481 |
Loads on Tie-Down Systems for Floating Drilling Rigs during Hurricane ConditionsBae, Yoon Hyeok 16 January 2010 (has links)
Tie-down systems are used to fasten drilling rigs to the deck of offshore
structures during harsh environmental conditions such as hurricanes. During Hurricane
Ivan (2004) and Katrina (2005), a number of offshore structures were moved and several
tie-down systems were damaged. In the present study, the reaction force and connection
capacity of tie-down systems for a TLP and SPAR are investigated. The environmental
conditions are taken from the API Bulletin 2INT-MET which has been updated after
several major storms during 2004-2005. The hydrodynamic coefficients of the TLP and
SPAR are obtained using a 3D diffraction/radiation panel method. The motions of the
TLP and SPAR are then simulated in the time domain by using the hull-mooring-riser
coupled dynamic analysis tool CHARM3D. Based on the simulated motion and
acceleration time series, the inertial and gravity loads on derrick and skid base footing
are calculated. In addition to the inertial-gravity loads, wind forces exerted on the derrick
are also calculated. All the external forces and resultant hull motions are simulated for
100-year, 200-year and 1000-year storms to observe the derrick structural integrity with
increasing environmental intensity. Various environmental headings are also considered to find the maximum reaction forces. In the present method, the phase differences
between gravity-inertia forces and wind forces are taken into consideration to obtain
more realistic loads on derrick and skid base footings. This research shows that the
maximum and minimum load values are appreciably higher for the SPAR. In addition,
the direction of external forces is also important to determine maximum reaction forces
on footings. The capacities of the clamps in slip, bolt tension, and bolt shear can be also
analyzed using the resultant data to provide guidance on appropriate design values.
|
482 |
Statistical Estimation of Two-Body Hydrodynamic Properties Using System IdentificationXie, Chen 14 January 2010 (has links)
A basic understanding of the hydrodynamic response behavior of the two-body system is
important for a wide variety of offshore operations. This is a complex problem and
model tests can provide data that in turn can be used to retrieve key information
concerning the response characteristics of such systems. The current study demonstrates
that the analysis of these data using a combination of statistical tools and system
identification techniques can efficiently recover the main hydrodynamic parameters
useful in design.
The computation of the statistical parameters, spectral densities and coherence functions
provides an overview of the general response behavior of the system. The statistical
analysis also guides the selection of the nonlinear terms that will be used in the reverse
multi-input / single-output (R-MI/SO) system identification method in this study. With
appropriate linear and nonlinear terms included in the equation of motion, the R-MISO
technique is able to estimate the main hydrodynamic parameters that characterize the
offshore system. In the past, the R-MISO method was primarily applied to single body
systems, while in the current study a ship moored to a fixed barge was investigated. The formulation included frequency-dependant hydrodynamic parameters which were
evaluated from the experimental measurements. Several issues specific to this extension
were addressed including the computation load, the interpretation of the results and the
validation of the model. Only the most important cross-coupling terms were chosen to
be kept based on the estimation of their energy. It is shown that both the heading and the
loading condition can influence system motion behavior and that the impact of the wave
in the gap between the two vessels is important. The coherence was computed to verify
goodness-of-fit of the model, the results were overall satisfying.
|
483 |
Adapting a Beam-Based Rotordynamics Model to Accept a General Three-Dimensional Finite-Element Casing ModelJames, Stephen M. 2010 May 1900 (has links)
The subject of this thesis is an extension of a two-dimensional, axisymmetric, Timoshenko-beam finite-element rotordynamic code to include a three-dimensional non-axisymmetric solid-element casing model. Axisymmetric beams are sufficient to model rotors. Spring and damper forces provide the interface between the rotor and its casing and capture the dynamics of the full model. However, axisymmetric beams limit the modeling of real-case machine structures, where the casing is not axisymmetric.
Axisymmetric and non-axisymmetric 3D finite element casing structures are modeled. These structures are then reduced using a technique called substructuring. Modal equations are developed for axisymmetric and non-axisymmetric casing models. In a 3D non-axisymmetric model, structural dynamics modes can be modeled by lateral modes in two orthogonal planes. Modal information of the complex 3D casing structures are generated, and then incorporated into the 2D code after a series of pre-processing steps.
