111 |
A model of liver carcinogenesis originating from hepatic progenitor cells with accumulation of genetic alterations / 肝幹/前駆細胞を起源とする肝発癌モデルマウスの確立Kim, Soo Ki 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18891号 / 医博第4002号 / 新制||医||1009(附属図書館) / 31842 / 京都大学大学院医学研究科医学専攻 / (主査)教授 松田 道行, 教授 小川 誠司, 教授 野田 亮 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
112 |
Ontogeny of Adenosine Deaminase in the Mouse Decidua and Placenta: Immunolocalization and Embryo Transfer StudiesKnudsen, T B., Blackburn, M. R., Chinsky, J. M., Airhart, M J., Kellems, R. E. 01 January 1991 (has links)
This study has determined the cellular site of adenosine deaminase (ADA) expression in the mouse during development from Days 5 through 13 (day vaginal plug was found = Day 0) of gestation. Developmental expression of ADA progressed in two overlapping phases defined genetically (maternal vs. embryonal) and according to region (decidual vs. placental). In the first phase, ADA enzyme activity increased almost 200-fold in the antimesometrial region (decidua capsularis + giant trophoblast cells) from Days 6 through 9 of gestation but remained low in the mesometrial region. Immunohistochemical staining revealed a major localization of ADA to the secondary decidua. In the second phase, ADA activity increased several-fold in the placenta (labyrinth + basal zones) from Days 9 through 13 of gestation but remained low in the embryo proper. Immunohistochemical staining revealed a major localization of ADA to secondary giant cells, spongiotrophoblast, and labyrinthine trophoblast. Regression of decidua capsularis and growth of the spongiotrophoblast population accounted for an antimesometrial to placental shift in both ADA enzyme activity and a 40-kDa immunoreactive protein band. To verify a shift from maternal to fetal expression, studies were performed with two strains of mice (ICR, Eday) homozygous for a different ADA isozyme (ADA-A, ADA-B). Blastocysts homozygous for Adab were transferred to the uterus of pseudopregnant female recipients homozygous for Adaa. The isozymic pattern in chimeric embryo-decidual units analyzed at Days 7, 9, 11, and 13 revealed a predominance of maternal-encoded enzyme at Days 7 through 11 of gestation and a shift to fetal-encoded enzyme by Day 13. Thus, maternal expression of ADA in the antimesometrial decidua may play a role during establishment of the embryo in the uterine environment, whereas fetal expression of ADA in the trophoblast might be important to placentation.
|
113 |
Action anti-leucémique des inhibiteurs de la méthylation de l’ADN et de la déacétylation des histonesLemaire, Maryse 04 1900 (has links)
Les gènes suppresseurs de tumeurs (TSGs) contrôlent la prolifération cellulaire et leur inactivation joue un rôle important dans la leucémogénèse. Deux mécanismes épigénétiques majeurs sont impliqués dans la répression des TSGs: 1- la méthylation de l’ADN et 2- la déacétylation des histones des chromosomes. On les dit épigénétiques car ils n’affectent pas la séquence de l’ADN. Ces phénomènes sont réversibles, faisant donc d’eux des cibles thérapeutiques de choix. Dans le cadre de cette thèse, nous avons évalué le potentiel chimiothérapeutique de différents agents qui visent ces mécanismes épigénétiques et nous les avons administrés seuls et en combinaison dans le but d’améliorer leur efficacité.
La 5-aza-2’-désoxycytidine (5-Aza-CdR) est un inhibiteur de la méthylation de l’ADN qui permet la ré-expression des TSGs. Cet agent s’est avéré efficace contre certaines maladies hématologiques et est d’ailleurs approuvé aux États-Unis dans le traitement du syndrome myélodysplasique depuis 2006. Cependant, le protocole d’administration optimal de cet agent, en termes de doses et de durée, n’est toujours pas établi. Nos recherches suggèrent que le celui-ci devrait être plus intensif que ce que rapporte la littérature.
Les inhibiteurs des déacétylases des histones (HDACi) ont également montré une activité antinéoplasique intéressante. De récentes recherches ont montré que la combinaison d’agents ciblant à la fois la méthylation de l’ADN et la déacétylation des histones produit une réactivation synergique des TSGs, ce à quoi nous nous sommes intéressé. Nous avons observé que la co-administration d’un HDACi avec la 5-Aza-CdR potentialise son action anti-leucémique.
Il est aussi possible d’augmenter l’activité de la 5-Aza-CdR en inhibant sa dégradation par l’enzyme cytidine (CR) désaminase. Nous avons observé que la co-administration du zebularine, un inhibiteur de la CR désaminase, avec la 5-Aza-CdR accroît son efficacité. Le zebularine est aussi un inhibiteur de la méthylation de l’ADN, ce qui pourrait contribuer à la potentialisation de la réponse anti-leucémique observée lors de la co-administration de ces deux agents.
En résumé, il est possible d’augmenter l’efficacité anti-leucémique de la 5-Aza-CdR en : 1- intensifiant son protocole d’administration, en termes de doses et de durée, 2- la combinant avec un HDACi, et 3- diminuant sa dégradation par la CR désaminase. L’utilisation de ces résultats précliniques dans l’élaboration de protocoles cliniques pourrait être bénéfique à beaucoup de patients. / The silencing of tumor suppressor genes (TSG) that normally regulate cells proliferation plays an important role in leukemogenesis. Two major mechanisms are involved in TSG’s silencing: DNA methylation and histones deacetylation. Because those phenomenons are reversible, it makes them interesting therapeutic targets for chemotherapeutic agents. We evaluated the antineoplastic potential of different agents that target those events and we administered them alone or in combination with the goal of improving their efficiency.
