• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 9
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 10
  • 10
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Etude physique de la dégradation et modèles pour l'assurance durcissement des capteurs d'image en environnement spatial / Physical study of degradation and models for hardness assurance of imaging sensors

Martin, Emma 14 December 2012 (has links)
Suivi de notre développement ou encore la compréhension de l’Univers. Deux technologies de capteurs d’image sont actuellement utilisées dans les missions d’imagerie de la Terre et de l’espace : les imageurs CCD (Charge Coupled Device) et CMOS. L’environnement radiatif spatial est constitué de particules énergétiques qui dégradent les performances des imageurs. Et il s’avère que les dégradations réelles observées en vol dépendent fortement des conditions orbitales et de fonctionnement et sont donc très difficiles à prédire. L’étude menée dans le cadre de cette thèse a pour objet la compréhension des dégradations subies par les capteurs CCD et CMOS lorsqu’ils sont soumis à l’environnement radiatif spatial et la proposition de méthodes d’évaluation mieux adaptées pour obtenir une meilleure prédiction de la dégradation réelle d’un imageur en orbite à partir de tests d’irradiation réalisés au sol. La démarche entreprise a tout d’abord consisté à identifier les paramètres d’essais au sol pouvant potentiellement être à l'origine des différences observées entre les résultats sol et vol. Un plan d’essai d’irradiation aux rayons y et aux protons a ainsi été défini afin d’évaluer la dégradation des imageurs CCD et CMOS dans des conditions de fonctionnement et d’irradiation proches de celles en vol. Nous avons étudié l’impact des conditions de mise en opération du composant durant l’irradiation (polarisation, rapport cyclique, etc.) mais aussi l’impact des conditions d’irradiation (débit de dose, énergies des protons, etc.). Le périmètre de cette thèse se limite à l’étude des effets sur le courant d’obscurité, sur la dispersion pixel-à-pixel du courant d’obscurité et sur l’apparition des pixels chauds, qui sont, au premier ordre, les principaux critères de performances dégradés d’un imageur par les radiations. L’étude de l’influence du débit de dose de l’irradiation a montré un phénomène ELDRS (Enhanced Low Dose Rate Sensitivity) pour la première fois sur un capteur CCD polarisé dynamiquement avec un rapport cyclique ON/OFF. Les conditions de polarisation dynamique évaluées sur les APS ont démontré que la dégradation est d’autant plus importante que la fréquence d’activation et le rapport cyclique sont grands. Les irradiations aux protons sur les imageurs CMOS ont aussi montré l’apparition et la guérison de pixels chauds après irradiation à température ambiante ainsi que l'apparition du bruit de signal aléatoire télégraphique (RTS). Ces deux modes de dégradation ont été analysés plus en détail afin d'évaluer leur comportement en guérison pour le premier et extraire les statistiques d'apparition sur l'autre, sur un grand nombre de pixels. En parallèle, un code de simulation de l’effet de dose dans les oxydes de structures élémentaires MOS, ACDC (Accumulation des Charges en Dose Cumulée), a été adapté et utilisé. Ce code a permis de mettre en évidence les constantes de temps impliquées dans la dégradation par effets ionisants dans ces structures. Ces constantes de temps sont utilisées pour l'interprétation des effets de la polarisation dynamique. Les résultats expérimentaux obtenus sur les capteurs d’image CCD et CMOS ont un impact sur l’assurance durcissement. Les irradiations aux protons des imageurs CMOS ont notamment montré un phénomène de guérison des pixels chauds plus marqué que sur les autres pixels, montrant l'intérêt d'une caractérisation de plusieurs semaines après irradiation. Pour les irradiations au Co60 des imageurs CMOS, il est recommandé de ne pas utiliser des temps de polarisation ON trop courts (périodes de cycle petites) car cela peut conduire à une sous-estimation de la dégradation (charge piégée et états d'interface). / Two imaging sensor technologies are presently used in Earth and space imagery missions: Charge Couple Devices (CCD) and CMOS detectors. The space radiation environment is composed of energetic particles that degrade imaging sensor’s performances. It has been shown that real in-orbit degradation of imaging sensors are strongly dependent of orbital and operating conditions and are, as a consequence, difficult to predict. The work performed in this thesis has for purpose an understanding of space radiation-induced degradations for both CCD and CMOS technologies and the proposal of better suited assessment methods for these specific devices in order to better prediction of real in-orbit detector’s degradation from on-ground irradiation tests. The first step of the work focused on the identification of on-ground test parameters that could possibly explain the differences observed between inorbit and on-ground data. Thus an irradiation test plan to y-rays and proton particles has been defined in order to assess the imaging sensor’s degradation for both CCD and CMOS technologies in operating and irradiation conditions close to in-orbit ones. The effects of detector’s operation conditions during irradiation (bias, duty cycle, etc.) but also the irradiation conditions (dose rate, proton energy, etc.) have been studied. The present work focuses on effects on dark current, on its pixel to pixel dispersion and on the presence of hot pixels, which are, at first order, the main performance parameters of an imaging sensor that is degraded by space radiations. The study of the irradiation dose rate influence has shown an Enhanced Low Dose Rate Sensitivity (ELDRS) phenomenon observed for the first time on a CCD imager under dynamic bias condition with a ON/OFF duty cycle. The tested bias conditions CMOS image sensors have demonstrated that the higher the activation frequency and duty cycle, the higher is the degradation. Besides, the proton irradiations performed on CMOS detectors have induced hot pixels that anneal just after irradiation at room temperature. A random telegraphic signal (RTS) behaviour of the dark current has also been shown on CMOS sensors. In parallel to the irradiation tests, a simulation code of ionizing dose effects on oxides of MOS elementary structures has been adapted and used. This program, called ACDC (Accumulation des Charges en Dose Cumulée), has allowed to assess the quantification time constants of physical mechanisms that induce ionizing dose degradation on these structures. These time constants are used for the interpretation of dynamic bias effects.
12