A reduction method called Component Mode Synthesis (CMS) is used to reduce the large dimensionality involved in calculation of rotordynamic coefficients. The results from the casing structures are merged with the rotor model to create a combined rotor-casing model. The analysis of the combined structure shows that there is a difference in the natural frequencies and unbalance response between the model that uses symmetrical casing and the one that uses non-axisymmetric casing.
XLTRC2 is used as an example of a two-dimensional axisymmetric beam-element code. ANSYS is used as a code to build three-dimensional non-axisymmetric solid-element casing models. The work done in this thesis opens the scope to incorporate complex non-axisymmetric casing models with XLTRC2.
|
484 |
A Low Power Low Noise Instrumentation Amplifier For ECG Recording ApplicationsCoulon, Jesse 2012 May 1900 (has links)
The instrumentation amplifier (IA) is one of the crucial blocks in an electrocardiogram recording system. It is the first block in the analog front-end chain that processes the ECG signal from the human body and thus it defines some of the most important specifications of the ECG system like the noise and common mode rejection ratio (CMRR). The extremely low ECG signal bandwidth also makes it difficult to achieve a fully integrated system.
In this thesis, a fully integrated IA topology is presented that achieves low noise levels and low power dissipation. The chopper stabilized technique is implemented together with an AC coupled amplifier to reduce the effect of flicker noise while eliminating the effect of the differential electrode offset (DEO). An ultra low power operational transconductance amplifier (OTA) is the only active power consuming block in the IA and so an overall low power consumption is achieved. A new implementation of a large resistor using the T-network is presented which makes it easy to achieve a fully integrated solution. The proposed IA operates on a 2V supply and consumes a total current of 1.4µA while achieving an integrated noise of 1.2µVrms within the bandwidth. The proposed IA will relax the power and noise requirements of the analog-to-digital converter (ADC) that immediately follows it in the signal chain and thus reduce the cost and increase the lifetime of the recording device.
The proposed IA has been implemented in the ONSEMI 0.5µm CMOS technology.
|
485 |
Determination of Ca and P in foods and B, Si, P and S in steels by dynamic reaction cell inductively coupled plasma mass spectrometryYang, Chiao-Hui 12 July 2004 (has links)
Determination of Ca and P in foods and B, Si, P and S in steels by dynamic reaction cell inductively coupled plasma mass spectrometry
|
486 |
Determination of Ga,Ge,As,Se and Sb in coal fly ash and S and Pb in gasoline by inductively coupled plasma mass spectrometryNi, Jun-Long 12 July 2004 (has links)
Ga,Ge,As,Se and Sb in coal fly ash
S and Pb in gasoline
|
487 |
Investigation of Methods for Arbitrarily Profiled Cylindrical Dielectric WaveguidesHong, Qing-long 07 July 2005 (has links)
Cylindrical dielectric waveguides such as the optical fiber and photonic crystal fiber are very important passive devices in optical communication systems. There are many kinds of commercial software and methods of simulation at present. In this thesis, we proposed the following four methods to analyze arbitrarily profiled cylindrical dielectric waveguides: The first two methods are modified from published work while the last two methods are entirely developed by ourselves.
1. Cylindrical ABCD matrix method: We take the four continuous electromagnetic field components as main variables and derive the exact four-by-four matrix (with Bessel functions) to relate the four field vector within each homogeneous layer. The electromagnetic field components of the inner and outer layer can propagate toward one of the selected interface of our choice by using the method of ABCD matrix. We can then solve for the £]-value of the waveguide mode with this nonlinear inhomogeneous matrix equation.
2. Runge-Kutta method: Runge-Kutta method is mostly used to solve the initial value problems of the differential equations. In this thesis, we introduce the Runge-Kutta method to solve the first-order four-by-four nonlinear differential equation of the electromagnetic field components and find the £]-value of the cylindrical dielectric waveguides in a similar way depicted in method one.
3. Coupled Ez and Hz method: It uses the axial electromagnetic filed components to solve cylindrical dielectric waveguides. The formulation is similar to cylindrical ABCD matrix method, but it requires less variables then cylindrical ABCD matrix method. The numerical solution obtained from this method is most stable, but it is more complicated to derive harder to write the program.