5-aza-2’-deoxycytidine (5-Aza-CdR) is a DNA methylation inhibitor that can re-express TSGs that are silenced by methylations. This agent demonstrated its efficacy against hematological malignancies. Therefore, 5-Aza-CdR is used since 2006 in United States of America against myelodysplastic syndrome; but its optimal dose-schedule still needs to be established. Our researches suggest that the dose-schedule of 5-Aza-CdR should be more intensive than what is reported from the literature.
Inhibitors of histones deacetylation (HDACi) also demonstrated some interesting antineoplastic activity. Recently, observations showed that combination of chemotherapeutic agent that targets both DNA methylation and histones deacetylation lead to a synergic reactivation of silenced TSG. This finding allowed us to observe that the co-administration of an HDACi with 5-Aza-CdR improve its antileukemic potential.
Moreover, it is possible to increase the activity of 5-Aza-CdR by preventing its degradation by cytidine (CR) deaminase. We demonstrated that the co-administration of zebularine, an inhibitor of CR deaminase, with 5-Aza-CdR increases its activity. Zebularine is also an inhibitor of DNA methylation, which may contribute to the enhancement of the antileukemic action of this combination.
In summary, our preclinical data indicate that the antileukemic activity of 5-Aza-CdR can be enhanced by: 1- increasing his dosage, 2- combining it with HDACi, and 3- preventing its inactivation by CR deaminase. The translation of those preclinical observations into clinical protocols may be effective in patients with advanced leukemia.
|
114 |
Verstärkung des bystander Effektes von SuizidgentherapeutikaHillemann, Annett 27 March 2005 (has links)
Die vorliegende Arbeit beschäftigt sich mit einem neuartigen proteinbasierten, suizidgentherapeutischen Ansatz zur sicheren und effektiven Behandlung von soliden Tumoren. Verwendet wurden zellpermeable Fusionsproteine auf der Grundlage des bakteriellen Enzyms Cytosin Desaminase, welches spezifisch die Umsetzung der inaktive, nichttoxische Substanz (Prodroge) 5-Fluorcytosin in den hochwirksamen, stark toxischen Wirkstoff 5-Fluoruracil katalysiert. Dieser bewirkt die selektive Zerstörung von Tumorzellen. Durch die Fusion der bakteriellen Cytosin Desaminase (bCD) mit der Sequenz des Zellpermeabilität vermittelnden Peptides HBV-Translokationsmotiv (TLM) des Hepatits B-Virus (HBV) wurden zunächst zellpermeable E.coli Cytosin Desaminase Suizidfusionskonstrukte generiert. Für die bakteriell synthetisierten HBV-TLM-Fusionsproteine konnten eine Hexamerisierung sowie eine spezifische enzymatische Aktivität bei der Umsetzung von Cytosin zu Uracil als strukturelle und funktionelle Voraussetzungen für einen Einsatz in der Suizidgentherapie nachgewiesen werden, die vergleichbar mit dem wt-Protein waren. Bei Versuchen zur Internalisierung der zellpermeablen Fusionsproteine wurde für die Fusionsproteine mit C-terminal fusioniertem HBV-TLM (bCD-HBV-TLM) eine Aufnahme in das Zytoplasma von Hepatomzellen mittels konfokaler Laserscanmikroskopie und differentieller Zellfraktionierung nachgewiesen, nicht jedoch für Fusionsproteine mit N-terminalem HBV-TLM (HBV-TLM-bCD). Die gezeigte Internalisierung des Proteins HBV-TLM-bCD erfolgte effizient und schnell und war unabhängig vom endosomalen Aufnahmeweg. Bei der nachgewiesenen Translokalisation blieb die enzymatische, suizidgentherapeutische Aktivität des zellpermeablen Suizidproteins (HBV-TLM-bCD), d.h. die katalytische Wirkung bei der Umsetzung der Prodroge 5-Fluorcytosin vollständig erhalten, so dass sich dieses Fusionsprotein für einen therapeutischen Einsatz in der Suizidgentherapie eignet. Zusätzlich zur antitumoralen Wirkung können durch einen gezielten, lokal begrenzten therapeutischen Einsatz der vorgestellten zellpermeablen bCD-HBV-TLM-Fusionsproteine starke Nebenwirkungen, wie sie bei einer konventionellen Chemotherapie zu beobachten sind, weitgehend vermieden werden. / This work investigates the application of protein based therapeutic suicide enzyme/prodrug approaches providing novel means for both safe and effective local therapeutic regimes in solid tumors. The concept of the used suicide gene therapy system is based mainly on the transfer of the cell permeable bacterial suicide enzyme cytosine deaminase which specifically convert the inactive, non-toxic prodrug 5-fluorocytosine into the toxic metabolite 5-fluorouracil finally executing the efficient destruction of tumor cells. Employing a novel cell permeable peptide, known as the translocation motif (TLM) of hepatitis B virus (HBV), E.coli cytosine deaminase (bCD) suicide fusion proteins were generated. HBV-TLM fusion proteins formed hexamers (as do parental wt bCD) and retained the specific enzymatic activity of cytosine conversion to uracil also being comparable to parental wtbCD protein. However, only bCD-HBV-TLM fusion proteins, but not HBV-TLM-bCD fusion proteins were found to be taken up to the cytoplasm of target hepatoma cells as demonstrated both by confocal laser scanning microscopy and cell fractionation. Uptake of bCD-HBV-TLM worked both efficiently and rapidly and was found to be independent from the endosomal pathway. Since bCD-HBV-TLM fusion proteins completely retained their suicide enzymatic activity in the course of translocation across the plasma membrane their usage as profound inducers of chemo-sensitivity to 5-fluorocytosine strongly is suggested. Future therapeutic local application of cell permeable bCD-HBV-TLM fusion proteins together with a systemic 5-fluorocytosine prodrug application could result in profound antitumor activities without apparent side effects.