On wide dynamic range logarithmic CMOS image sensors

Choubey, Bhaskar January 2006 (has links)
Logarithmic sensors are capable of capturing the wide dynamic range of intensities available in nature with minimum number of bits and post-processing required. A simple circuit able to perform logarithmic capture is one utilising a MOS device in weak inversion. However, the output of this pixel is crippled due to fixed pattern noise. Technique proposed to reduce this noise fail to produce high quality images on account of unaccounted high gain variations in the pixel. An electronic calibration technique is proposed which is capable of reducing both multiplicative as well as additive FPN. Contrast properties matching that of human eye are reported from these sensors. With reduced FPN, the pixel performance at low intensities becomes concerning. In these regions, the high leakage current of the CMOS process affects the logarithmic pixel. To reduce this current, two different techniques using a modified circuit and another with modified layout are tested. The layout technique is observed to reduce the leakage current. In addition, this layout can be used to linearise the output of logarithmic pixel in low light regions. The unique linear response at low light and logarithmic pixel at high light is further investigated. A new model based on the device physics is derived to represent this response. The fixed pattern noise profile is also investigated. An intelligent iterative scheme is proposed and verified to extract the photocurrent flowing in the pixel and correct the fixed pattern noise utilising the new model. Future research ideas leading to better designs of logarithmic pixels and post-processing of these signals are proposed at the end of the thesis.
13

Analyse des performances des photodiodes à superréseaux InAs/GaSb pour le moyen infrarouge / Performances analysis of InAs/GaSb superlattice photodetectors for midwave infrared domain

