. This work discusses the proof of concept testing and outlines an application in the High Temperature Test Facility to increase the operational understanding of the instrument. This work is the first step toward the ultimate outcome of this work, which is to provide a new tool to the gas reactor community allowing real-time measurements of coolant properties within the core. / Graduation date: 2013

Page generated in 0.0572 seconds