|
115 |
Action anti-leucémique des inhibiteurs de la méthylation de l’ADN et de la déacétylation des histonesLemaire, Maryse 04 1900 (has links)
Les gènes suppresseurs de tumeurs (TSGs) contrôlent la prolifération cellulaire et leur inactivation joue un rôle important dans la leucémogénèse. Deux mécanismes épigénétiques majeurs sont impliqués dans la répression des TSGs: 1- la méthylation de l’ADN et 2- la déacétylation des histones des chromosomes. On les dit épigénétiques car ils n’affectent pas la séquence de l’ADN. Ces phénomènes sont réversibles, faisant donc d’eux des cibles thérapeutiques de choix. Dans le cadre de cette thèse, nous avons évalué le potentiel chimiothérapeutique de différents agents qui visent ces mécanismes épigénétiques et nous les avons administrés seuls et en combinaison dans le but d’améliorer leur efficacité.
La 5-aza-2’-désoxycytidine (5-Aza-CdR) est un inhibiteur de la méthylation de l’ADN qui permet la ré-expression des TSGs. Cet agent s’est avéré efficace contre certaines maladies hématologiques et est d’ailleurs approuvé aux États-Unis dans le traitement du syndrome myélodysplasique depuis 2006. Cependant, le protocole d’administration optimal de cet agent, en termes de doses et de durée, n’est toujours pas établi. Nos recherches suggèrent que le celui-ci devrait être plus intensif que ce que rapporte la littérature.
Les inhibiteurs des déacétylases des histones (HDACi) ont également montré une activité antinéoplasique intéressante. De récentes recherches ont montré que la combinaison d’agents ciblant à la fois la méthylation de l’ADN et la déacétylation des histones produit une réactivation synergique des TSGs, ce à quoi nous nous sommes intéressé. Nous avons observé que la co-administration d’un HDACi avec la 5-Aza-CdR potentialise son action anti-leucémique.
Il est aussi possible d’augmenter l’activité de la 5-Aza-CdR en inhibant sa dégradation par l’enzyme cytidine (CR) désaminase. Nous avons observé que la co-administration du zebularine, un inhibiteur de la CR désaminase, avec la 5-Aza-CdR accroît son efficacité. Le zebularine est aussi un inhibiteur de la méthylation de l’ADN, ce qui pourrait contribuer à la potentialisation de la réponse anti-leucémique observée lors de la co-administration de ces deux agents.
En résumé, il est possible d’augmenter l’efficacité anti-leucémique de la 5-Aza-CdR en : 1- intensifiant son protocole d’administration, en termes de doses et de durée, 2- la combinant avec un HDACi, et 3- diminuant sa dégradation par la CR désaminase. L’utilisation de ces résultats précliniques dans l’élaboration de protocoles cliniques pourrait être bénéfique à beaucoup de patients. / The silencing of tumor suppressor genes (TSG) that normally regulate cells proliferation plays an important role in leukemogenesis. Two major mechanisms are involved in TSG’s silencing: DNA methylation and histones deacetylation. Because those phenomenons are reversible, it makes them interesting therapeutic targets for chemotherapeutic agents. We evaluated the antineoplastic potential of different agents that target those events and we administered them alone or in combination with the goal of improving their efficiency.
5-aza-2’-deoxycytidine (5-Aza-CdR) is a DNA methylation inhibitor that can re-express TSGs that are silenced by methylations. This agent demonstrated its efficacy against hematological malignancies. Therefore, 5-Aza-CdR is used since 2006 in United States of America against myelodysplastic syndrome; but its optimal dose-schedule still needs to be established. Our researches suggest that the dose-schedule of 5-Aza-CdR should be more intensive than what is reported from the literature.
Inhibitors of histones deacetylation (HDACi) also demonstrated some interesting antineoplastic activity. Recently, observations showed that combination of chemotherapeutic agent that targets both DNA methylation and histones deacetylation lead to a synergic reactivation of silenced TSG. This finding allowed us to observe that the co-administration of an HDACi with 5-Aza-CdR improve its antileukemic potential.
Moreover, it is possible to increase the activity of 5-Aza-CdR by preventing its degradation by cytidine (CR) deaminase. We demonstrated that the co-administration of zebularine, an inhibitor of CR deaminase, with 5-Aza-CdR increases its activity. Zebularine is also an inhibitor of DNA methylation, which may contribute to the enhancement of the antileukemic action of this combination.
