• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 24
  • 23
  • 8
  • 8
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 259
  • 128
  • 76
  • 71
  • 71
  • 47
  • 38
  • 32
  • 31
  • 30
  • 30
  • 24
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Simulation of a storage freezer operating with a binary nonazeotropic refrigerant blend Part I. Equation of state cycle selection compressor model and air-cooled condenser model

Tipton, Russell C. January 1989 (has links)
No description available.
192

Computational Study of Critical Flow Discharge in Supercritical Water Cooled Reactors

Chatharaju, Madhuri 10 1900 (has links)
<p>Supercritical Water-cooled Reactor (SCWR) is a Generation-IV nuclear reactor design that operates on a direct energy conversion cycle above the thermodynamic critical point of water (374<sup>0</sup>C and 22.1 MPa), and offers higher thermal efficiency and considerable design simplification. As an essential step in the design of SCWR safety systems, the accident behaviour of the reactor is evaluated to ensure that the safety systems can achieve safe shutdown for all the design basis accidents. Unfortunately, the computational tools and computer codes that are currently employed for safety analysis have little application in the supercritical region, and faces significant challenges in simulating the transitions from subcritical to supercritical conditions.</p> <p>This thesis examines the predictive capabilities of Computational Fluid Dynamics (CFD) code STAR-CCM+ by evaluating critical flow (or choked flow) due to accidental release of coolant from supercritical fluid systems. The biggest challenge of this research is that the current version of STAR-CCM+ does not support supercritical simulations because the steam tables included in the package are only limited to the subcritical subset of the thermodynamic fluid properties.</p> <p>The research was carried out in two stages. In the first stage, the CFD code STAR-CCM+ was customized to simulate supercritical conditions by, (i) Generating updated steam tables to include subcritical and supercritical fluid properties and using more pressure and temperature points in the pseudo critical region (22 – 25 MPa, 645 -660 K) to handle the rapid changes in the fluid properties, and (ii) Implementing a multi-dimensional steam table interpolation scheme to access the fluid property data at any thermodynamic state during the simulation. In the second stage, the customized CFD code was extensively evaluated by simulating several accidental release scenarios from supercritical conditions using rounded-edge and sharp-edge nozzles and the model results were validated with experimental data. To overcome the solution stability (or convergence) issues encountered during the supercritical simulations, a fine tuning procedure was proposed that guaranteed convergence for all the case studies considered in this thesis.</p> <p>The simulation results revealed that the CFD model produced results that were in good agreement with experimental data and only about 10% prediction error was noticed for most cases considered in the thesis. Considering the sensitivity of the CFD model for upstream temperatures and pressures, these results appear to be quite reasonable. From the computational experience gained in this research , we believe that the CFD code STAR-CCM+ is a very useful tool to perform thermal hydraulic simulations for supercritical systems. However, an appropriate customization and extensive validation of the code is required before it can be exclusively used for safety analysis.</p> / Master of Applied Science (MASc)
193

Investigations on Air-cooled Air Gap Membrane Distillation and Radial Waveguides for Desalination

Narayan, Aditya 30 August 2017 (has links)
This thesis presents investigations on air-cooled air gap membrane distillation for desalination and the application of radial waveguides based on total internal reflection for solar thermal desalination. Using an air-cooled design for an air gap membrane distillation (AGMD) process may result in significantly lower energy requirements for desalination. Experiments were conducted on AGMD module to study the effect of air gap, support mesh conductivity and hydrophobicity, condensing surface hydrophobicity. A novel modular design was used in which modules could be used in a series configuration to increase the flux value for the distillate. The output from the series configuration was found to have about three times the production from a single pass water-cooled system with the same temperature difference between the saline and clear water streams. The results also indicated that the mesh conductivity had a favorable effect on the flux value whereas the hydrophobicity of the mesh had no significant effect. The hydrophobicity of the condensing surface was favorable on two accounts: first, it led to an increase in the flux of the distillate at temperatures below 60 °C and second, the temperature difference of the saline feed when it enters and leaves the module is lower which can lead to energy savings and higher yields when used in a series configuration. The second part of the thesis considers use of low-cost radial waveguides to collect and concentrate solar energy for use in thermal desalination processes. The optical-waveguide-based solar energy concentrators are based on total internal reflection and minimize/eliminate moving parts, tracking structures and cost. The use of optical waveguides for thermal desalination is explored using an analytical closed-form solution for the coupled optical and thermal transport of solar irradiation through a radial planar waveguide concentrator integrated with a central receiver. The analytical model is verified against and supported by computational optical ray tracing simulations. The effects of various design and operating parameters are systematically investigated on the system performance, which is quantified in terms of net thermal power delivered, aperture area required and collection efficiency. Design constraints like thermal stress, maximum continuous operation temperature and structural constraints have been considered to identify realistic waveguide configurations which are suitable for real world applications. The study provides realistic estimates for the performance achievable with radial planar waveguide concentrator-receiver configuration. In addition to this, a cost analysis has been conducted to determine the preferred design configurations that minimize the cost per unit area of the planar waveguide concentrator coupled to the receiver. Considering applications to thermal desalination which is a low temperature application, optimal design configuration of waveguide concentrator-receiver system is identified that result in the minimum levelized cost of power (LCOP). / Master of Science
194

