• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 63
  • 58
  • 41
  • 30
  • 29
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 529
  • 359
  • 249
  • 135
  • 127
  • 114
  • 112
  • 103
  • 94
  • 88
  • 75
  • 73
  • 60
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Battery Buffered Stiff Micro Grid Structure For A Variable Speed Slip Ring Induction Machine Based Wind Generation System

Bhattacharya, Tanmoy 03 1900 (has links)
Electric power has become a basic necessity of human life. The major share of electric power comes from fossil fuel which results in global warming and pollution. A share of generated power comes from nuclear power which is equally dangerous. Big hydro projects take away lots of fertile land. The continuous usage of fossil fuel also poses a threat of petroleum and coal getting over in the near future. The only way out of this energy scarcity is to depend more and more on renewable sources like solar, wind and micro-hydro. At present, instead of having preference over any particular source of renewable energy, effort should be made to extract power from every possible energy source available in whatever form it is and use it in an optimal way. Like any renewable energy sources, the wind power contains large potential for harnessing energy that has been well understood hundreds of years ago. The importance of wind power generation has come to focus recently both at installation and research level and lot of activities are being carried out for efficient use of wind energy. There are different types of wind turbine designs available in the literature. But the most commercially used model is the two or three blade horizontal axis propeller type wind turbine. Research has shown that variable speed operation of this type of turbine is advantageous over fixed speed operation in terms of total energy synthesis. The most commonly used machines for wind power conversion are synchronous machine, squirrel cage induction machine and slip ring induction machine (SRIM). Variable speed operation using synchronous machine or squirrel cage induction machine requires large ratings of the power converters. However, SRIM based variable speed wind generator is advantageous over other schemes due to its inherent advantages like lower power rating for the converters, higher energy capture and the flexibility of sharing reactive power between the stator and the rotor. SRIM is used for both grid connected and stand alone applications and have been reported in the literature. The grid connected applications have received major attention in the literature whereas there are only a very few instances of its stand alone counterparts. There are many places both within and outside India where utility grid has not yet reached or the available grid is very weak. Moreover, in many of the places, the transmission line is so long that the losses in the system are extremely high. Isolated wind power generation can be of great advantage in such places where the available wind power is harnessed and utilized locally. This has been the motivation to go for proposing an isolated wind power generation scheme in this thesis. The proposed scheme is designed to supply power to the load even when very low or no wind power is available. Therefore, a battery bank is also a part of the system. The power converter assembly of the proposed scheme has three major components. One is the rotor side converter which is connected to the rotor terminals of the SRIM. The second one is the stator side converter with output LC filter which is connected to the stator side. These two converters share a common DC link which is interfaced to the battery bank through a multi phase bi-directional fly-back DC-DC converter. Fig. 1. Overall block diagram of the proposed stand alone wind power generator Functionally, this thesis proposes a system as shown in Fig. 1, which has primarily two components with multiple energy ports viz. (i) the SRIM is one triple energy port component and (ii) the proposed power conditioner is another triple energy port component. The SRIM device consists of (i) a mechanical energy port that is interfaced with the windmill shaft (ii) an AC port through the stator windings that is interfaced with the micro-grid/load and (iii) a third port which is also an AC port through the rotor windings of the SRIM that interfaces with an AC port of the proposed power conditioner. The proposed power conditioner is another triple energy port device which consists of (i) a DC energy port that interfaces with a battery/accumulator, (ii) an AC port that interfaces with the rotor windings of the SRIM and (iii) another AC port that generates the micro-grid that is connected to the load and the stator port of the SRIM. The proposed power conditioner provides the frame work for managing the energy flow from the mechanical port of the SRIM to the rotor and accumulator as well as from the mechanical port to the stator/load and accumulator. Further, energy interaction can also take place between the stator and the rotor externally through the power conditioner. The power interfaces on all three energy ports of the proposed power conditioner poses several challenges that have been discussed in this thesis. This thesis focuses on developing schemes to solve these challenges as explained below. Speed sensorless control is a natural choice for slip ring induction machine because of the flexibility of sensing both stator and rotor currents. There are different methods proposed in the literature which deal with the speed sensorless control of slip ring induction machine. However, the elimination of the measurement noise in the flux position