Delmas, Marie 04 December 2015 (has links)
Dans le domaine de la photodétection infrarouge (IR) haute performance refroidie, le photodétecteur à superréseaux (SR) InAs/GaSb est une filière émergente qui peut compléter les technologies déjà établies. Grâce à des années de recherche, l'Institut d'Electronique du Sud (IES) de l'Université de Montpellier a développé une expertise sur la croissance du matériau SR InAs/GaSb par épitaxie par jets moléculaires et sur la fabrication technologique des photodiodes pin dont les performances sont à l'état de l'art mondial dans le moyen IR (3-5µm). Au cours de cette thèse, nous avons étudié deux périodes différentes de SR comme zone active de photodiodes pin ayant une longueur d'onde de coupure à 5 µm à 80K : une riche en InAs (InAs-rich) et l'autre riche en GaSb (GaSb-rich). Ces structures SR présentent des caractéristiques électriques et électro-optiques très différentes. Notamment, les densités de courant de la structure InAs-rich sont très bonnes, de l'ordre de 10-8A/cm2 à 80K, alors que celles de la structure GaSb-rich sont deux décades plus élevées. L'objectif de cette thèse était donc d'analyser les performances de ces photodiodes. Pour cela, nous avons développé une méthode de simulation avec l'outil TCAD SILVACO. Appliquée tout d'abord aux structures InAs-rich, nous avons mis en évidence que ces diodes sont limitées à basse température (typiquement < 120K) par le courant de génération-recombinaison et/ou par le courant tunnel assisté par pièges. La durée de vie extraite de la simulation suit une variation en T-1/2, démontrant que les mécanismes limitant les photodiodes est la génération-recombinaison SRH. Appliquée aux structures GaSb-rich, l'approche SILVACO ne peut expliquer les résultats en courant. Nous démontrons que ces résultats sont fortement liés à la présence du champ électrique dans la zone d'absorption du composant. Cela génère à faible polarisation, un fort courant tunnel, au travers des états Wannier-Stark localisés, qui pénalise fortement le courant d'obscurité et cela malgré des améliorations obtenues au niveau du matériau. Pour finir, nous établissons des règles de dimensionnement de structures à barrière et nous proposons une structure à SR pour le lointain infrarouge. / Among the high performance cooled infrared (IR) photodetector systems, the InAs/GaSb superlattice (SL) is an emerging material which may complement the currently technologies already established. Over the last 10 years, the Institut d'Electronique du Sud (IES) of the University of Montpellier has developed skills in both the growth of SL materials by molecular beam epitaxy and the process fabrication of pin photodiodes. The photodiode fabricated by the IES group are at the state of the art in the mid IR (3 – 5 μm). During this thesis, we studied two structures with different SL periods for the pin active zone showing the same cut-off wavelength of 5 μm at 80K: the structure called InAs-rich structure presents InAs layer thicker than the GaSb layer in each SL period while this configuration is reversed in the case of the GaSb-rich structure. These SL structures have very different electrical and electro-optical characteristics. In particular, the current densities of the InAs-rich structure are very good, about 10-8 A/cm2 at 80K - two orders of magnitude greater than that of GaSb-rich. The aim of this thesis work was therefore to analyze the performance of these photodiodes. For this purpose, we developed a simulation method with the SILVACO TCAD tool. Using this tool, we found that the InAs-rich diodes are limited at low temperatures (typically under 120K) by generation recombination and/or by assisted tunneling currents. The lifetimes extracted from the simulation follows the T-1/2 law, which demonstrates that the limiting mechanism is SRH recombination. However, we found that we could not study the current densities of the GaSb-rich structure using the same procedure. We demonstrate that these results are strongly related to the presence of the electric field in the absorption zone of the device. This electric field generates, at low biases, a strong tunneling current through localized Wannier-Stark states, which strongly limits the overall current despite material improvements. Finally, we define the design conditions to achieve an optimized SL barrier structure and propose a design for SL structures targeting the long wavelength domain.
14

Application of GEANT4 toolkit for simulations of high gradient phenomena

Persson, Daniel January 2018 (has links)
To study electron emissions and dark currents in the accelerating structures in particle colliders, a test facility with a spectrometer has been constructed at CERN. This spectrometer has been simulated in the C++ toolkit GEANT4 and in this project the simulation has been improved to handle new realistic input data of the emitted electrons. The goal was to find relations between where the electrons are emitted inside the accelerating structure and the energy or position of the particles measured by the spectrometer. The result was that there is a linear relation between the initial position of the electrons and the width in the positions of the particles measured by the spectrometer. It also appears to be a relations between energy the emitted electrons get in the accelerating structure, which is related to the position, and the energy they deposit in the spectrometer. Further studies where the simulations are compared with real measurement data are required to determine whether these relations are true or not, find better reliability in the relations and get a better understanding of the phenomena.
15