Air-cooled condenser steam flow distribution and related dephlegmator design considerations

Owen, Michael Trevor Foxwell 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: The steam-side side operation of a practical air-cooled steam condenser is investigated using a combination of CFD, numerical, analytical and experimental methods. Particular attention is directed towards the vapor flow distribution in the primary condensers and dephlegmator performance. Analysis of the vapor flow in the distributing manifold, connecting the steam turbine exhaust to the air-cooled heat exchangers, highlights the importance of careful design of the guide vanes in the manifold bends and junctions. Improved guide vane design and configuration can reduce the steam-side pressure drop over the manifold and improve the vapor flow distribution, which may be beneficial to condenser operation. The vapor flow in the primary condensers is shown to exhibit a non-uniform distribution amongst the heat exchanger tubes. The vapor flow distribution is strongly linked to the distribution of tube inlet loss coefficients through the heat exchanger bundles. The non-uniform flow distribution places an additional demand on dephlegmator performance, over and above the demands of row effects in the case of multi-row primary condenser bundles. Row effects are shown to account for as much as 70 % of available dephlegmator capacity in this case. Simultaneously, inlet loss coefficient distributions can account for up to 30 % of dephlegmator capacity. In some situations then, the dephlegmator is fully utilized under ideal operating conditions and there is no margin of safety to cope with non-ideal operation of the primary condensers. The upstream regions of the primary condensers are therefore exposed to a high risk of undesirable noncondensable gas accumulation. Reduced dephlegmator capacity due to insufficient ejector performance may further compound this problem. Single-row primary condenser bundles eliminate row effects and thereby significantly reduce the demands on dephlegmator performance. The use of such bundles in the dephlegmator would also measurably reduce ejector loading. In light of the findings of this study, it is recommended that single-row bundles be considered as the primary option for future air-cooled condenser applications. A hybrid (dry/wet) dephlegmator concept is analysed and shown to be able to provide measurably enhanced dephlegmator performance when operating in wet mode, while consuming only a small amount of water. The enhanced dephlegmator cooling translates to an increase in total air-cooled condenser capacity of up to 30 % at high ambient temperatures in this case. The benefit of this enhanced cooling capacity to steam turbine output may be significant. The hybrid dephlegmator concept therefore offers a simple, cost-effective and sustainable solution to the issue of reduced air-cooled condenser performance during hot periods. Careful design of the first and second stage bundle configurations in the hybrid dephlegmator is necessary to avoid flooding in the first stage during wet operation of the second. Furthermore, the slightly poorer dry-operation performance of the hybrid dephlegmator results in increased risk of non-condensable gas accumulation in multi-row primary condensers. Again, single-row primary condenser bundles would lay rest to such concerns. / AFRIKAANSE OPSOMMING: Die bedryf aan die stoom-kant van ʼn praktiese lugverkoelde-stoomkondensor word ondersoek met behulp van 'n kombinasie van