estimation is not sufficiently addressed. It is important to address this issue as this would lead to deterioration in rotor side control of SRIM if the measurement noise is not eliminated. Primarily, the schemes which use algebraic relation between the estimated rotor current in stator reference frame and the sensed rotor current, are prone to measurement noise. On the other hand, the schemes, which use rotor back-emf integration, are affected by DC drift problems, though they are not much affected by measurement noise. The proposed stator flux position estimation scheme incorporates the benefits obtained from both the above schemes while eliminating the disadvantages inherent to them. The rotor flux position is estimated by integrating the rotor back-electromotive force. The stator flux is then obtained from the rotor flux estimate. This integration mechanism leads to several problems like dc drift and lack of error decaying mechanism. This estimation scheme solves the above problems including reduction in the propagation of noise in the sensed current to the estimated rotor side unit vectors. On the implementation front, this scheme also eliminates the need for differentiating the unit vectors for estimating slip frequency. This makes the proposed flux estimator very robust. The proposed scheme is simulated and experimentally verified. There is an internal DC bus within the proposed power conditioner that manages the energy flow through the three energy ports. The internal DC bus is interfaced to an external accumulator or battery through a power interface called the multi phase bi-directional dc-dc converter. It is generally advantageous to have the motor rated for higher voltages in order to achieve better efficiencies for a given power rating as compared to low voltage motors. This implies higher DC bus voltage. On the other hand, it is advantageous to have the battery bank rated for low voltage in order to improve the volumetric efficiency which is better at lower battery bank voltages. Both these are contradictory requirements. The above problem is solved in this thesis by proposing a multi power port topology using a bidirectional fly-back converter that is capable of handling multiple power sources and still maintain simplicity and features like high gain, wide load variations and lower output current ripple. As a spin-off, the scheme can handle parallel energy transfer from even a eutectic combination of batteries without any additional control circuitry for parallel operation. Further, the scheme also incorporates a novel transformer winding technique which significantly reduces the leakage inductance of the coupled inductor. The proposed multi-port bidirectional converter is analyzed by including non-idealities like leakage inductance. The DC bus voltage regulation requirement is not very stringent because it is not directly fed to any load. Therefore, hysteresis voltage regulation with small proportional correction is used for DC bus voltage control. The proposed converter is built and experimentally verified in the proposed system as well as in a hybrid-electric vehicle prototype. The third port of the proposed power conditioner interfaces with the stator of the SRIM and the load. The stator/load needs to be connected to a stiff micro-grid. The control requirement of the micro-grid is very stringent because, even for a sudden variation in the wind speed or the load, the grid voltage magnitude and frequency should not change. The dynamic response of the grid voltage controller has to be very fast. Moreover, the grid voltage must be balanced in presence of unbalanced loading. This thesis proposes a converter called the stator side converter along with three phase L-C filter at its output to form the micro-grid. A generalized control scheme is proposed wherein the negative sequence components and the harmonics can be eliminated at the micro-grid by means of feed-forward compensators included in the fundamental positive synchronous reference frame alone. The theoretical foundation for this scheme is developed and discussed in the thesis. In isolated locations linear loads constitute a significant percentage of the total load. Therefore, on the implementation front, only the compensation of fundamental negative sequence is demonstrated. One more necessity for compensating the fundamental negative sequence is that, the SRIM offers only leakage impedance to the fundamental negative sequence components resulting in high fundamental negative sequence current even for a small fundamental negative sequence voltage present at the micro-grid. The proposed scheme ensures balanced three phase currents at the SRIM windings and the full unbalanced current is provided from the stator side converter. This scheme is validated both by simulation and experimentation. The proposed power conditioner is integrated and used in the implementation of the entire wind power generation scheme that is proposed in the thesis. The maximum power point tracking of the wind power unit is also incorporated in the proposed system. The simulation and experimental results are also presented. Finally, the engineering issues involved in the implementation of the proposed scheme are discussed in detail highlighting the hardware configuration and the equipments used. The wind turbine is emulated using a chopper controlled DC motor. The shaft torque of the DC motor is controlled to give the Cp−λ characteristic of a typical windmill. The control issues of the DC machine to behave as a wind turbine are also explained. Finally the thesis is concluded by a statement of potentials and possibilities for future work in this research area.
412