In summary, our preclinical data indicate that the antileukemic activity of 5-Aza-CdR can be enhanced by: 1- increasing his dosage, 2- combining it with HDACi, and 3- preventing its inactivation by CR deaminase. The translation of those preclinical observations into clinical protocols may be effective in patients with advanced leukemia.
|
116 |
Modulation du système interféron de type I par les virus : en particulier par le virus de l'hépatite C et le virus influenza / Modulation of the type I interferon system by viruses : in particular by hepatitis C virus and influenza virusPradezynski, Fabrine 17 November 2010 (has links)
Afin de se répliquer et de se propager efficacement, les virus ont développé de multiples stratégies leur permettant d’échapper au système de défense innée : le système IFN de type I. Ce travail de thèse a alors consisté à étudier les interactions entre protéines virales et protéines de ce système de défense afin de mieux comprendre les mécanismes de subversion virale et d’identifier d’éventuelles cibles cellulaires thérapeutiques. La reconstruction d’un réseau d’interactions entre ces protéines nous a permis d’identifier des stratégies différentielles de subversion pour 4 familles virales et de montrer un ciblage massif et significatif des protéines du système IFN de type I par les virus. Les protéines en interaction directe avec ces protéines sont également fortement touchées par les virus et sont de potentiels modulateurs du système IFN de type I. Parmi ces modulateurs, le processus biologique sur-représenté est le transport nucléocytoplasmique et la protéine KPNA1 impliquée dans ce processus a retenu notre attention. L’étude fonctionnelle de l’interaction entre la protéine KPNA1 et la protéine NS3 du VHC a montré que la protéine NS3 associée à son cofacteur NS4A inhibe partiellement la réponse IFN de type I en empêchant l’import nucléaire de STAT1. Ce phénotype pourrait résulter de la dégradation de KPNA1 par NS3/4A. Par ailleurs, l’identification de nouveaux inter-acteurs de la protéine NS1 du virus influenza par criblage double-hybride levure a révélé la protéine induite par les IFN de type I, ADAR1, comme partenaire de la protéine NS1 de multiples souches virales et nous avons montré qu'ADAR1 est un facteur pro-viral dont la fonction editing est activée par NS1 / To replicate and propagate efficiently, viruses have developed multiple strategies allowing them to escape the innatedefense system: the type I IFN system, This work of thesis then consisted in studying the interactions between viralproteins and proteins of this defence system in order to understand better the mechanisms of viral subversion andidentifY possible therapeutic cellular tatgets. The reconstruction of a network of interacting proteins involved in the typeI IFN system allowed us to identifY differentiai subversion strategies for 4 viral families and to show a massive andsignificant targeting of proteins of the type I IFN system by viruses. Proteins directly interacting with the type Iinterferon system network are also strongly targeted by viruses and are potential modulators of the type I IFN system.Among these modulators, the most tatgeted function conesponds to the transport of NLS-bearing substrates to thenucleus and the KPNAI protein involved in this process held our attention. The functional study of the interactionbetween KPNA1 and NS3 protein of the HCV showed that NS3 protein associated with its cofactor NS4A inhibitsprutially the type I IFN response by preventing the nuclear translocation of ST A Tl. This phenotype could result fromthe degradation of KPNAI by NS3/4A. Besides, the identification of new cellular prutners ofNS 1 prote in of influenzavirus by yeast two-hybrid screens revealed ADARI, an interferon-stimulated prote in, as partner of NS 1 of ali testedvirus strains and we showed that ADARI is an essential host factor for viral replication and its editing function isactivated by NS 1 protein
|
117 |
L’hypermutation somatique des gènes des immunoglobulines : corrélation avec le cycle cellulaire et contribution des voies de réparation mutagènes / Somatic hypermutation of immunoglobulin genes : correlation with the cell cycle and contribution of mutagenic repair pathwaysZivojnovic, Marija 26 November 2013 (has links)
Pour augmenter l’affinité des anticorps sécrétés en réponse à un antigène, les gènes d’immunoglobulines subissent l’hypermutation somatique, une mutagénèse adaptative initiée par l’action de l’activation-induced cytidine deaminase (AID). L’uracile provenant de la désamination des cytosines par cette enzyme est réparé de façon erronée par la suite : si il est pris en charge par l’uracile N-glycosylase (UNG), enzyme à l’origine d’une réparation poursuivie habituellement par des composantes de la voie du "base-excision repair", il reste à sa place un site abasique franchissable par les ADN polymérases translésionnelles avec un taux d’erreur très élevé. Si le mésappariement U:G est reconnu par la voie du « mismatch repair », le brin d’ADN entourant le U est dégradé puis néo-synthétisé par une autre ADN polymérase translésionnelle particulièrement mutagène en face des bases T et A, la polymérase eta. Nous avons