berekeningsvloeimeganika, numeriese, analitiese en eksperimentele metodes. ʼn Spesifieke fokus word geplaas op die dampvloeiverspreiding in die primêre kondensors asook die deflegmatorwerksverrigting. Ontleding van die damp vloei in die verdeelspruitstuk, wat die uitlaat van die stoomturbine aan die lugverkoelde-stoomkondensor koppel, beklemtoon die belangrikheid van noukeurige ontwerp van die leilemme in die spruitstukdraaie en aansluitings. Verbeterde leilemontwerp en opstelling kan die drukval aan die stoom-kant van die draaie en aansluitings verminder en die dampvloeiverspreiding verbeter. Dit kan gevolglik lei tot verbeterde werksverrigting van die kondensor. Die studie toon dat ʼn nie-eenvormige dampvloeiverspreiding in die warmteruilerbuise van die primêre kondensors bestaan. Die verspreiding van buisinlaat-verlieskoëffisiënte deur die bundels van die warmteruiler is sterk afhanklik van die voorgenome dampvloeiverspreiding. Die nie-eenvormige vloeiverspreiding veroorsaak 'n groter aanvraag na deflegmator-werksverrigting, bo-en-behalwe nog vereistes van ry-effekte in die geval waar multi-ry-bundels vir primêre kondensors gebruik word. Ry-effekte is verantwoordelik vir so veel as 70 % van die beskikbare deflegmator kapasiteit. Terselfdertyd kan die verspreiding van inlaat-verlieskoëffisiënte verantwoordelik wees vir tot 30 % van die deflegmator kapasiteit. In sommige gevalle is die deflegmator dus ten volle aangewend onder ideale bedryfstoestande, en bestaan daar geen band van veiligheid om nie-ideale werksverrigting van die primêre kondensor te hanteer nie. Sekere dele van die stroom-op primêre kondensors word dus blootgestel aan 'n hoë risiko vir die opbou van ongewenste nie-kondenseerbare gasse. Verder kan ‘n vermindering in deflegmator kapasiteit, weens onvoldoende werksverrigting van die vakuumpompe, dié probleem vererger. Enkel-ry-bundels vir primêre kondensors vermy ry-effekte en lei sodoende tot ʼn aansienlike vermindering in die aanvraag na deflegmator-werksverrigting. Die gebruik van sulke bundels in die deflegmator sou die vakuumpomplas ook meetbaar verminder. Uit die bevindinge van hierdie studie word dit aanbeveel dat enkel-ry bundels beskou word as die primêre opsie vir toekomstige lugverkoelde-kondensor aansoeke. ’n Konsep vir ’n hibriede-deflegmator (droog/nat) word ontleed. Die studie toon dat, deur hierdie konsep in die nat-modus te gebruik, ’n meetbare verbetering in deflegmator-werksverrigting gesien kan word, ten koste van net ʼn klein hoeveelheid waterverbruik. Die verbetering in verkoelingsvermoë van die deflegmator beteken ʼn toename van tot 30 % in die totale verkoelingsvermoë van die lugverkoelde-kondensor gedurende periodes wanneer hoë omgewingstemperature heersend is. Die voordeel van hierdie verbeterde verkoelingsvermoë op die werksuitset van die stoomturbine kan beduidend wees. Die konsep vir ’n hibriede-deflegmator bied dus 'n eenvoudige, koste-effektiewe en volhoubare oplossing vir warm atmosferiese periodes, wanneer die lugverkoelde-kondensor se verkoelingsvermoë afneem. Noukeurige ontwerp van die eerste en tweede fase bundelkonfigurasies in die hibriede-deflegmator is nodig om oorstroming in die eerste fase, tydens nat werking van die tweede fase, te verhoed. Verder veroorsaak die effens swakker werksverrigting, gedurende die bedryf van die hibriede-deflegmator in die droog-modus, ʼn verhoogde risiko vir die opbou van nie-kondenseerbare gasse in multi-ry primêre kondensors. Weereens sal enkel-ry-bundels in primêre kondensors hierdie probleem oplos.
195