Conception d'une interface d'électronique de puissance pour Pile à Combustible

Dang, Bang Viet 08 December 2006 (has links) (PDF)
La pile à combustible (PAC) est une technologie maintenant maîtrisée qui permet de convertir efficacement le combustible hydrogène en énergie électrique et thermique avec un faible impact environnemental. L'extension de son utilisation dépend fortement de la qualité de l'interface électronique de puissance qui a pour l'objet d'adapter la pile à la charge. Le travail de recherche présenté dans ce mémoire de Doctorat s'intéresse à la conception d'une interface électronique de puissance pour la pile à combustible pour les trois domaines d'applications : télécommunication, transport et stationnaire. <br />Dans cette objective, l'approche modulaire, qui se base sur l'étude des convertisseurs unitaires et leurs modes de connexion, a été proposée afin de s'adapter à la modularité des stacks de PAC. Des modèles de pertes et de dimensionnement des composants passifs et semi conducteurs ont été construits. La technique de l'entrelacement est introduite afin de résoudre le problème de fort courant et permet d'optimiser le dimensionnement des inductances. Une nouvelle structure nommée double BOOST dual entrelacé (Interleaved Double Dual BOOST – IDD BOOST) a été proposée afin de résoudre les difficultés d'un convertisseur modulaire présentant une tension de sortie élevée et un rapport de tension important. Les stratégies de contrôle – commande multi sources ont été étudié en adaptant aux topologies de l'interface de puissance. Deux prototypes ont été réalisés afin de valider les résultats de prédiction de pertes ainsi que le contrôle commande multi sources.
413

Topology development and analysis for multiple input DC/DC converter

Choung, Seung Hoon 31 May 2011 (has links)
Nowadays, the number of applications which need more than one power source is increasing. Distributed generating systems or micro-grid systems normally use more than one power source or more than one kind of energy source. Also, to increase the utilization of renewable energy sources, diversified energy source combination is recommended. For example, a wind-photovoltaic generating system, a combination of a wind generator and photovoltaic array, can give a greater degree of freedom when choosing the install location. The combination of more power sources and diversified power sources makes it possible to obtain higher availability in a power system. A parallel connection of converters has been used to integrate more than one energy source in a power system. However, a multiple-input converter (MIC) can generally have the following advantages compare to a combination of several individual converters; (1) cost reduction, (2) compactness, (3) more expandability and (4) greater manageability. First, this research suggests MIC topology comparison criteria that can be used as a decision guide for choosing a MIC topology depending on the application. Even though there are some MIC topology classification methods such as by the kind of combining methods, the classification methods are not enough to choose one particular topology. The comparison criteria presented in this dissertation are practical enough to decide which topology is suitable and should be chosen. Second, a new MI modified inverse Watkins-Johnson converter (MIMIWJC) without a coupled inductor is proposed. The circuit configuration of this converter and its operation principles are described, including the open-loop and closed-loop circuit. For control purposes, a small signal model of the proposed converter is developed using Middlebrook’s extra element theorem. In addition, two possible control methods are introduced in this dissertation. Finally, the theoretical analysis of the proposed converter is verified with simulations and experiments. / text
414