Etude de structures avancées pour la détection IR quantique à haute température / Study of advanced structures for HOT IR quantum detection

Hassis, Wala 16 April 2014 (has links)
La détection IR quantique met classiquement en jeu l'absorption de photons dans le matériau semi-conducteur II-VI CdHgTe. Cet alliage présente la particularité de permettre un ajustage du gap du semi-conducteur aux longueurs d'onde couvrant toute la gamme IR en jouant simplement sur la composition de l'alliage, ce qui en fait un matériau de choix. Cependant,les petits gaps en jeu ici imposent un refroidissement des plans focaux à des températures généralement cryogéniques (typiquement la centaine de Kelvins). Ce refroidissement représente naturellement une limite importante dans l'exploitation, l'encombrement et le coût de tels détecteurs.Un des grands défis à venir dans le domaine de la détection IR quantique est la détection à plus haute température. Une figure de mérite populaire pour examiner le fonctionnement de ces détecteurs est le courant d'obscurité qui reflète son bruit, dans le cas d'un détecteur limité par le bruit de courant (shot noise). Or, du fait des propriétés électriques du matériau semi-conducteur utilisé, ce courant d'obscurité augmente fortement avec le réchauffement du détecteur et rend son utilisation impossible à haute température. De plus, un autre phénomène apparaît également limiter le fonctionnement de nos photo-détecteurs : à hautes températures apparaît du bruit 1/f dont l'origine n'est pas parfaitement comprise aujourd'hui (matériau bulk ou interfaces, le débats reste ouvert…).Ce travail de thèse a pour objectif de comprendre les phénomènes physique régissant le bruit 1/f dans les photodiodes CdHgTe à travers la variation d'un bon nombre de paramètres physique et géométriques en vue de mettre en évidence la ou les corrélations de ce bruit avec ces variantes. / The IR sensor makes quantum conventionally involves the absorption of photons in the semiconductor CdHgTe II -VI material . This alloy has a feature to allow an adjustment of the gap of the semiconductor at wavelengths covering the whole IR range by simply varying the composition of the alloy, which makes it a material of choice . However, small gaps at stake here impose a focal cooling to cryogenic temperatures generally planes ( typically hundred Kelvins ) . This cooling naturally represents an important limitation in the operation , the size and cost of such detectors .One of the great challenges ahead in the field of quantum IR detection is the detection at higher temperatures . A figure of merit for popular review the operation of these sensors is the dark current , which reflects its sound , in the case of a noise-limited current ( shot noise) detector. However, because the electrical properties of the semiconductor material used , the dark current increases sharply with the heating of the detector and makes it impossible to use at high temperature . In addition, another phenomenon also appears to limit the functionality of our photo-detectors: high temperature appears on the 1 / f noise whose origin is not fully understood today ( or bulk material interfaces , the debate remains open ... ) .To understand the physical phenomena governing the 1 / f noise in HgCdTe photodiodes through the variation this thesis aims to lots of physical and geometrical parameters in order to highlight the correlations or noise with these variants .
16

Analyse des effets des déplacements atomiques induits par l’environnement radiatif spatial sur la conception des imageurs CMOS / Analysis of displacement damage effects on CMOS image sensor design