Etude d’un procédé de décontamination du 14C par carboxy-gazéification des déchets de graphite nucléaire / Study of a nuclear graphite waste 14C decontamination process by CO2 gasification

Pageot, Justin 18 December 2014 (has links)
Le démantèlement des réacteurs Uranium Naturel Graphite-Gaz (UNGG), tous arrêtés depuis 1994, génèrera 23 000 tonnes de déchets de graphite de Faible Activité et Vie Longue (FAVL), contenant notamment du 14C. Le but de ce travail de thèse est d’étudier un procédé original d’extraction sélective de ce radionucléide par carboxy-gazéification. L’organisation multi-échelle des graphites vierge et irradié a été étudiée par un couplage entre microspectrométrie Raman et microscopie électronique à transmission. Avec la fluence neutronique, la structure se dégrade et la nanostructure peut être fortement modifiée. Dans les cas extrêmes, la nanostructure lamellaire du graphite nucléaire est devenue nanoporeuse. En outre, ces dégâts sont systématiquement hétérogènes. Un effet d’orientation des « cristallites », mis en évidence expérimentalement par implantation ionique, pourrait être une cause de ces hétérogénéités. Cette étude a également montré qu’à partir d’une certaine fluence, l'apparition importante de zones nanoporeuses coïncide avec une augmentation spectaculaire de la concentration en 14C. Ce radionucléide pourrait donc être préférentiellement concentré dans ces zones nanoporeuses qui sont potentiellement plus réactives que les zones restées lamellaires et a priori moins riches en 14C.Ce procédé par carboxy-gazéification a d'abord été testé sur des matériaux « analogues » non radioactifs (graphites broyés mécaniquement). Ces essais ont confirmé, pour des températures entre 950 et 1000 °C, l’élimination sélective et complète des zones nanoporeuses. Des tests ont alors été réalisés sur des déchets de graphite provenant des réacteurs Saint-Laurent-des-Eaux A2 et G2. Les résultats sont prometteurs avec notamment un quart du 14C extrait pour seulement quelques pourcents de perte de masse. Jusqu’à 68 % du 14C a pu être extrait, mais au prix d’une gazéification plus importante. Ce traitement permettrait donc d’extraire sélectivement une part du 14C (mobile ou lié à des zones nanoporeuses) et d’imaginer des scénarios alternatifs de gestion de ces déchets de graphite. / The decommissioning of French gas cooled nuclear reactors (UNGG), all arrested since 1994, will generate 23,000 tons of graphite waste classified Low Level and Long Lived and notably containing 14C. The aim of this thesis is to study a new method for selective extraction of this radionuclide by CO2 gasification.The multiscale organization of virgin and irradiated graphite has been studied by a coupling between microspectrometry Raman and transmission electron microscopy. With the neutron fluence, the structure degrades and the nanostructure can be greatly changed. In extreme cases, the lamellar nanostructure nuclear graphite has become nanoporous. Furthermore, these damages are systematically heterogeneous. An orientation effect of "crystallites", shown experimentally by ion implantation, could be a cause of these heterogeneities.This study also showed that from a specific fluence, there is an important development of nanoporous zones coinciding with a dramatic 14C concentration increase. This radionuclide could be preferentially concentrated in the nanoporous areas which are potentially more reactive than the remaining laminar areas which could be less rich in 14CThis process by CO2 gasification was firstly tested on "analogous" non-radioactive materials (mechanically milled graphite). These tests confirmed, for temperatures between 950 and 1000 °C, the selective and complete elimination of nanoporous areas.Tests were then carried out on graphite waste from Saint-Laurent-des-Eaux A2 and G2 reactors. The results are promising with notably the quarter of 14C inventory extracted for a weight loss of only few percent. Up to 68 % of 14C inventory was extracted, but with an important gasification. Thus, this treatment could allow extracting selectively a share of 14C inventory (mobile or linked to nanoporous areas) and allows imagining alternative scenarios for graphite waste managing.
196

Thermal Analysis and Management of High-Performance Electrical Machines

Nategh, Shafigh January 2013 (has links)
This thesis deals with thermal management aspects of electric machinery used in high-performance  applications  with  particular  focus put  on electric machines designed for hybrid electric vehicle applications. In the first part of this thesis,  new thermal models of liquid (water and oil) cooled electric machines are proposed.  The proposed thermal models are based on a combination of lumped parameter (LP)  and numerical methods. As  a first  case study,  a permanent-magnet  assisted  synchronous reluctance machine (PMaSRM) equipped with a housing water jacket is considered.  Particular focus is put on the stator winding and a thermal model is proposed that divides the stator slot into a number of elliptical copper and impregna- tion layers.  Additionally, an analysis, using results from a proposed simplified thermal finite element (FE)  model representing only a single slot of the sta- tor and its corresponding end winding, is presented in which the number of layers and the proper connection between the parts of the LP thermal model representing the end winding and the active part of winding are determined. The approach is attractive due to its simplicity  and the fact  that it closely models the actual temperature distribution for common slot geometries.  An oil-cooled induction machine where the oil is in direct contact with the stator laminations  is also considered.  Here, a multi-segment structure is proposed that  divides  the  stator,  winding and cooling  system  into  a number  of an- gular  segments.   Thereby,  the  circumferential  temperature  variation  due to the  nonuniform distribution  of the  coolant  in the  cooling  channels  can be predicted. In the  second part  of this  thesis,  the  thermal  impact  of using  different winding impregnation  and steel  lamination  materials  is  studied.   Conven- tional varnish, epoxy and a silicone based thermally conductive impregnation material are investigated and the resulting temperature distributions in three small induction machines are compared. The thermal impact of using different steel lamination materials is investigated by simulations using the developed thermal  model  of the water  cooled  PMaSRM. The  differences  in alloy con- tents and steel lamination thickness are studied separately and a comparison between the produced iron losses and the resulting hot-spot temperatures is presented. Finally, FE-based approaches  for  estimating  the  induced  magnet  eddycurrent losses in the rotor of the considered PMaSRM are reviewed and compared in the  form  of a case  study  based on simulations.   A  simplified three-dimensional  FE model  and an analytical  model,  both  combined  with time-domain 2D FE analysis, are shown to predict the induced eddy current losses with a relatively good accuracy compared to a complete 3D FE based model.  Hence, the two simplified approaches are promising which motivates a possible future experimental verification. / <p>QC 20130528</p>
197