proposé que le choix entre ces deux voies de réparation mutagènes puisse être régulé en fonction du cycle cellulaire: les mutations des paires A:T seraient introduites dans les gènes d’immunoglobulines par la voie du mismatch repair en phase G1 alors que la voie erronée d’UN introduirait les autres mutations lors de la phase S. Nous sommes parvenus à restreindre l’activité de l’AID à deux parties distinctes du cycle, la phase G1 ou les phases S/G2/M, et nous avons établi le fonctionnement de ce système dans le modèle murin. De façon surprenante, nous avons détecté un taux de mutation proche du bruit de fond chez toutes les souris dont l’AID opérait uniquement dans les phases S/G2/M. Par contre, les souris dont l’AID a été restreinte en G1 présentaient un spectre de mutation diversifié sur les quatre bases et similaire au normal. A la lumière de ces résultats, nous proposons que les lésions introduites tout au long du cycle par l’AID soient diversifiées par les acteurs de l’hypermutation somatique pendant la phase G1, alors que les lésions seraient soit réparées de façon fidèle en dehors de cette phase-là, soit de faible impact. Afin d’expliquer le biais de brin dans l’hypermutation somatique observé pour les mutations sur les bases A :T, nous proposons pour l’ADN polymérase eta un rôle inhabituel de réparation du brin portant la « lésion », et non de synthèse translésionnelle classique en face de cette lésion. Nous avons analysé le profil, le taux et la distribution des mutations introduites par Pol eta sur un oligonucléotide cible pour l’hypermutation, qui a été inséré au locus des immunoglobulines et utilisé pour l’établissement des souris knock-in avec un fond génétique déficient ou non en UNG. Nos résultats, selon lesquels Pol eta continue de cibler le brin codant indépendamment de la localisation des « points d’entrée » en forme d’uraciles, contredisent les rapports déjà publiés sur ce sujet. De façon inattendue, nos résultats mettent en évidence une coopération entre les voies UNG et et les activités endonucléasique du mismatch repair, fournissant la cassure simple brin qui va permettre d'initier la resynthèse à fort taux d'erreur à l'origine de la mutagénèse A/T. Ces résultats résolvent aussi le paradoxe de la non-participation apparente du complexe effecteur du mismatch repair (Mlh1/Pms2) dans le processus d'hypermutation, en proposant qu'il fonctionne en redondance avec UNG, dans une distribution des tâches qui dépend du contexte de la séquence ciblée et de la densité du processus de deamination. / Somatic hypermutation is a localized mutagenesis, essentially targeted to the immunoglobulin V region, and occurring during the immune response. This process is triggered by AID (activation-induced cytidine deaminase) that deaminates cytosines into uracils at the Ig locus. This lesion is further processed by Ung or the Msh2-Msh6 complex, with an abnormal outcome for both pathways that results in an increased mutation load. The Msh2-Msh6 complex recruits Pol eta to generate a short patch DNA synthesis with mostly mutations at A and T bases. To get further insight into this error-prone repair process, we have generated hypermutation substrates consisting in an A/T oligonucleotide of 100 bases with or without 3 cytidines in its core region, inserted by knock-in at the heavy chain Ig locus. Our aim was to compare the mutation frequency, distribution and mutation profile of substrates with C on either the coding or the non-coding strand on WT or Ung-deficient background, taking into account that Pol eta is a preferred A to G mutator. Our results suggest that Pol eta resynthesis may proceed on the coding strand, whatever the strand localization of the uracil, thus contradicting previous reports. Unexpectedly, our results revealed a cooperation between the Ung pathway and the endonuclease activity of the mismatch repair, with both of them providing the single-strand nick that allows initiation of the error-prone process that generates mutations at A and T bases. These results resolve the apparent paradox of the non-involvement of the mismatch repair effector complex (Mlh1-Pms2) in hypermutation, by proposing that it works redundantly with UNG, in a distribution of tasks that will depend upon the sequence context and the intensity of deamination activity. We have also constructed cell cycle restricted mutants of AID, to study in which phase of the cell cycle this atypical, mismatch repair driven, error-prone synthesis is taking place. Using the Fucci restriction system (degrons based on Cdt1 or Geminin peptides), we have generated AID constructs with proper restriction in either G1 or S/G2/M phases. These retroviral constructs have been used to transduce mouse hematopoietic stem cells from either AID -deficient mice and to restore immunodeficient animals, in order to analyze their immune response. We report that restriction of AID expression in S/G2/M part of the cycle yielded only background mutation frequency, while AID operating in the G1 phase is able to generate an equal proportion of A/T and G/C mutations at the Ig loci, thus demonstrating that uracils generated in G1 are substrates for both Ung- and mismatch repair pathways.