Virmontois, Cédric 23 March 2012 (has links)
L' imagerie spatiale est aujourd'hui un outil indispensable au développement durable, à la recherche et aux innovations scientifiques ainsi qu’à la sécurité et la défense. Fort de ses excellentes performances électro-optiques, de son fort taux d’intégration et de la faible puissance nécessaire à son fonctionnement, le capteur d’images CMOS apparait comme un candidat sérieux pour ce type d’application. Cependant, cette technologie d’imageur doit être capable de résister à l’environnement radiatif spatial hostile pouvant dégrader les performances des composants électroniques. Un nombre important d’études précédentes sont consacrées à l’impact des effets ionisants sur les imageurs CMOS, montrant leur robustesse et des voies de durcissement face à de telles radiations. Les conclusions de ces travaux soulignent l’importance d’étudier les effets non-ionisants, devenant prépondérant dans les imageurs utilisant les dernières évolutions de la technologie CMOS. Par conséquent, l’objectif de ces travaux de thèse est d’étudier l’impact des effets non-ionisants sur les imageurs CMOS. Ces effets, regroupés sous le nom de déplacements atomiques, sont étudiés sur un nombre important de capteurs d’images CMOS et de structures de test. Ces dispositifs sont conçus avec des procédés de fabrication CMOS différents et en utilisant des variations de règle de dessin afin d’investiguer des tendances de dégradation commune à la technologie d’imager CMOS. Dans ces travaux, une équivalence entre les irradiations aux protons et aux neutrons est mise en évidence grâce à des caractéristiques courant-tension et des mesures de spectroscopie transitoire de niveau profond. Ces résultats soulignent la pertinence des irradiations aux neutrons pour étudier les effets non-ionisants. L’augmentation et la déformation de l’histogramme de courant d’obscurité ainsi que le signal télégraphique aléatoire associé, qui devient le facteur limitant des futures applications d’imagerie spatiale, sont évalué et modélisés. Des paramètres génériques d’évaluation des effets des déplacements atomiques sont mis en évidence, permettant de prévoir le comportement des capteurs d’images CMOS en environnement radiatif spatial. Enfin, des méthodes d’atténuation et des voies de durcissement des imageurs CMOS limitant l’impact des déplacements atomiques sont proposées. / Today, space imaging is an essential tool for sustainable development, research and scientific innovation as well as security and defense. Thanks to their good electro-optic performances and low power consumption, CMOS image sensors are serious candidates to equip future space instruments. However, it is important to know and understand the behavior of this imager technology when it faces the space radiation environment which could damage devices performances. Many previous studies have been focused on ionizing effects in CMOS imagers, showing their hardness and several hardening-by-design techniques against such radiations. The conclusions of these works emphasized the need to study non-ionizing effects which have become a major issue in the last generation of CMOS image sensors. Therefore, this research work focuses on non-ionizing effects in CMOS image sensors. These effects, also called displacement damage, are investigated on a large number of CMOS imagers and test structures. These devices are designed using several CMOS processes and using design rule changes in order to observe possible common behaviors in CMOS technology. Similarities have been shown between proton and neutron irradiations using current-voltage characteristics and deep level transient spectroscopy. These results emphasize the relevance of neutron irradiations for an accurate study of the non-ionizing effects. Then, displacement damage induced dark current increase as well as the associated random telegraph signal are measured and modeled. Common evaluation parameters to investigate displacement damage are found, allowing imager behavior prediction in space radiation environment. Finally, specific methods and hardening-by-design techniques to mitigate displacement damage are proposed.
17

PHOTOMULTIPLICAITON EFFECT IN ORGANIC AND QUANTUM DOT PHOTODETECTOR AND DEVICE STRUCTURAL MOTIFICATION

Yang, Chen, Yang January 2017 (has links)
No description available.
18

Spectroscopie du courant d’obscurité induit par les effets de déplacement atomique des radiations spatiales et nucléaires dans les capteurs d’images CMOS à photodiode pincée / Dark current spectroscopy of space and nuclear environment induced displacement damage defects in pinned photodiode based CMOS image sensors