Optimisation de la récupération d'énergie dans les applications de rectenna

Adami, Salah-Eddine 12 December 2013 (has links) (PDF)
Les progrès réalisés durant ces dernières années dans le domaine de la microélectronique et notamment vis-à-vis de l'augmentation exponentielle de la densité d'intégration des composants et des systèmes a participé activement à l'apparition et au développement de systèmes portables communicants de plus en plus performants et polyvalents. La R&D dans les technologies de stockage d'énergie n'a pas suivi cette tendance d'évolution très rapide ; ce qui constitue un handicap majeur dans les évolutions futures des systèmes portables. La transmission d'énergie sans fils sur des distances considérables (plusieurs dizaines de mètres) grâce aux microondes constitue une solution très prometteuse pour pallier aux problèmes d'autonomie dans le cas des systèmes sans fils communicants. De plus, du fait de l'omniprésence des ondes électromagnétiques dans notre environnement avec des niveaux plus ou moins importants, la récupération et l'exploitation de cette énergie libre est également possible. La rectenna (Rectifying Antenna) est le dispositif permettant de capter et de convertir une onde électromagnétique en une tension continue. Plusieurs travaux de thèse axés sur l'étude et l'optimisation de la rectenna ont été réalisés au sein du laboratoire. Ces travaux avaient montré que pour des faibles niveaux de champs les tensions délivrées par la rectenna sont généralement très faibles et inexploitables. Aussi, comme la majorité des micro-sources d'énergie et à cause de son impédance interne, les performances de la rectenna dépendent fortement de sa charge de sortie. Ainsi, le développement d'un système d'interfaçage de la rectenna est nécessaire afin de pallier ces manquements inhérents du convertisseur RF/DC. Ce genre de système d'interfaçage est généralement absent dans la littérature à cause des faibles niveaux de puissance exploités. Par conséquent, la rectenna est très souvent utilisée tel quelle ; ce qui limite fortement le champ applicatif. Dans ce projet de recherche, un système de gestion énergétique de la rectenna complètement autonome a été conçu, développé et optimisé afin de garantir les performances optimales de la rectenna quelques soient les fluctuations de la puissance d'entrée et celles de la charge de sortie. Le circuit d'interfaçage permet également de fournir à la charge des niveaux de tension utilisables. Le système réalisé est basé tout d'abord sur l'utilisation d'un convertisseur DC/DC résonant pouvant fonctionner d'une manière complètement autonome à partir de niveaux très bas de la tension et de la puissance de la source. Ce convertisseur permet donc de garantir l'autonomie du système en éliminant la nécessité d'une source d'énergie auxiliaire. A cause de ses faibles performances énergétiques, ce convertisseur ne sera utilisé que durant la phase de démarrage. L'efficacité du système en termes de rendement énergétique et d'adaptation d'impédance est garantie grâce à l'utilisation d'un convertisseur Flyback fonctionnant dans son régime de conduction discontinu. Ainsi, une adaptation d'impédance très efficace est réalisée entre la rectenna et la charge de sortie. Ce convertisseur principal fonctionnera durant le régime permanent. Les deux convertisseurs ont été optimisés pour des niveaux de tension et de puissance aussi bas que quelques centaines de mV et quelques μW respectivement. Des mesures expérimentales réalisées sur plusieurs prototypes ont démontré le bon fonctionnement et les excellentes performances prédites par la procédure de conception ; ce qui nous permet de valider notre approche. De plus, les performances obtenues se distinguent parfaitement vis-à-vis de l'état de l'art. Enfin, en fonction de l'application désirée, plusieurs synoptiques d'association des deux structures sont proposés. Ceci inclut également la gestion énergétique de la charge de sortie.
415

Practical Volume-reduction Strategies for Low-power High-frequency Switch Mode Power Supplies

Radic, Aleksandar 01 April 2014 (has links)
The miniaturization of dc–dc switch-mode power supplies (SMPS) is of a key importance in volume-sensitive portable devices, such as cell phones, tablet computers, and digital cameras. In these systems, multiple SMPS are required to provide well regulated voltage and power to various electronic components such as the central processing unit (CPU) and random-access memory (RAM). The combined volume, weight, and surface area footprint of these SMPS is usually the largest component. Traditionally, SMPS volume reduction has been achieved through increased switching frequencies; however, for power-sensitive applications this is undesirable due to the increased switching losses. This thesis presents two alternative, power-efficient, SMPS miniaturization methods: one control and one topology based. The presented controller recovers from load transients with virtually minimum possible output voltage deviation, reducing the reactive component size. The controller utilizes a simple algorithm, requiring no knowledge of the converter parameters and virtually no processing power. The simplicity of the control concept enabled the design of an area and power efficient integrated circuit (IC) implementation. The entire IC is implemented in a CMOS 0.18µm process on a 0.26 mm2 silicon area, which is comparable to the state-of-the-art analog solutions. For the experimental system the deviation (output capacitor size) is about four times smaller than that of a fast PID compensator having a 1/10th of the switching frequency bandwidth. The second solution is a complementary converter topology that has a smaller output filter volume, improved dynamic response, and lower switching losses compared to the state-of-the-art solutions. To reduce the volume and switching losses, the input-to-output voltage difference is decreased with a capacitive attenuator that replaces the input filter capacitor and has approximately the same volume. Both the attenuator and the downstream buck converter share the same set of switches, minimizing conduction losses. A single multi-mode digital controller governs operation of both stages, seamlessly regulating the output and input center-tap voltages. Experiments with a 5–1.5-V, 2.5-A, 1-MHz prototype show that, compared to the conventional buck, the merged topology has 43% smaller inductor, 36% smaller output capacitor, up to 30% lower power losses, and a 25% faster transient response.
416

