• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 40
  • 24
  • 18
  • 10
  • 9
  • 8
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 309
  • 42
  • 40
  • 37
  • 34
  • 30
  • 26
  • 23
  • 23
  • 22
  • 22
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Preparation, Characterization and Performance of Poly(vinyl alcohol) based Membranes for Pervaporation Dehydration of Alcohols

Hyder, Md Nasim January 2008 (has links)
Pervaporation (PV), a non-porous membrane separation process, is gaining considerable attention for solvent separation in a variety of industries ranging from chemical to food and pharmaceutical to petrochemicals. The most successful application has been the dehydration of organic liquids, for which hydrophilic membranes are used. However, during pervaporation, excessive affinity of water towards hydrophilic membranes leads to undesirable swelling (water absorption) of the membrane matrix. To control swelling, often hydrophilic membranes are crosslinked to modify physicochemical (surface and bulk) properties. Since the transport of species in pervaporation is governed by sorption (affected by surface and bulk properties) and diffusion (affected by bulk properties), it is essential to study the effect of crosslinking on the surface and bulk physicochemical properties and their effects on separation performance. This thesis focuses on the effect of crosslinking on the physicochemical properties (e.g., crystallinity, hydrophilicity, surface roughness) of hydrophilic polymeric membranes and their dehydration performance alcohol-water mixtures. Poly(vinyl alcohol), PVA was used as the base polymer to prepare membranes with various morphologies such as homogeneous, blended (with Chitosan, CS) and composite (with poly(sulfone), PSf) structures. Before applying the crosslinked membranes for the PV dehydration of alcohols, the physicochemical characterization were carried out using Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), tensile testing, contact angle and swelling experiments. The crosslinked membranes showed an increase in surface hydrophobicity from the contact angle measurements as compared to the uncrosslinked membranes. AFM surface topography showed that the membrane surfaces have nodular structures and are rough at the nanometer scale and affected by the crosslinking conditions such as concentration and reaction time. Surface hydrophobicity and roughness was found to increase with increasing degree of crosslinking. DSC measurements showed an increase in melting temperature of the polymer membranes after crosslinking. For the PV dehydration of ethanol, a decrease in flux and an increase in selectivity were observed with increase in the degree of crosslinking. Effects of membrane thickness (of PVA layer) for crosslinked PVA-PSf composite membranes were studied on PV dehydration of ethanol. Total flux and selectivity were statistically analyzed as a function of the membrane thickness. In general, the outcome agrees with the solution-diffusion (S-D) theory: the total flux was found to be significantly affected by the PVA layer thickness, while the selectivity remains nearly unaffected. Using the S-D theory, the mass transfer resistance of the selective layers was calculated and found to increase with thickness. The relatively small change observed for selectivity has been related to the crosslinking of the PVA layer that increases the surface hydrophobicity of the membrane. Chitosan-Poly(vinyl alcohol), or CS-PVA, blended membranes were prepared by varying the blending ratio to control membrane crystallinity and its effect on the PV dehydration of ethylene glycol. The blended membranes were crosslinked interfacially with trimesoyl chloride (TMC)/hexane. The crystallinity of the membrane was found to decrease with increasing CS wt% in the blend. Although the crosslinked CS-PVA blend membranes showed improved mechanical strength, they became less flexible as detected in tensile testing. The resulting crosslinked CS-PVA blended membranes showed high flux and selectivity simultaneously, for 70-80wt% CS in the blend. The effect of feed flow-rate was studied to find the presence of concentration polarization for 90wt% EG in feed mixture as well. The crosslinked blend membrane with 75wt% CS showed a highest total flux of 0.46 kg/m2/h and highest selectivity of 663 when operating at 70oC with 90wt% EG in the feed mixture. Effects of crosslinking concentration and reaction time of trimesoyl chloride (TMC) were studied on poly(vinyl alcohol)-poly(sulfone) or PVA-PSf composite membranes. Results showed a consistent trend of changes in the physicochemical properties: the degree of crosslinking, crystallinity, surface roughness, hydrophilicity and swelling degree all decrease with increasing crosslinking agent (TMC) concentration and reaction time. The crosslinked membrane performance was assessed with PV dehydration of ethylene glycol-water mixtures at a range of concentrations (30 to 90wt% EG). The total flux of permeation was found to decrease, while the selectivity to increase, with increasing TMC concentration and reaction time. The decrease in flux was most prominent at low EG concentrations in the feed mixtures. A central composite rotatable design (CCRD) of response surface methodology was used to analyze PV dehydration performance of crosslinked poly(vinyl alcohol) (PVA) membranes. Regression models were developed for the flux and selectivity as a function of operating conditions such as, temperature, feed alcohol concentration, and flow-rate. Dehydration experiments were performed on two different alcohol-water systems: isopropanol-water (IPA-water) and ethanol-water (Et-water) mixtures around the azeotrope concentrations. Judged by the lack-of-fit criterion, the analysis of variance (ANOVA) showed the regression model to be adequate. The predicted flux and selectivity from the regression models were presented in 3-D surface plots over the whole ranges of operating variables. For both alcohol-water systems, quadratic effect of temperature and feed alcohol concentration showed significant (p < 0.0001) influence on the flux and selectivity. A strong interaction effect of temperature and concentration was observed on the selectivity for the Et-water system. For the dehydration of azeotropic IPA-water mixture (87.5wt% IPA), the optimized dehydration variables were found to be 50.5oC and 93.7 L/hr for temperature and flow-rate, respectively. On the other hand for azeotropic Et-water mixture (95.5wt% Et), the optimized temperature and flow-rate were found to be 57oC and 89.2 L/hr, respectively. Compared with experiments performed at optimized temperature and feed flow-rate, the predicted flux and selectivity of the azeotropic mixtures showed errors to be within 3-6 %.
242