|
118 |
Metabolic Adaptation For Utilization Of Short-Chain Fatty Acids In Salmonella Typhimurium : Structural And Functional Studies On 2-methylcitrate Synthase, Acetate And Propionate KinasesChittori, Sagar 07 1900 (has links) (PDF)
Three-dimensional structures of proteins provide insights into the mechanisms of macromolecular assembly, enzyme catalysis and mode of activation, substrate-specificity, ligand-binding properties, stability and dynamical features. X-ray crystallography has become the method of choice in structural biology due to the remarkable methodological advances made in the generation of intense X-ray beams with very low divergence, cryocooling methods to prolong useful life of irradiated crystals, sensitive methods of Xray diffraction data collection, automated and fast methods for data processing, advances and automation in methods of computational crystallography, comparative analysis of macromolecular structures along with parallel advances in biochemical and molecular biology methods that allow production of the desired biomolecule in quantities sufficient for X-ray diffraction studies. Advances in molecular biology techniques and genomic data have helped in identifying metabolic pathways responsible for metabolism of short-chain fatty acids (SCFAs). The primary objective of this thesis is application of crystallographic techniques for understanding the structure and function of enzymes involved in the metabolism of SCFAs in S. typhimurium. Pathways chosen for the present study are (i) propionate degradation to pyruvate and succinate by 2-methylcitrate pathway involving gene products of the prp operon, (ii) acetate activation to acetyl-CoA by AckA-Pta pathway involving gene products of the ack-pta operon, (iii) threonine degradation to propionate involving gene products of the tdc operon, (iv) 1,2-propanediol (1,2-PD) degradation to propionate involving gene products of the pdu operon. These metabolic pathways utilize a large number of enzymes with diverse catalytic mechanisms. The main objectives of the work include structural and functional studies on 2-methycitrate synthase (PrpC), acetate kinase (AckA), propionate kinase isoforms (PduW and TdcD) and propanol dehydrogenase (PduQ) from S. typhimurium. In the present work, these proteins were cloned, expressed, purified and characterized. The purified proteins were crystallized using standard methods. The crystals were placed in an X-ray beam and diffraction data were collected and used for the elucidation of structure of the proteins. The structures were subjected to rigorous comparative analysis and the results were complemented with suitable biochemical and biophysical experiments. The thesis begins with a review of the current literature on SCFAs metabolism in bacteria, emphasizing studies carried out on S. typhimurium and the closely related E. coli as well as organisms for which the structure of a homologue has been determined (Chapter 1). Metabolic pathways involving acetate utilization by activation to acetyl- CoA, propionate degradation to pyruvate and succinate, anaerobic degradation of Lthreonine to propionate and, 1,2-PD degradation to propionate are described in this chapter. Common experimental and computational methods used during the course of investigations are described in Chapter 2, as most of these are applicable to all structure determinations and analyses. Experimental procedures described here include cloning, overexpression, purification, crystallization and intensity data collection. Computational methods covered include details of various programs used during data processing, structure solution, refinement, model building, validation and structural analysis. In Chapter 3, X-ray crystal structure of S. typhimurium 2-methylcitrate synthase (StPrpC; EC 2.3.3.5) determined at 2.4 Å resolution and its functional characterization is reported. StPrpC catalyzes aldol-condensation of oxaloacetate and propionyl-CoA to 2- methylcitrate and CoA in the second step of 2-methylcitrate pathway. StPrpC forms a dimer in solution and utilizes propionyl-CoA more efficiently than acetyl-CoA or butyryl- CoA. The polypeptide fold and the catalytic residues of StPrpC are conserved in citrate synthases (CSs) suggesting similarities in their functional mechanisms. Tyr197 and Leu324 of StPrpC are structurally equivalent to the ligand binding residues His and Val, respectively, of CSs. These substitutions might be responsible for the specificities for acyl-CoAs of these enzymes. Structural comparison with the ligand free (open) and bound (closed) states of CSs showed that StPrpC represents the first apo structure among xvi CS homologs in a nearly closed conformation. StPrpC molecules were organized as decamers, composed of five identical dimer units, in the P1 crystal cell. Higher order oligomerization of StPrpC is likely to be due to high pH (9.0) of the crystallization condition. In gram-negative bacteria, a hexameric form, believed to be important for regulation of activity by NADH, is also observed. Structural comparisons with hexameric E. coli CS suggested that the key residues involved in NADH binding are not conserved in StPrpC. Structural and functional studies on S. typhimurium acetate kinase (StAckA; EC 2.7.2.1) are described in Chapter 4. Acetate kinase, an enzyme widely distributed in the bacteria and archaea domains, catalyzes the reversible phosphoryl transfer from ATP to acetate in the presence of a metal ion during acetate metabolism. StAckA catalyzes Mg2+ dependent phosphate transfer from ATP to acetate 10 times more efficiently when compared to propionate. Butyrate was found to inhibit the activity of the enzyme. Kinetic analysis showed that ATP and Mg2+ could be effectively substituted by other nucleoside 5′-triphosphates (GTP, UTP and CTP) and divalent cations (Mn2+ and Co2+), respectively. The X-ray crystal structure of StAckA was determined in two different forms at 2.70 Å (Form-I) and 1.90 Å (Form-II) resolutions, respectively. StAckA contains a fold with the topology βββαβαβα, similar to those of glycerol kinase, hexokinase, heat shock cognate 70 (Hsc70) and actin. StAckA consists of two domains with an active site cleft at the domain interface. Comparison of StAckA structure with those of ligand complexes of other acetokinase family proteins permitted the identification of residues essential for substrate binding and catalysis. Conservation of most of these residues points to both structural and mechanistic similarities between enzymes of this family. Examination of the active site pocket revealed a plausible structural rationale for the greater specificity of the enzyme towards