Belloir, Jean-Marc 18 November 2016 (has links)
Les imageurs CMOS représentent un outil d’avenir pour de nombreuses applications scientifiques de haut vol, tellesque l’observation spatiale ou les expériences nucléaires. En effet, ces imageurs ont vu leurs performancesdémultipliées ces dernières années grâce aux avancées incessantes de la microélectronique, et présentent aussi desavantages indéniables qui les destinent à remplacer les CCDs dans les futurs instruments spatiaux. Toutefois, enenvironnement spatial ou nucléaire, ces imageurs doivent faire face aux attaques répétées de particules pouvantrapidement dégrader leurs performances électro-optiques. En particulier, les protons, électrons et ions présents dansl’espace ou les neutrons de fusion nucléaire peuvent déplacer des atomes de silicium dans le volume du pixel et enrompre la structure cristalline. Ces effets de déplacement peuvent former des défauts stables introduisant des étatsd’énergie dans la bande interdite du silicium, et ainsi conduire à la génération thermique de paires électron-trou. Parconséquent, ces radiations non-ionisantes produisent une augmentation permanente du courant d’obscurité despixels de l’imageur et donc à une diminution de leur sensibilité et de leur dynamique. L’objectif des présents travauxest d’étendre la compréhension des effets de déplacement sur l’augmentation du courant d’obscurité dans lesimageurs CMOS. En particulier, ces travaux se concentrent sur l’étude de la forme de la distribution de courantd’obscurité en fonction du type, de l’énergie et du nombre de particules ayant traversé l’imageur, mais aussi enfonction des caractéristiques de l’imageur. Ces nombreux résultats permettent de valider physiquement etexpérimentalement un modèle empirique de prédiction de la distribution du courant d’obscurité pour une utilisationdans les domaines spatial et nucléaire. Une autre partie majeure de ces travaux consiste à utiliser pour la première foisla technique de spectroscopie de courant d’obscurité pour détecter et caractériser individuellement les défautsgénérés par les radiations non-ionisantes dans les imageurs CMOS. De nombreux types de défauts sont détectés etdeux sont identifiés, prouvant l’applicabilité de cette technique pour étudier la nature des défauts cristallins généréspar les effets de déplacement dans le silicium. Ces travaux avancent la compréhension des défauts responsables del’augmentation du courant d’obscurité en environnement radiatif, et ouvrent la voie au développement de modèles deprédiction plus précis, voire de techniques permettant d’éviter la formation de ces défauts ou de les faire disparaître. / CMOS image sensors are envisioned for an increasing number of high-end scientific imaging applications such asspace imaging or nuclear experiments. Indeed, the performance of high-end CMOS image sensors has dramaticallyincreased in the past years thanks to the unceasing improvements of microelectronics, and these image sensors havesubstantial advantages over CCDs which make them great candidates to replace CCDs in future space missions.However, in space and nuclear environments, CMOS image sensors must face harsh radiation which can rapidlydegrade their electro-optical performances. In particular, the protons, electrons and ions travelling in space or thefusion neutrons from nuclear experiments can displace silicon atoms in the pixels and break the crystalline structure.These displacement damage effects lead to the formation of stable defects and to the introduction of states in theforbidden bandgap of silicon, which can allow the thermal generation of electron-hole pairs. Consequently, nonionizingradiation leads to a permanent increase of the dark current of the pixels and thus a decrease of the imagesensor sensibility and dynamic range. The aim of the present work is to extend the understanding of the effect ofdisplacement damage on the dark current increase of CMOS image sensors. In particular, this work focuses on theshape of the dark current distribution depending on the particle type, energy and fluence but also on the imagesensor physical parameters. Thanks to the many conditions tested, an empirical model for the prediction of the darkcurrent distribution induced by displacement damage in nuclear or space environments is experimentally validatedand physically justified. Another central part of this work consists in using the dark current spectroscopy techniquefor the first time on irradiated CMOS image sensors to detect and characterize radiation-induced silicon bulk defects.Many types of defects are detected and two of them are identified, proving the applicability of this technique to studythe nature of silicon bulk defects using image sensors. In summary, this work advances the understanding of thenature of the radiation-induced defects responsible for the dark current increase in space or nuclear environments. Italso leads the way to the design of more advanced dark current prediction models, or to the development ofmitigation strategies in order to prevent the formation of the responsible defects or to allow their removal.
19

Electrical properties of amorphous selenium based photoconductive devices for application in x-ray image detectors