Studies on Poly(N,N-dimethylaminoethyl methacrylate) Composite Membranes for Gas Separation and Pervaporation

Du, Runhong January 2008 (has links)
Membrane-based acid gas (e.g., CO2) separation, gas dehydration and humidification, as well as solvent dehydration are important to the energy and process industries. Fixed carrier facilitated transport membranes can enhance the permeation without compromising the selectivity. The development of suitable fixed carrier membranes for CO2 and water permeation, and understanding of the transport mechanism were the main objectives of this thesis. Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) composite membranes were developed using microporous polysulfone (PSF) or polyacrylonitrile (PAN) substrates. The PDMAEMA layer was crosslinked with p-xylylene dichloride via quaternization reaction. Fourier transform infrared, scanning electron microscopy, adsorption tests, and contact angle measurements were conducted to analyze the chemical and morphological structure of the membrane. It was shown that the polymer could be formed into thin dense layer on the substrates, while the quaternary and tertiary amino groups in the side chains of PDMAEMA offered a high polarity and hydrophilicity. The solid-liquid interfacial crosslinking of PDMAEMA led to an asymmetric crosslinked network structure, which helped minimize the resistance of the membrane to the mass transport. The interfacially formed membranes were applied to CO2/N2 separation, dehydration of CH4, gas humidification and ethylene glycol dehydration. The membranes showed good permselectivity to CO2 and water. For example, a CO2 permeance of 85 GPU and a CO2/N2 ideal separation factor of 50 were obtained with a PDMAEMA/PSF membrane at 23oC and 0.41 MPa of CO2 feed pressure. At 25oC, the permeance of water vapor through a PDMAEMA/PAN membrane was 5350 GPU and the water vapor/methane selectivity was 4735 when methane was completely saturated with water vapor. On the other hand, the relative humidity of outlet gas was up to 100 % when the membrane was used as a hydrator at 45oC and at a carrier gas flow rate of 1000 sccm. For used for dehydration of ethylene glycol at 30oC, the PDMAEMA/PSF membrane showed a permeation flux of ~1 mol/(m2.h) and a permeate concentration of 99.7 mol% water at 1 mol% water in feed. This work shows that the quaternary and tertiary amino groups can be used as carriers for CO2 transport through the membrane based on the weak acid-base interaction. In the presence of water, water molecules in the membrane tend to form a water "path" or water "bridge" which also help contribute to the mass transport though the membrane. In addition, CO2 molecules can be hydrated to HCO3-, which reaction can be catalyzed by the amino groups, the hydrated CO2 molecules can transport through the water path as well as the amino groups in the membrane. On the other hand, for processes involving water (either vapor or liquid) permeation, the amino groups in the membrane are also helpful because of the hydrogen bonding effects.
243