acetate than propionate. Intriguingly, a major conformational reorganization and partial disorder in a large segment consisting of residues 230-297 of the polypeptide was observed in Form-II. Electron density corresponding to a plausible xvii citrate was observed at a novel binding pocket present at the dimeric interface. Citrate bound at this site might be responsible for the observed disorder in the Form-II structure. A similar ligand binding pocket and residues lining the pocket were also found to be conserved in other structurally known enzymes of acetokinase family. These observations and examination of enzymatic reaction in the presence of citrate and succinate (tricarboxylic acid cycle intermediates) suggested that binding of ligands at this pocket might be important for allosteric regulation in this family of enzymes. Propionate kinase (EC 2.7.2.15) catalyzes reversible conversion of propionylphosphate and ADP to propionate and ATP. S. typhimurium possess two isoforms of propionate kinase, PduW and TdcD, involved in 1,2-propanediol degradation to propionate and in L-threonine degradation to propionate, respectively. In Chapter 5, structural and functional analyses of PduW and TdcD, carried out to gain insights into the substrate-binding pocket and catalytic mechanism of these enzymes, are described. Both isoforms showed broad specificity for utilization of SCFAs (propionate > acetate), nucleotides (ATP ≈ GTP > UTP > CTP) and metal ions (Mg2+ ≈ Mn2+). Molecular modeling of StPduW indicated that the enzyme is likely to adopt a fold similar to other members of acetokinase family. The residues at the active site are well conserved. Differences in the size of hydrophobic pocket where the substrate binds, particularly the replacement of a valine residue in acetate kinases (StAckA: Val93) by an alanine in propionate kinases (StPduW: Ala92; StTdcD: Ala88), could account for the observed greater affinity towards their cognate SCFAs. Crystal structures of TdcD from S. typhimurium in complex with various nucleotides were determined using native StTdcD as the phasing model. Nucleotide complexes of StTdcD provide a structural rationale for the broad specificity of the enzyme for its cofactor. Binding of ethylene glycol close to the γ-phosphate of GTP might suggest a direct in-line transfer mechanism. The thesis concludes with a brief discussion on the future prospects of the work. xviii Projects carried out as part of Master of Science projects and as additional activity during the course of the thesis work are described in three appendices. Analysis of the genomic sequences of E. coli and S. typhimurium has revealed the presence of hpa operon essential for 4-hydroxyphenylacetate (4-HPA) catabolism. S. typhimurium hpaE gene encodes for a 55 kDa polypeptide (StHpaE; EC 1.2.1.60) which catalyzes conversion of 5-carboxymethyl-2-hydroxymuconic semialdehyde (CHMS) to 5-carboxymethyl-2-hydroxymuconic aldehyde (CHMA) in 4-HPA metabolism. Sequence analysis of StHpaE showed that it belongs to aldehyde dehydrogenase (ALDH) superfamily and possesses residues equivalent to the catalytic glutamate and cysteine residues of homologous enzymes (Appendix A). The gene was cloned in pRSET C expression vector and the recombinant protein was purified using Ni-NTA affinity chromatography. The enzyme forms a tetramer in solution and shows catalytic activity toward the substrate analog adipic semialdehyde. Crystal structure of StHpaE revealed that it contains three domains; two dinucleotide-binding domains, a Rossmann-fold type domain, and a small three-stranded β-sheet domain, which is involved in tetrameric interactions. NAD+-bound crystal of StHpaE permitted identification of active site pocket and residues important for ligand anchoring and catalysis. Mutarotases or aldose 1-epimerases (EC 5.1.3.3) play a key role in carbohydrate metabolism by catalyzing the interconversion of α- and β-anomers of sugars. S. typhimurium YeaD (StYeaD), annotated as aldose 1-epimerase, has very low sequence identity with other well characterized mutarotases. In Appendix B, the crystal structure of StYeaD determined in orthorhombic and monoclinic crystal forms at 1.9 Å and 2.5 Å resolutions, respectively are reported. StYeaD possesses a fold similar to those of galactose mutarotases (GalMs). Structural comparison of StYeaD with GalMs has permitted identification of residues involved in catalysis and substrate anchoring. In spite xix of the similar fold and conservation of catalytic residues, minor but significant differences in the substrate binding pocket were observed compared to GalMs. Therefore, the substrate specificity of YeaD like proteins seems to be distinct from those of GalMs. Pepper Vein Banding Virus (PVBV) is a member of the genus potyvirus and infects Solanaceae plants. PVBV is a single-stranded positive-sense RNA virus with a genome-linked viral protein (VPg) covalently attached at the 5'-terminus. In order to establish the role of VPg in the initiation of replication of the virus, recombinant PVBV VPg was over-expressed in E. coli and purified using Ni-NTA affinity chromatography (Appendix C). PVBV NIb was found to uridylylate Tyr66 of VPg in a templateindependent manner. Studies on N- and C-terminal deletion mutants of VPg revealed that N-terminal 21 and C-terminal 92 residues of PVBV VPg are dispensable for in vitro uridylylation by PVBV NIb.
|
119 |
Studies on Cellular Host Factors Involved in the HIV-1 Life Cycle: A DissertationSerquiña, Anna Kristina 08 August 2012 (has links)
Human Immunodeficiency Virus Type 1 (HIV-1) is the causative agent of Acquired Immunodeficiency Syndrome (AIDS), currently the leading cause of death from infectious diseases. Since HIV-1 co-opts the host cellular machinery, the study of cellular factors involved is a rational approach in discovering novel therapeutic targets for AIDS drug development. In this thesis, we present studies on two such proteins. APOBEC3G is from the family of cytidine deaminases known to keep endogenous retroviruses and retrotransposons at bay to maintain stability of the human genome. APOBEC3G targets Vif-deficient HIV-1 particles and renders them noninfectious, partially through deaminase-dependent hypermutation of the provirus during reverse transcription. APOBEC3G largely localizes in mRNA processing (P) bodies, cytoplasmic structures involved in RNA metabolism. Here we explore the significance of APOBEC3G localization in P bodies. We found that disrupting P bodies does not affect virion incorporation of endogenous APOBEC3G, implying that the APOBEC3G fraction in P bodies is not directly involved in the production of nascent, non-infectious particles.