Belev, Gueorgui Stoev 14 February 2007
In the last 10-15 years there has been a renewed interest in amorphous Se (a-Se) and its alloys due to their application as photoconductor materials in the new fully digital direct conversion flat panel x-ray medical image detectors. For a number of reasons, the a-Se photoconductor layer in such x-ray detectors has to be operated at very high electric fields (up to 10 Volts per micron) and one of the most difficult problems related to such applications of a Se is the problem of the dark current (the current in the absence of any radiation) minimization in the photoconductor layer. <p>This PhD work has been devoted to researching the possibilities for dark current minimization in a-Se x-ray photoconductors devices through a systematic study of the charge transport (carrier mobility and carrier lifetimes) and dark currents in single and multilayered a-Se devices as a function of alloying, doping, deposition condition and other fabrication factors. The results of the studies are extensively discussed in the thesis. We have proposed a new technological method for dark current reduction in single and multilayered a-Se based photoconductor for x-ray detector applications. The new technology is based on original experimental findings which demonstrate that both hole transport and the dark currents in a-Se films are a very strong function of the substrate temperature (Tsubstrate) during the film deposition process. We have shown that the new technique reduces the dark currents to approximately the same levels as achievable with the previously existing methods for dark current reduction. However, the new method is simpler to implement, and offers some potential advantages, especially in cases when a very high image resolution (20 cycles/mm) and/or fast pixel readout (more than 30 times per second) are needed. <p>Using the new technology we have fabricated simple single and double (ni-like) photoconductor layers on prototype x-ray image detectors with CCD (Charge Coupled Device) readout circuits. Dark currents in the a-Se photoconductor layer were not a problem for detector operation at all tested electric fields. Compared to the currently available commercial systems for mammography, the prototype detectors have demonstrated an excellent imaging performance, in particular superior spatial resolution (20 cycles/mm). Thus, the newly proposed technology for dark current reduction has shown a potential for commercialization.
20

Electrical properties of amorphous selenium based photoconductive devices for application in x-ray image detectors

Belev, Gueorgui Stoev 14 February 2007 (has links)
In the last 10-15 years there has been a renewed interest in amorphous Se (a-Se) and its alloys due to their application as photoconductor materials in the new fully digital direct conversion flat panel x-ray medical image detectors. For a number of reasons, the a-Se photoconductor layer in such x-ray detectors has to be operated at very high electric fields (up to 10 Volts per micron) and one of the most difficult problems related to such applications of a Se is the problem of the dark current (the current in the absence of any radiation) minimization in the photoconductor layer. <p>This PhD work has been devoted to researching the possibilities for dark current minimization in a-Se x-ray photoconductors devices through a systematic study of the charge transport (carrier mobility and carrier lifetimes) and dark currents in single and multilayered a-Se devices as a function of alloying, doping, deposition condition and other fabrication factors. The results of the studies are extensively discussed in the thesis. We have proposed a new technological method for dark current reduction in single and multilayered a-Se based photoconductor for x-ray detector applications. The new technology is based on original experimental findings which demonstrate that both hole transport and the dark currents in a-Se films are a very strong function of the substrate temperature (Tsubstrate) during the film deposition process. We have shown that the new technique reduces the dark currents to approximately the same levels as achievable with the previously existing methods for dark current reduction. However, the new method is simpler to implement, and offers some potential advantages, especially in cases when a very high image resolution (20 cycles/mm) and/or fast pixel readout (more than 30 times per second) are needed. <p>Using the new technology we have fabricated simple single and double (ni-like) photoconductor layers on prototype x-ray image detectors with CCD (Charge Coupled Device) readout circuits. Dark currents in the a-Se photoconductor layer were not a problem for detector operation at all tested electric fields. Compared to the currently available commercial systems for mammography, the prototype detectors have demonstrated an excellent imaging performance, in particular superior spatial resolution (20 cycles/mm). Thus, the newly proposed technology for dark current reduction has shown a potential for commercialization.

Page generated in 0.062 seconds