Preparation, Characterization and Performance of Poly(vinyl alcohol) based Membranes for Pervaporation Dehydration of Alcohols

Hyder, Md Nasim January 2008 (has links)
Pervaporation (PV), a non-porous membrane separation process, is gaining considerable attention for solvent separation in a variety of industries ranging from chemical to food and pharmaceutical to petrochemicals. The most successful application has been the dehydration of organic liquids, for which hydrophilic membranes are used. However, during pervaporation, excessive affinity of water towards hydrophilic membranes leads to undesirable swelling (water absorption) of the membrane matrix. To control swelling, often hydrophilic membranes are crosslinked to modify physicochemical (surface and bulk) properties. Since the transport of species in pervaporation is governed by sorption (affected by surface and bulk properties) and diffusion (affected by bulk properties), it is essential to study the effect of crosslinking on the surface and bulk physicochemical properties and their effects on separation performance. This thesis focuses on the effect of crosslinking on the physicochemical properties (e.g., crystallinity, hydrophilicity, surface roughness) of hydrophilic polymeric membranes and their dehydration performance alcohol-water mixtures. Poly(vinyl alcohol), PVA was used as the base polymer to prepare membranes with various morphologies such as homogeneous, blended (with Chitosan, CS) and composite (with poly(sulfone), PSf) structures. Before applying the crosslinked membranes for the PV dehydration of alcohols, the physicochemical characterization were carried out using Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), tensile testing, contact angle and swelling experiments. The crosslinked membranes showed an increase in surface hydrophobicity from the contact angle measurements as compared to the uncrosslinked membranes. AFM surface topography showed that the membrane surfaces have nodular structures and are rough at the nanometer scale and affected by the crosslinking conditions such as concentration and reaction time. Surface hydrophobicity and roughness was found to increase with increasing degree of crosslinking. DSC measurements showed an increase in melting temperature of the polymer membranes after crosslinking. For the PV dehydration of ethanol, a decrease in flux and an increase in selectivity were observed with increase in the degree of crosslinking. Effects of membrane thickness (of PVA layer) for crosslinked PVA-PSf composite membranes were studied on PV dehydration of ethanol. Total flux and selectivity were statistically analyzed as a function of the membrane thickness. In general, the outcome agrees with the solution-diffusion (S-D) theory: the total flux was found to be significantly affected by the PVA layer thickness, while the selectivity remains nearly unaffected. Using the S-D theory, the mass transfer resistance of the selective layers was calculated and found to increase with thickness. The relatively small change observed for selectivity has been related to the crosslinking of the PVA layer that increases the surface hydrophobicity of the membrane. Chitosan-Poly(vinyl alcohol), or CS-PVA, blended membranes were prepared by varying the blending ratio to control membrane crystallinity and its effect on the PV dehydration of ethylene glycol. The blended membranes were crosslinked interfacially with trimesoyl chloride (TMC)/hexane. The crystallinity of the membrane was found to decrease with increasing CS wt% in the blend. Although the crosslinked CS-PVA blend membranes showed improved mechanical strength, they became less flexible as detected in tensile testing. The resulting crosslinked CS-PVA blended membranes showed high flux and selectivity simultaneously, for 70-80wt% CS in the blend. The effect of feed flow-rate was studied to find the presence of concentration polarization for 90wt% EG in feed mixture as well. The crosslinked blend membrane with 75wt% CS showed a highest total flux of 0.46 kg/m2/h and highest selectivity of 663 when operating at 70oC with 90wt% EG in the feed mixture. Effects of crosslinking concentration and reaction time of trimesoyl chloride (TMC) were studied on poly(vinyl alcohol)-poly(sulfone) or PVA-PSf composite membranes. Results showed a consistent trend of changes in the physicochemical properties: the degree of crosslinking, crystallinity, surface roughness, hydrophilicity and swelling degree all decrease with increasing crosslinking agent (TMC) concentration and reaction time. The crosslinked membrane performance was assessed with PV dehydration of ethylene glycol-water mixtures at a range of concentrations (30 to 90wt% EG). The total flux of permeation was found to decrease, while the selectivity to increase, with increasing TMC concentration and reaction time. The decrease in flux was most prominent at low EG concentrations in the feed mixtures. A central composite rotatable design (CCRD) of response surface methodology was used to analyze PV dehydration performance of crosslinked poly(vinyl alcohol) (PVA) membranes. Regression models were developed for the flux and selectivity as a function of operating conditions such as, temperature, feed alcohol concentration, and flow-rate. Dehydration experiments were performed on two different alcohol-water systems: isopropanol-water (IPA-water) and ethanol-water (Et-water) mixtures around the azeotrope concentrations. Judged by the lack-of-fit criterion, the analysis of variance (ANOVA) showed the regression model to be adequate. The predicted flux and selectivity from the regression models were presented in 3-D surface plots over the whole ranges of operating variables. For both alcohol-water systems, quadratic effect of temperature and feed alcohol concentration showed significant (p < 0.0001) influence on the flux and selectivity. A strong interaction effect of temperature and concentration was observed on the selectivity for the Et-water system. For the dehydration of azeotropic IPA-water mixture (87.5wt% IPA), the optimized dehydration variables were found to be 50.5oC and 93.7 L/hr for temperature and flow-rate, respectively. On the other hand for azeotropic Et-water mixture (95.5wt% Et), the optimized temperature and flow-rate were found to be 57oC and 89.2 L/hr, respectively. Compared with experiments performed at optimized temperature and feed flow-rate, the predicted flux and selectivity of the azeotropic mixtures showed errors to be within 3-6 %.
244