We also study UPF1, another host protein encapsidated by HIV-1. It is an essential protein mainly studied for its role in nonsense-mediated decay (NMD) pathway and belongs to the same helicase superfamily as MOV10, a recently identified antiviral factor. We found that UPF1 is incorporated in HIV-1 virions in a nucleocapsid-dependent manner and is required for single-cycle infectivity at an early, post-entry step of the viral life cycle. This novel function of UPF1 most likely does not involve NMD since depletion of UPF2 does not affect viral infectivity.
|
120 |
Structural Studies On Pyridoxal 5'-Phosphate Dependent Enzymes Involved In D-Amino Acid Metabolism And Acid Tolerance ReponseBharath, S R 06 1900 (has links) (PDF)
Metabolism of D-amino acids is of considerable interest due to their key importance in cellular functions. The enzymes D-serine dehydratase (DSD) and D-cysteine desulfhydrase (DCyD) are involved in the degradation of D-Ser and D-Cys, respectively. We determined the crystal structure of Salmonella typhimurium DSD (StDSD) by multiple anomalous dispersion method of phasing using selenomethione incorporated protein crystals. The structure revealed a fold typical of fold type II PLP-dependent enzymes. Although holoenzyme was used for crystallization of both wild type StDSD (WtDSD) and selenomethionine labeled StDSD (SeMetDSD), significant electron density was not observed for the co-factor, indicating that the enzyme has a low affinity for the cofactor under crystallization conditions. Interestingly, unexpected conformational differences were observed between the two structures. The WtDSD was in an open conformation while SeMetDSD, crystallized in the presence of isoserine, was in a closed conformation suggesting that the enzyme is likely to undergo conformational changes upon binding of substrate as observed in other fold type II PLP-dependent enzymes. Electron density corresponding to a plausible sodium ion was found near the active site of the closed but not in the open state of the enzyme. Examination of the active site and substrate modeling suggested that Thr166 may be involved in abstraction of proton from the Cα atom of the substrate. Apart from the physiological reaction, StDSD catalyses α, β-elimination of D-Thr, D-Allothr and L-Ser to the corresponding α-keto acids and ammonia. The structure of StDSD provides a molecular framework necessary for understanding differences in the rate of reaction with these substrates.
Salmonella typhimurium DCyD (StDCyD) is a fold type II PLP-dependent enzyme that catalyzes the degradation of D-Cys to H2S and pyruvate. We determined the crystal structure of StDCyD using molecular replacement method in two different crystal forms. The better diffracting crystal form obtained in presence of benzamidine illustrated the influence a small molecule in altering protein interfaces and crystal packing. The polypeptide fold of StDCyD consists of a small domain (residues 48-161) and a large domain (residues 1-47 and 162-328) which resemble other fold type II PLP-dependent enzymes. X-ray crystal structures of StDCyD were also obtained in the presence of substrates, D-Cys and βCDA, and substrate analogs, ACC, D-Ser, L-Ser, D-cycloserine (DCS) and L-cycloserine (LCS). The structures obtained in the presence of D-Cys and βCDA show the product, pyruvate, bound at a site 4.0-6.0 Å away from the active site. ACC forms an external aldimine complex while D and L-Ser bind non-covalently suggesting that the reaction with these ligands is arrested at Cα proton abstraction and transimination steps, respectively. In the active site of StDCyD cocrystallized with DCS or LCS, electron density for a pyridoxamine phosphate (PMP) was observed. Crystals soaked in cocktail containing these ligands show density for PLP-cycloserine. Spectroscopic observations also suggested formation of PMP by the hydrolysis of cycloserines. Mutational studies suggested that Ser78 and Gln77 are key determinants of enzyme specificity and the phenolate of Tyr287 is responsible for Cα proton abstraction from D-Cys. Based on these studies, we proposed a probable mechanism for the degradation of D-Cys by StDCyD.
The acid-induced arginine decarboxylase (ADC) is part of an enzymatic system in Salmonella typhimurium that contributes to making this organism acid resistant. ADC is a PLP-dependent enzyme that is active at acidic pH. It consumes a proton in the decarboxylation of arginine to agmatine, and by working in tandem with an arginine-agmatine antiporter, this enzymatic cycle protects the organism by preventing the accumulation of protons inside the cell. We have determined the structure of the acid-induced StADC to 3.1 Å resolution. StADC structure revealed an 800 kDa decamer composed as a pentamer of five homodimers. Each homodimer has an abundance of acidic surface residues, which at neutral pH prevent inactive homodimers from associating into active decamers. Conversely, acidic conditions favor the assembly of active decamers. Therefore, the structure of arginine decarboxylase presents a mechanism by which its activity is modulated by external pH.
|
Page generated in 0.1242 seconds