Simplified Methodology for Designing Parabolic Trough Solar Power Plants

Vasquez Padilla, Ricardo 01 January 2011 (has links)
The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for the commercial power industry. Compared to conventional power plants, parabolic trough solar power plants produce significantly lower levels of carbon dioxide, although additional research is required to bring the cost of concentrator solar plants to a competitive level. The cost reduction is focused on three areas: thermodynamic efficiency improvements by research and development, scaling up of the unit size, and mass production of the equipment. The optimum design, performance simulation and cost analysis of the parabolic trough solar plants are essential for the successful implementation of this technology. A detailed solar power plant simulation and analysis of its components is needed for the design of parabolic trough solar systems which is the subject of this research. Preliminary analysis was carried out by complex models of the solar field components. These components were then integrated into the system whose performance is simulated to emulate real operating conditions. Sensitivity analysis was conducted to get the optimum conditions and minimum levelized cost of electricity (LCOE). A simplified methodology was then developed based on correlations obtained from the detailed component simulations. A comprehensive numerical simulation of a parabolic trough solar power plant was developed, focusing primarily on obtaining a preliminary optimum design through the simplified methodology developed in this research. The proposed methodology is used to obtain optimum parameters and conditions such as: solar field size, operating conditions, parasitic losses, initial investment and LCOE. The methodology is also used to evaluate different scenarios and conditions of operation. The new methodology was implemented for a 50 MWe parabolic trough solar power plant for two cities: Tampa and Daggett. The results obtained for the proposed methodology were compared to another physical model (System Advisor Model, SAM) and a good agreement was achieved, thus showing that this methodology is suitable for any location.
198

Simulating the effect of wind on the performance of axial flow fans in air-cooled steam condenser systems

Fourie, Neil 12 1900 (has links)
Thesis (MEng) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: The use of air-cooled steam condensers (ACSCs) is the preferred cooling method in the chemical and power industry due to stringent environmental and water use regulations. The performance of ACSCs is however highly dependent on the influence of windy conditions. Research has shown that the presence of wind reduces the performance of ACSCs. It has been found that cross-winds (wind perpendicular to the longest side of the ACSC) cause distorted inlet flow conditions, particularly at the upstream peripheral fans near the symmetry plane of the ACSC. These fans are subjected to what is referred to as '2-D' wind conditions, which are characterised by flow separation on the upstream edge of the fan inlets. Experimental investigations into inlet flow distortion have simulated these conditions by varying the fan platform height. Low platform heights resulted in higher levels of inlet flow distortion, as also found to exist with high cross-wind speeds. This investigation determines the performance of various fan configurations (representative of configurations used in the South- African power industry) subjected to distorted inlet flow conditions through experimental and numerical investigations. The similarity between platform height and cross-wind effects is also investigated and a correlation between system volumetric effectiveness, platform height and cross-wind velocity is found. / AFRIKAANSE OPSOMMING: Die gebruik van lugverkoelde stoom kondensors (LVSK's) word verkies as 'n verkoelingsmetode in die chemiese- en kragvoorsieningsindustrie as gevolg van streng omgewings- en waterverbruiksregulasies. Die werkverrigting van LVSK's word egter grootliks beïnvloed deur die teenwoordigheid van wind. Navorsing het gewys dat die teenwoordigheid van wind die werkverrigting van LVSK's verminder. Daar was gevind dat kruiswinde (wind loodreg tot die langste sy van die LVSK) versteurde inlaat vloeitoestande veroorsaak, veral by waaiers wat aan die stroomop kant van die LVSK naby die simmetrievlak geleë is. Hierdie waaiers word blootgestel aan na wat verwys word as '2-D' windtoestande wat gekenmerk word deur vloeiwegbreking wat plaasvind by die stroomop rand van die waaierinlate. Eksperimentele ondersoeke van inlaat vloeiversteurings het hierdie toestande gesimuleer deur die waaier platformhoogte te verstel. Lae platform hoogtes het gelei tot hoër vlakke van inlaat vloeiversteuring, soortgelyk aan wat gevind word met hoë kruiswindsnelhede. Hierdie ondersoek gebruik numeriese en eksperimentele metodes om die werkverrigting van verskeie waaierkon gurasies (verteenwoordigend van kon- gurasies wat gebruik word in die Suid-Afrikaanse kragvoorsieningsindustrie) wat blootgestel word aan versteurde inlaat vloeitoestande te bepaal. Die ooreenkoms tussen platformhoogte en kruiswind e ekte word ook ondersoek en 'n korrelasie tussen die sisteem volumetriese e ektiwiteit, platformhoogte en kruiswindsnelheid word bepaal.
199