Incorporation of recombinant fibronectin into genetically engineered elastin-based polymers

Balderrama, Fanor Alberto 17 November 2009 (has links)
Cardiovascular disease is the main cause of death in the United States. Many of these conditions require the grafting or bypassing of compromised blood vessels. To this effect, biological vascular grafts (autografts and allografts) are the first line of action. However, when the patient lacks vasculature suitable for grafting use, several synthetic grafting options are available. The search for an inert biomaterial for vascular grafts has proven to be unsuccessful. This makes the interaction taking place on the blood-biomaterial interface critical for the success of the grafts. This thesis introduces a new bio-inspired approach to tackle the mechanical and biological challenges of vascular material design. The hypothesis of this research is that recombinant fibronectin protein can be stably incorporated onto elastin-mimetic polymers to increase endothelialization. Recombinant elastin, designed to recreate the mechanical properties of natural elastin as a candidate material for vascular graft fabrication, was used as a model surface. Recombinant fibronectin-functionalized elastin-mimetic polymer displayed significant improvement in cell adhesion. Quantification of surface bound recombinant fibronectin verified the concentration dependence of this cell adhesive behavior. Modified elastin-mimetic polymer also demonstrated an enhanced ability to support endothelial cell proliferation. Furthermore, the stability of recombinant fibronectin-modified polymers was assessed. These studies provide the foundation for fabricating elastin-mimetic vascular grafts with improved endothelialization and subsequent biological performance.
245

Développement d'un microréacteur à base d'enzyme protéolytique réticulée avec le glutaraldéhyde pour la cartographie peptidique

Nguyen, Quynh Vy January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
246

Apport des écoulements élongationnels lors de la mise en oeuvre de mélanges PP/EPDM réticulés dynamiquement et chargés à base de graphène / Elongational flows contribution to the dispersive mechanisms in immiscible blends : application for conductive thermoplastic vulcanizates (TPV) based on polypropylene/EPDM blends