4. Simple basis expansion method: The simple trigonometric functions (sine or cosine) are chosen as the bases of the horizontal coupled magnetic field equation derived from the second-order differential equation of the transverse magnetic field components. We do not select the horizontal coupling electric field because the normal component of the electric field is discontinuous on the interface. But the normal and tangential components of the magnetic field are continuous across the interfaces. The modal solution problem is converted to a linear matrix eigenvalue-eigenvector equation which is solved by the standard linear algebra routines.
We will compare these four numerical methods with one another. The characteristics and advantage as well as the disadvantage of each method will be studied and compared in detail.
|
488 |
A Cross-Coupled Relaxation Oscillator with Accurate Quadrature OutputsPeng, Shih-Hao 12 July 2006 (has links)
Because of IC technology evolution and the increase of market demand, the communication industry grows vigorously in recent years. The voltage-controlled oscillator plays a key role in the RF transceiver and provides oscillation signals needed for upconversin and downconvertion. Usually, we separate the signals into I/Q channels for modulation and demodulation in upconversin and downconvertion. Because the quality of the local oscillator influences the performance of communication system, designing a voltage-controlled oscillator that can provide two identical signals in accurate quadrature is necessary.
In this thesis, a new quadrature voltage-controlled oscillator is presented. We use two identical relaxation oscillators with adjustable Schmitt triggers to construct the cross-coupled architecture. This oscillator has accurate ( <1¢X) and stable quadrature outputs which are independent of operating frequency and process variations. This oscillator circuit is fabricated in TSMC 0.35£gm CMOS Mixed-Signal process provided by National Chip Implementation Center (CIC). Our design is verified by simulation and measurement results.
|
489 |
The Design of Multi-channel Wavelength Division Multiplexing Based on Two-Dimensional Photonic CrystalsKuo, Hung-Fu 03 July 2007 (has links)
The communication system using Wavelength-division multiplexing (WDM) allows for better utilization of the spectral bandwidth. Photonic crystals (PhCs) exhibit photonic bandgap (PBG) due to the periodic variation of the dielectric constant and photons with a range of frequencies within the PBG cannot travel through the crystal. By introducing defects into PhCs, it is possible to control the light propagation along certain paths.
In this thesis, the characteristics of coupled cavity waveguides (CCWs) and drop filter are discussed. Then we propose a multi-channel WDM system based on CCWs. It can be applied in FTTH to filter the wavelengths of 1310, 1490 and 1550 nm in different CCWs and also can make the bandwidth of output wavelength become narrow to filter more wavelengths. In addition, by modulating the size of the resonator on the PhCs, it can drop the particular wavelength into the waveguide. Finally, we proposed a multi-channel drop filter with FHWM 0.8 nm. This device design is leading the way to achieve CWDM specification with 100% drop efficiency, high quality factor and almost no crosstalk. The operations of such an ultra-compact demultiplexer and drop filter based on PhCs are suitable to be used in WDM optical communication systems.
|
490 |
Synchronization Of Linearly And Nonlinearly Coupled Harmonic OscillatorsPenbegul, Ali Yetkin 01 May 2011 (has links) (PDF)
In this thesis, the synchronization in the arrays of identical and non-identical coupled harmonic oscillators is studied. Both linear and nonlinear coupling is considered. The study consists of two main parts. The first part concentrates on theoretical analysis and the second part contains the simulation results.
The first part begins with introducing the harmonic oscillators and the basics of synchronization. Then some theoretical aspects of synchronization of linearly and nonlinearly coupled harmonic oscillators are presented. The theoretical results say that linearly coupled identical harmonic oscillators synchronize for any frequency of oscillation. For nonlinearly coupled identical harmonic oscillators, synchronization is shown to occur at large enough frequency values.
In the second part, the simulator and simulation results are presented. A GUI is designed in MATLAB to run the simulations. In the simulations, synchronization of coupled harmonic oscillators are studied according to different coupling strength values, different frequency values, different coupling graph types (e.g. all-to-all, ring, tree) and different coupling function types (e.g. linear, saturation, cubic). The simulation results do not only support the theoretical part of the thesis but also give some idea about the part of the synchronization of coupled harmonic oscillators uncovered by theory.
|
Page generated in 0.0281 seconds