Characteristic behaviour of pebble bed high temperature gas-cooled reactors during water ingress events / Samukelisiwe Nozipho Purity Khoza

Khoza, Samukelisiwe Nozipho Purity January 2012 (has links)
The effect of water ingress in two pebble bed high temperature gas-cooled reactors i.e. the PBMR-200 MWthermal and the PBMR-400 MWthermal were simulated and compared using the VSOP 99/05 suite of codes. To investigate the effect of this event on reactivity, power profiles and thermal neutron flux profiles, the addition of partial steam vapour pressures in stages up to 400 bar into the primary circuit for the PBMR-400 and up to 300 bar for the PBMR- 200 was simulated for both reactors. During the simulation, three scenarios were simulated, i.e. water ingress into the core only, water ingress into the reflectors only and water ingress into both the core and reflectors. The induced reactivity change effects were compared for these reactors. An in-depth analysis was also carried out to study the mechanisms that drive the reactivity changes for each reactor caused by water ingress into the fuel core only, the riser tubes in the reflectors only and ingress into both the fuel core and the riser tubes in the reflectors. The knowledge gained of these mechanisms and effects was used in order to propose design changes aimed at mitigating the reactivity increases, caused by realistic water ingress scenarios. Past results from simulations of water ingress into Pebble Bed Reactors were used to validate and verify the present simulation approach and results. The reactivity increase results for both reactors were in agreement with the German HTR-Modul calculations. / Thesis (MSc (Engineering Sciences in Nuclear Engineering))--North-West University, Potchefstroom Campus, 2013
200

The influence of thorium on the temperature reactivity coefficient in a 400 MWth pebble bed high temperature plutonium incinerator reactor / Guy Anthony Richards

Richards, Guy Anthony January 2012 (has links)
Social and environmental justice for a growing and developing global population requires significant increases in energy use. A possible means of contributing to this energy increase is to incinerate plutonium from spent fuel of pressurised light water reactors (Pu(PWR)) in high-temperature reactors such as the Pebble Bed Modular Reactor Demonstration Power Plant 400 MWth (PBMR-DPP-400). Previous studies showed that at low temperatures a 3 g Pu(PWR) loading per fuel sphere or less had a positive uniform temperature reactivity coefficient (UTC) in a PBMR DPP-400. The licensing of this fuel design is consequently unlikely. In the present study it was shown by diffusion simulations of the neutronics, using VSOP-99/05, that there is a fuel design containing thorium and plutonium that achieves a negative maximum UTC. Further, a fuel design containing 12 g Pu(PWR) loading per fuel sphere achieved a negative maximum UTC as well as the other PBMR (Ltd.) safety limits of maximum power per fuel sphere, fast fluence and maximum temperatures. It is proposed that the low average thermal neutron flux, caused by reduced moderation and increased absorption of thermal neutrons due to the higher plutonium loading, is responsible for these effects. However, to fully understand the mechanisms involved a detailed quantitative analysis of the roll of each factor is required. A 12 g Pu(PWR) loading per fuel sphere analysis shows a burn-up of 180.7 GWd/tHM which is approximately double the proposed PBMR (Ltd.) low enriched uranium fuel burn-up. The spent fuel has only a decrease of 24.5 % in the Pu content which is sub-optimal with respect to proliferation and waste disposal objectives. Incinerating Pu(PWR) in the PBMR-DPP 400 MWth is potentially licensable and economically feasible and should be considered for application by industry. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2012

Page generated in 0.0429 seconds