Rondin, Jérôme 19 December 2012 (has links)
Le travail de thèse présenté dans ce manuscrit a consisté à mettre en avant un nouveau procédé de mélange des polymères développé au LIPHT lors de la mise en oeuvre de mélanges PP/EPDM réticulés dynamiquement et chargés à base de graphène. Ce nouveau mélangeur, appelé RMX®, se distingue de la plupart des mélangeurs existants par la présence d’écoulements élongationnels forts, la possibilité de mouler directement des éprouvettes à l’issue de l’étape de mélange ainsi qu’une étanchéité aux gaz et aux liquides. Après une optimisation des conditions opératoires de ce mélangeur, nous avons pu évaluer quantitativement l’efficacité du mélange dispersif par analyse numérique de tailles de particules d’EPDM dispersées dans une matrice PP. Le RMX® permet d’obtenir une dispersion fine (~ 1 μm) pour des énergies spécifiques et des temps de mélange inférieurs aux procédés existants. Des tailles significativement réduites ont été obtenues pour des mélanges présentant un rapport de viscosité élevé (p > 1). Ces résultats ont été attribués à la combinaison de taux de déformation en cisaillement élevés dans le canal de l’élément de mélange avec des taux de déformation en élongation majoritaires en entrée/sortie de ce dernier. L’impact des écoulements élongationnels sur l’intervalle de (co)-continuité de mélanges PP/EPDM a ensuite été étudié. Un décalage de la percolation de la phase dispersée (EPDM) vers les hautes concentrations ainsi qu’une borne supérieure de cet intervalle plus élevée ont ainsi pu être mis en évidence à l’aide de techniques complémentaires (MEB, extraction sélective de la phase EPDM, analyse rhéologique). Une procédure originale d’élaboration de matériaux TPV dans le RMX® a également été réalisée. La réticulation dynamique au moyen d’une résine phénolique d’un mélange PP/EPDM présentant une morphologie co-continue a été effectuée. Des taux d’insoluble proche de 100% ainsi que les propriétés élastiques des TPV formés ont permis de confirmer l’efficacité de cette étape de réticulation dans le RMX®. Une dernière étude a consisté à disperser une nanocharge graphitique lamellaire et conductrice (xGNPTM) dans une matrice PP. L’analyse par diffraction des rayons X, les seuils de percolation rhéologique et électrique obtenus autour de 7 et 8 wt% respectivement ainsi qu’un facteur de forme Af ~ 15 suggèrent une absence d’exfoliation ainsi qu’une agrégation importante des particules de xGNP. / A new mixing device (RMX®) based on elongational flows has been developed during this work. This device has specific technical features comparing to conventional mixers such as: variable mixing volume, direct molding of samples, air and water tightness. After an optimization of processing conditions, dispersive mixing efficiency was assessed on PP/EPDM blends by numerical analysis. Very fine dispersed morphologies were obtained for lower specific mixing energy and mixing times comparing to internal mixer (Haake Rheomix 600). Significantly reduced droplet sizes have been obtained for high-viscosity ratio blends (p > 1). These results indicate an enhanced droplet break-up mechanism in the RMX® which was attributed to the combination of high shear rates inside the mixing element and important elongational flows in the convergent/divergent zones. Impact of elongational flow mixing on the (co)-continuity interval of PP/EPDM blends was investigated. An important shift (~ 10 wt%) of the EPDM percolation threshold as well as a higher phase inversion concentration was observed. A combination of complementary techniques (SEM, selective extraction and rheological analysis) was successfully carried on in order to assess this (co)-continuity interval. Then, PP/EPDM blends with a co-continuous morphology were dynamically crosslinked in the RMX® using resole as a crosslinking agent. An original and specific procedure was developed for this purpose. Gel fraction close to 1 and significantly enhanced elastic properties after crosslinking confirmed the efficiency of this procedure. Finally, the dispersion of lamellar and conductive nanofillers (xGNPTM) in a polypropylene matrix was studied. Microstructural characterization by XRD and optical microscopy, rheological and electrical percolation thresholds (7 and 8 wt% of xGNP respectively) and corresponding aspect ratios (Af ~ 15) have shown no evidence of exfoliation.
247

Caracterização da sílica amorfa extraída da casca de arroz obtida por pré-hidrólise ácida e calcinação, e sua aplicação em borracha de estireno-butadieno (SBR) / Characterization of amorphous rice husk silica obtained by acidic prehydrolysis and calcination, and its application in styrene-butadiene rubber (SBR)