Practical Volume-reduction Strategies for Low-power High-frequency Switch Mode Power Supplies

Radic, Aleksandar 01 April 2014 (has links)
The miniaturization of dc–dc switch-mode power supplies (SMPS) is of a key importance in volume-sensitive portable devices, such as cell phones, tablet computers, and digital cameras. In these systems, multiple SMPS are required to provide well regulated voltage and power to various electronic components such as the central processing unit (CPU) and random-access memory (RAM). The combined volume, weight, and surface area footprint of these SMPS is usually the largest component. Traditionally, SMPS volume reduction has been achieved through increased switching frequencies; however, for power-sensitive applications this is undesirable due to the increased switching losses. This thesis presents two alternative, power-efficient, SMPS miniaturization methods: one control and one topology based. The presented controller recovers from load transients with virtually minimum possible output voltage deviation, reducing the reactive component size. The controller utilizes a simple algorithm, requiring no knowledge of the converter parameters and virtually no processing power. The simplicity of the control concept enabled the design of an area and power efficient integrated circuit (IC) implementation. The entire IC is implemented in a CMOS 0.18µm process on a 0.26 mm2 silicon area, which is comparable to the state-of-the-art analog solutions. For the experimental system the deviation (output capacitor size) is about four times smaller than that of a fast PID compensator having a 1/10th of the switching frequency bandwidth. The second solution is a complementary converter topology that has a smaller output filter volume, improved dynamic response, and lower switching losses compared to the state-of-the-art solutions. To reduce the volume and switching losses, the input-to-output voltage difference is decreased with a capacitive attenuator that replaces the input filter capacitor and has approximately the same volume. Both the attenuator and the downstream buck converter share the same set of switches, minimizing conduction losses. A single multi-mode digital controller governs operation of both stages, seamlessly regulating the output and input center-tap voltages. Experiments with a 5–1.5-V, 2.5-A, 1-MHz prototype show that, compared to the conventional buck, the merged topology has 43% smaller inductor, 36% smaller output capacitor, up to 30% lower power losses, and a 25% faster transient response.
417

Conception d'un convertisseur de puissance pour véhicules électriques multi-sources