Eduardo Roque Budemberg 14 June 2013 (has links)
O crescimento dos países em desenvolvimento aumentará em várias vezes o consumo de energia, materiais e alimentos. Para suprir essa demanda é necessário o aproveitamento racional dos resíduos gerados por processos industriais, agrícolas e lixo urbano, transformando-os em energia economicamente competitiva com as outras formas de energia, e em materiais com propriedades otimizadas. O objetivo do presente trabalho foi comparar o comportamento da sílica da casca de arroz obtida por pré-hidrólise ácida seguida de calcinação controlada (Sil-PH) com sílicas de casca de arroz comerciais obtidas simplesmente pela queima da casca (Sil-B e Sil-C) e com a sílica comercial obtida da areia quartzítica (Sil-Z), como carga de reforço em borracha de estireno-butadieno (SBR), que é a mais usada na indústria de fabricação de pneus. Estudos foram conduzidos em SBR 1502, preparados conforme norma ASTM 3191-2010. Foram adicionadas à borracha as sílicas em concentrações de 0, 10, 20 e 40 ppcb. Foram conduzidos testes físicos, químicos, mecânicos, reométricos, dinâmico-mecânicos e análise térmica, bem como ensaios de inchamento dos corpos de prova em toluol e análise microestrutural das sílicas e dos compostos por microscopia eletrônica de varredura, com o objetivo de determinar a natureza do reforço. O número de ligações cruzadas foi avaliado e a energia de formação dessas ligações foi calculada. A relação entre as metodologias de cálculo da densidade de ligações cruzadas foi também avaliada, obtendo a caracterização desse tipo de carga de reforço não somente por correlações mecânicas mas também pela energia de formação das ligações. Os resultados mostraram que quanto maior a adição de sílica, maior é sua interação com a borracha. Dentre as sílicas adicionadas, Sil-Z alcançou os maiores valores de propriedades mecânicas dos compostos, e Sil-PH mostrou os melhores resultados dentre as sílicas de casca de arroz. Por avaliação por inchamento em toluol (teste estático) e por testes de tração e testes dinâmicos foi possível afirmar que as densidades de ligações cruzadas estão correlacionadas, Usando os resultados de reometria e as equações de Arrhenius estimou-se uma energia média de ligação, concluindo que esta corresponde a uma ligação do tipo covalente. Pelos valores de tan ? confirmou-se que os compostos com Sil-PH têm maior aderência no chão molhado do que aqueles com Sil-Z. A sílica nos compostos tende a diminuir a temperatura de transição vítrea. Os resultados da análise térmica mostraram elevada estabilidade térmica dos compostos com Sil-PH e Sil-Z. A falta de cominuição adequada da Sil-PH ocasionou uma dispersão irregular da sílica na SBR, uma molhabilidade parcial da sílica pela borracha e pelo agente de acoplamento, com consequente aparecimento de falhas na estrutura do composto. Por esse motivo as propriedades mecânicas dos compostos com Sil-PH foram inferiores às dos compostos com Sil-Z. / Developing countries are increasing by several times their consumption of energy, materials, and food. To attend their demand it is necessary to rationally reuse industrial, agricultural, and municipal solid waste residues, transforming them into economically competitive energy and materials with optimized properties. The objective of this work was to compare the behavior of a rice husk silica obtained by acidic prehydrolysis and controlled calcination (Sil-PH) with commercial amorphous silicas obtained from quartzite sand (Sil-Z) and from simply burned rice husks (Sil-B and Sil-C), as reinforcing filler in styrene-butadiene rubber (SBR) composites, which is the most used rubber in the tire manufacture industry. Studies were conducted on SBR 1502 rubber according to ASTM 3191-2010 in which amorphous silicas obtained from rice husk and quartzite silica were added at concentrations of 0, 10, 20, and 40 phr. Physical, chemical, mechanical, rheometric, dynamic-mechanical tests, thermal analysis, swelling studies in toluol and scanning electron microscopy of the silicas and composite specimens were made with objective to determine the nature of reinforcement. The number of crosslinks was evaluated and the energy of formation of these bonds calculated. The correlation between the methodologies of calculation of crosslink density was also evaluated, getting the characterization of this type of reinforcing filler not only by mechanical correlations but also by the energy of their formation. The results showed that the higher the content of added silica, the greater the interaction with rubber. According to the mechanical properties values Sil-Z achieved the highest properties values but Sil-PH showed better results compared to the other types of rice husk silicas. By evaluation by swelling in toluene (static), tensile tests and dynamic tests it was possible to affirm that the crosslink densities are correlated. By using the rheometry results and the Arrhenius equations the average bound was estimated to be of a covalent type. The silica in the compounds tends to lower the values of the glass transition temperature. The evaluation of tan ? showed that Sil-PH has more stickiness on the wet floor, which is an important property to tire application. Due to the lack of appropriate grinding of the Sil-PH the dispersion of the silica on SBR was irregular; partial wetting of the silica particles by rubber and silane had also occurred. Those facts had caused failures on the compound structural integrity, with a consequent lowering of the mechanical property values as compared to the compounds with Sil-Z addition.
248

Nové Antibakteriální kolagenové nosiče pro regenerativní medicínu / Novel Antibacterial Collagen Scaffolds for Regenerative Medicine

Dorazilová, Jana January 2018 (has links)
Tato diplomová práce se zabývá charakterizací 3D porézních kolagenových pěn obsahující vybraná antibakteriální činidla. V literární části jsou shrnuty dosavadní poznatky o biomateriálech a biopolymerech se zaměřením na kolagen a chitosan. Dále jsou v ní popsány antibakteriálních vlastnosti nanočástic v kontextu s využitím selenových nanočástic jako antibakteriální činidla. Pro potřeby této práce byla vybrána antibakteriální aditiva dvojího typu – biopolymerní chitosan a selenové nanočástice. 3D porézní struktury bylo dosaženo metodou lyofilizace. Mechanické vlastnosti biopolymerní matrice byly podpořeny síťováním v prostředí chemického síťovadla na bázi karbodiimidu. K charakterizaci připravených kolagenových pěn byly použity především fyzikálně chemické metody. Na analýzu mikrostruktury a velikosti pórů, vizualizaci nanočástic a jejich distribuci v testovaných materiálech byla využita rastrovací elektronová mikroskopie (SEM) spolu s energiově disperzní analýzou (EDX). Parametry jako je porozita, botnací poměr, úbytek hmotnosti při degradaci ve vodném prostředí a v prostředí enzymů byly zjištěny vhodnými gravimetrickými metodami. Ovlivnění chemické struktury kolagenové matrice před a po přidání antibakteriálních aditiv bylo sledováno za pomocí metody zeslabeného úplného odrazu infračervené spektroskopie s Fourierovou transformací (ATR FTIR). Procentuální uvolnění nanočástic z testovaných vzorků bylo sledováno pomocí optické emisní spektroskopie s indukčně vázanou plazmou (ICP OES). K zhodnocení antibakteriálních vlastností testovaných materiálů byly použity především difúzní agarová disková metoda a makrodiluční bujónová metoda. Provedeným výzkumem jsme zjistili vliv přídavku antibakteriálních činidel na strukturu a některé vlastnosti 3D kolagenových matric. Výsledky antibakteriálních testů ukázaly pozitivní vliv chitosanu i selenových nanočástic na inhibici růstu bakterií v závislosti na koncentraci přidaných aditiv. Navržené materiály mohou být využity pro biomedicínské aplikace především v oblastech zabývající se regenerací měkkých tkání.
249

Příprava materiálů na bázi reaktivně modifikovaných polyolefinů / Preparation of materials based on reactive modified polyolefins