Boucherit, Ahmed 16 December 2011 (has links) (PDF)
L'utilisation des plusieurs sources d'énergies de caractéristiques différentes, à bord du véhicule électrique VE) nécessite l'adoption de convertisseurs statiques. Ces derniers peuvent avoir la fonction de conditionneur 'énergie des différentes sources et/ou commander les machines électriques du véhicule.Généralement les VE disposent d'un bus continu " de quelques centaines de volts " dont la stabilité est assurée par un groupe de convertisseurs élévateurs de tension (du fait que les sources ont généralement un niveau de tension faible ; quelques dizaines de volts). Lors des démarrages/arrêts très fréquents du VE en mode urbain, les sources pourraient alimenter directement le moteur de traction sans avoir recours aux convertisseurs élévateurs de tension. Afin d'exploiter cette fonctionnalité, nous proposons d'explorer une deuxième architecture de convertisseur basée sur l'adoption d'un niveau de tension variable du bus continu. Dans cette approche, la tension minimale de ce dernier est fixée en fonction des niveaux de tensions disponibles du côté des sources et de la vitesse requise (niveau des f.é.m du moteur de traction). Ainsi, le rapport variable d'élévation de la tension est minimal à faible vitesse du véhicule en mode urbain et il est maximal à grande vitesse, en modes route et autoroute. Ceci apportera une amélioration du rendement énergétique de l'ensemble sources-moteurs notamment en mode urbain. Par ailleurs, l'utilisation grand public de ces véhicules exige des contraintes maximales de disponibilité (continuité de service) des fonctions principales notamment l'alimentation embarquée. A travers le travail de cette thèse nous proposons une nouvelle topologie du convertisseur de puissance entre les sources (une Pile à combustibles associée à un pack de super-condensateurs) et les charges (moteur de traction et réseau de bord alimentant les auxiliaires du véhicule). Ce convertisseur adopte une tension variable du bus continu et une redondance de l'alimentation du moteur de traction. Après la présentation du convertisseur proposé et son positionnement par rapport à la littérature, une analyse du fonctionnement et la modélisation de sa partie DC-DC est détaillée notamment à travers des résultats de simulation de ses différents modes. A ce titre un programme de simulation fine (à l'échelle des impulsions de commande) du système entier a été développé. Dans un deuxième temps, la commande automatique et rapprochée des interrupteurs de puissance a été développée en se basant respectivement sur la méthode de contrôle par petits signaux et la commande hystérésis de courant, triangulaire-rapport cyclique et triangulaire-sinus. Les résultats de simulation des fonctionnalités principales attendues mettent en évidence la faisabilité de l'architecture du convertisseur de puissance proposée. Enfin, une maquette expérimentale à échelle réduite a été développée dans le but de valider l'étude théorique. Les premiers tests expérimentaux de la partie DC-DC du convertisseur donnent des résultats satisfaisant et valident ainsi le processus de conception. Le travail futur sera la réalisation d'une maquette à échelle 1 dans laquelle la conception du refroidisseur sera intégrée en amont de la réalisation du plan de masse dudit convertisseur. Nous pensons que cela permettra une meilleure optimisation de l'espace à bord du véhicule et améliorera le rendement énergétique de la chaine de traction.
418

High-power bi-directional DC/DC converters with controlled device stresses

Han, Sangtaek 11 May 2012 (has links)
The objective of the research is to develop a cost-effective high-power bi-directional dc/dc converter with low total-device ratings, reduced system parasitic effects, and a wide input/output range. Additional objectives of the research are to develop a small-signal model and control methods, and to present performance characterizations. Device stresses in the proposed topology are controlled to maintain minimal levels by varying the duty ratio and phase-shift angle between the primary and the secondary bridges, which results in a low total-device rating, when compared to conventional bi-directional dc/dc topologies. In the proposed topology, soft switching, which reduces power loss, can be realized under specific operating conditions. When the condition that causes minimal device stress is satisfied, zero-voltage switching (ZVS) can be obtained. In the research, ZVS capability is explored for a wide range of voltage conditions as well as for the minimal device-stress condition. The performance characterization includes verifying the soft-switching regions and power-loss estimation. Another part of the thesis is the controller design of the converter. Small-signal models and feedback controllers are developed, and the controllers are experimentally validated. Because in the isolated high-frequency converters, transformer saturation is an important issue, a method to prevent transformer saturation is proposed and experimentally validated.
419