Běťák, Lukáš January 2010 (has links)
This thesis deals with a preparation of modified polypropylene. Modified polypropylene was prepared by reaction itaconic anhydride and compounds contain primary and secondary amino group (diaminododecane, aminoethylethanolamine and aminoethylpiperazine). Knowledge of radical and condensation modification of polypropylene were summarized in the theoretical part. New application of modified polypropylene ware summarized at the theoretical part as well. In the experimental part polypropylene was functionalized by grafting with itaconic anhydride during reactive extrusion. Extrusion was carried on the co-rotating twin-screw extruder (Brabender 25 DSE L/D = 34) at 230 °C and 30 RPM. Residence time of reactive blend was 3 minutes. The modified polypropylene PP-g-IAH) contained 0.5 wt% of itaconic anhydride. 2,5 dimethyl 2,5bis(tert buthyl-peroxy)hexane (Luperox 101) was used as a radical initiator. A ratio initiator/monomer was 1:0.6 (mol/mol). PP-g-IAH was used for condensation reaction with amino compounds in molar ratios IAH/amine from 1:0,3 to 1:1. This reaction carried out in single screw extruder (Betol 1825 L/D = 39) at 210 °C and 30 RPM. Residence time of reactive blend was 3 minutes. Fourier transform infrared spectroscopy was used for a calculation of reaction conversion and for description of new functional groups in the materials. This analysis confirmed the presence of amide and imide groups in the samples. Influence of amino compounds to polymer crystallinity was studied by differential scanning calorimetry. Termogravimetric analysis focused on thermal stability of prepared samples and changes of thermal stability was observed in dependence of additives amount. The rheological behaviors of modified PP were analyzed by measuring the complex viscosity.
250

Elaboration de polymères naturels à base de Polysaccherides pour application à la libération controlée / Design of of polysaccharide-based biopolymers for the controlled release of their active principle

Sehil, Hafida 28 November 2017 (has links)
Ce travail a eu pour objectif la conception de nouveau matériaux à base de polysaccharide pour la libération contrôlée de principes actifs et pour d'éventuelles applications environnementales. Pour cela, des gels ont été préparés par réticulation du carboxymethylepullulane CMP et du pullulane interpénétré par l’alginate avec le sodium trimétaphosphate STMP. Les hydrogels obtenus ont été caractérisés et leurs propriétés physico-chimiques et rhéologiques ont été investiguées. La séquestration de principes actifs modèles dans les hydrogels a été réalisée par regonflement des gels dans une solution de bleu de méthylène BM ou par dispersion de la 3- aminopyridine 3AP à l’intérieur des gels. L'’influence des différents paramètres comme la nature du gel, le taux d’agent réticulant et le pH sur la libération des principes actifs a permis de conclure sur la performance des gels comme matrice à libération contrôlée. D'autre part, ces hydrogels de morphologies différentes se sont révélés être des adsorbants prometteurs, les tests sur le BM servant dans ce cas comme polluant modèle ont montré des capacités d'adsorption plus de 1000 mg/g pour les gels à base de CMP et de 500 mg/g pour les gels Pullulane/alginate. Les capacités d'adsorption étaient sensibles à la quantité du STMP, au degré de substitution du CMP et aux variations du pH. Les résultats expérimentaux étaient bien modélisés par une équation cinétique de pseudo-second ordre et l'isotherme de Freundlich décrivait d'une manière satisfaisante le phénomène. / This work has aimed at the design of new polysaccharide-based materials for the controlled release of active ingredients and for possible environmental applications. For this, gels were prepared by crosslinking the carboxymethylpullulan CMP and the pullulan interpenetrated by the alginate with the sodium trimetaphosphate STMP. The hydrogels obtained were characterized and their physicochemical and rheological properties were investigated. The sequestration of model active ingredient in the hydrogels was carried out by re-inflation gels in a solution of BM or dispersion of 3AP within the gels. The influence of the various parameters such as the nature of the gel, the level of crosslinking agent and the pH on the release of the active ingredients made it possible to conclude on the performance of the gels as a controlled-release matrix. On the other hand, these hydrogels of different morphologies have proved to be promising adsorbents, the tests on the BM used in this case as a model pollutant showed an adsorption capacity of more than 1000 mg / g for CMP-based gels and 500 mg / g for Pullulane / alginate gels. Absorption capacities were sensitive to the amount of SMTP, the degree of CMP substitution, and pH changes. The experimental results were well modeled by a pseudo-second order kinetic equation and the Freundlich isotherm satisfactorily described the phenomenon.

Page generated in 0.3099 seconds