Power Management for Microbial Fuel Cells

Nicolas, Degrenne 18 October 2012 (has links) (PDF)
Les Piles à Combustible Microbiennes (PCMs) mettent en oeuvre le métabolisme de micro-organismes et utilisent de la matière organique pour générer de l'énergie électrique. Les applications potentielles incluent le traitement d'eau usée autonome en énergie, les bio-batteries, et le grappillage d'énergie ambiante. Les PCMs sont des équipements basse-tension et basse-puissance dont le comportement est influencé par la vitesse à laquelle l'énergie électrique est récupérée. Dans cette thèse, on étudie des méthodes pour récupérer l'énergie électrique de façon efficace. La tension à laquelle l'énergie est récupérée des PCMs influence leur fonctionnement et leurs performances électriques. La puissance délivrée est maximum pour une tension spécifique (environ 1/3 de la tension en circuit-ouvert). Les PCMs ont été testées à ce point en utilisant une charge contrôlée automatiquement qui inclut un algorithme de recherche de puissance maximale. Un tel outil a été utilisé pour évaluer la puissance maximum, la vitesse de consommation du combustible, le rendement Coulombic et le rendement de conversion de 10 PCMs à chambre unique de 1.3 L, construites de façon similaire. Bien que d'autres choix structurels et opératoires peuvent permettre d'améliorer ces performances, ces résultats ont étudié pour la première fois les performances des PCMs en condition de production d'énergie de point de puissance maximal et les PCMs ont été testées avec des conditions de récupération d'énergie réalistes. Récupérer un maximum d'énergie des PCMs est la ligne directrice de ce rapport. Cela est rendu possible par des circuits dédiés de gestion de l'énergie qui embarquent un contrôle contre-réactif pour réguler la tension des PCMs à une valeur de référence qui est égale à une fraction de leur tension en circuit ouvert. Deux scénarios typiques sont développés dans la suite. Une application critique des PCMs concerne le grappillage autonome de petites énergies, pour alimenter des équipements électroniques basse-puissance (e.g. capteurs sans fil). Dans ce cas, les contraintes basse-puissance et basse-tension imposées par les PCMs nécessitent des fonctionnalités de démarrage autonomes. L'oscillateur d'Armstrong, composé d'inductances couplées à fort rapport d'enroulement et d'un interrupteur normalement-fermé permet d'élever des tensions de façon autonome à partir de sources basse-tension continues comme les PCMs. Ce circuit a été associé à des convertisseurs d'électronique de puissance AC/DC et DC/DC pour réaliser respectivement un élévateur-de-tension et une unité de gestion de l'énergie (UGE) auto-démarrante basée sur une architecture flyback. La première est adaptée pour les puissances inférieures à 1 mW, alors que la seconde peut être dimensionnée pour des niveaux de puissance de quelques mW et permet de mettre en oeuvre une commande qui recherche le point de puissance maximal du générateur. Une seconde application d'intérêt concerne le cas où de l'énergie est récupérée depuis plusieurs PCMs. L'association série peut être utilisée pour élever la tension de sortie mais elle peut avoir des conséquences négatives en terme de performances à cause des non-uniformités entre cellules. Cet aspect peut être résolu avec des circuits d'équilibrage de tension. Trois de ces circuits ont été analysés et évalués. Le circuit " complete disconnection " déconnecte une cellule défectueuse de l'association pour s'assurer qu'elle ne diminue pas le rendement global. Le circuit " switched-capacitor " transfère de l'énergie depuis les MFCs fortes vers les faibles pour équilibrer les tensions de toutes les cellules de l'association. Le circuit " switched-MFCs " connecte les PCMs en parallèle et en série de façon alternée. Chacune des trois méthodes peut être mise en oeuvre à bas prix et à haut rendement, la plus efficace étant la " switched-capacitor " qui permet de récupérer plus de 85 % de la puissance maximum idéale d'une association très largement non uniforme
420

Méthodologie de dimensionnement sur cycle de vie d'une distribution en courant continu dans le bâtiment : applications aux câbles et convertisseurs statiques DC/DC

Jaouen, Cédric, Jaouen, Cédric 09 July 2012 (has links) (PDF)
Avec l'apparition des systèmes PV en toiture et des véhicules électriques, le nouveau contexte énergétique au sein du bâtiment pose, sous un nouvel angle, la question de la distribution en courant continu au sein des bâtiments. Mais comment évaluer objectivement l'intérêt d'un réseau DC ? Dans un contexte où l'énergie et les impacts environnementaux prennent chaque jour plus d'importance, la quantification des performances d'un tel système selon sa seule phase d'usage ne répond pas complètement à la question son impact global. C'est pourquoi nous proposons d'aborder la question via l'éco-dimensionnement des composants constituant ce système. Pour simplifier un problème fondamentalement complexe (multi-critères), nous avons choisi d'effectuer ces dimensionnements sur la base de la minimisation de leur consommation d'énergie primaire sur l'ensemble de leur cycle de vie (pertes + énergie grise = Gross Energy Requirement GER). L'un des objectifs étant d'apporter à la fois une méthodologie mais aussi les premiers éléments qui permettront de déterminer un optimum du niveau de tension d'une distribution en courant continu dans les bâtiments.

Page generated in 0.0361 seconds