51 |
Um enfoque bayesiano do modelo de captura-recaptura na presença de covariáveis.Paula, Marcelo de 22 February 2006 (has links)
Made available in DSpace on 2016-06-02T20:06:11Z (GMT). No. of bitstreams: 1
DissMP.pdf: 748309 bytes, checksum: b6a638a5f9ec09f6622480b42f13d699 (MD5)
Previous issue date: 2006-02-22 / Financiadora de Estudos e Projetos / This work has as main objective to insert covariates in the capture probability of the multiple capture-recapture method for closed animal population. Factors like climate, seasons of the year, animal size, could a¤ect the animal capture probability. We revise the methodology concepts, we make a study about the posteriori parameters sensibility, we present new parameters for the capture probability in specific situations and we insert covariates in the model used by Castledine (1981) through bayesian methods. The bayesian analysis was made through several studies of stochastic simulation through MCMC (Monte Carlo Markov Chain) with simulated and real data to obtain the population size posteriori results. / Este trabalho tem como objetivo principal a inserção de covariáveis nas probabilidades de captura do método de captura-recaptura múltipla para população fechada. No
caso de população animal, por exemplo, fatores como clima, época do ano, tamanho do animal, podem afetar a probabilidade de captura do animal. Revisamos os conceitos da
metodologia, fazemos um breve estudo sobre a sensibilidade das estimativas a posteriori em relação a escolha dos hiperparâmetros, apresentamos uma reparametrização para a
probabilidade de captura em situações específicas e, motivados nessa reparametrização, inserimos covariáveis no modelo proposto por Castledine (1981) por meio de métodos
bayesianos. A análise bayesiana foi feita através de vários estudos de simulação estocástica via MCMC (Monte Carlo Markov Chain) com dados simulados e reais para obter os
resultados a posteriori do tamanho populacional.
|
52 |
Utilizando técnicas de mineração de dados para apoiar a busca ativa de famílias em situação de vulnerabilidade e risco social / Using data mining techniques to support active search for families in situations of social risk and vulnerabilityTerrin, Marcos Alexandre Pastori 18 August 2015 (has links)
No âmbito da Assistência Social, existe a necessidade de se identificar as famílias em situação de vulnerabilidade e risco social, processo esse chamado de “Busca Ativa”, para que as famílias nesta situação possam ser assistidas adequadamente. O Ministério do Desenvolvimento Social e Combate à Fome do Brasil orienta que seja realizado o cruzamento de bases de dados como forma de realizar a Busca Ativa, mas não disponibiliza nenhuma ferramenta para realização desse processo. Este trabalho busca identificar e aplicar técnicas de mineração de dados para apoiar a identificação das famílias em situação de vulnerabilidade e risco social. Os resultados obtidos em experimentos preliminares demonstraram que na maioria dos casos os modelos gerados preveem sempre a classe majoritária. Após realizar um balanceamento manual das classes removendo algumas amostras os experimentos foram repetidos e indicaram que os resultados estavam sendo diretamente afetados devido ao desbalanceamento das classes. Por esse motivo foram utilizados diversos métodos específicos para realizar o balanceamento das amostras a fim de que todas as classes possuíssem a mesma quantidade de amostras. Após realizar o balanceamento das amostras novos experimentos foram realizados. Durante a análise dos resultados foi observado que com as medidas padrões de avaliação de aprendizado de máquina não estava sendo possível identificar qual método havia obtido o melhor resultado. Em função disso um método de qualidade de ranking foi utilizado juntamente com a medida Recall para avaliar os resultados. / In the current Brazilian Government there is a Social Assistance policy that is highly concerned about helping families who might be at social risk and vulnerability. The process of identification of these families is known as “active search”. The task of active search is defined in a document by the Brazilian Ministry of Social Development and Fight Against Hunger. This document provides the main guidelines about how to perform the active search. However, despite the task’s importance, there are still no tool to help the social assistants with this task. This work aim to investigate the use of data mining techniques to identify the families in vulnerability and social risk situations. The results obtained in preliminary experiments showed that the classification models created always predict the majority class. After balancing manually the datasets by removing some examples the experiments were repeated and showed that the results were being directly influenced by the imbalanced data. Because of it was used a bunch of sampling methods to produce the same amount of examples in each class. After proceed with the sampling of the examples new experiments were proceeded. During the result’s evaluation it was realized that the standard metrics used in machine learn were not being able to identify wich method obtained the best result. Due to this situation a ranking quality method was used combined with the Recall metric to evaluate the results.
|
53 |
Utilizando técnicas de mineração de dados para apoiar a busca ativa de famílias em situação de vulnerabilidade e risco social / Using data mining techniques to support active search for families in situations of social risk and vulnerabilityTerrin, Marcos Alexandre Pastori 18 August 2015 (has links)
No âmbito da Assistência Social, existe a necessidade de se identificar as famílias em situação de vulnerabilidade e risco social, processo esse chamado de “Busca Ativa”, para que as famílias nesta situação possam ser assistidas adequadamente. O Ministério do Desenvolvimento Social e Combate à Fome do Brasil orienta que seja realizado o cruzamento de bases de dados como forma de realizar a Busca Ativa, mas não disponibiliza nenhuma ferramenta para realização desse processo. Este trabalho busca identificar e aplicar técnicas de mineração de dados para apoiar a identificação das famílias em situação de vulnerabilidade e risco social. Os resultados obtidos em experimentos preliminares demonstraram que na maioria dos casos os modelos gerados preveem sempre a classe majoritária. Após realizar um balanceamento manual das classes removendo algumas amostras os experimentos foram repetidos e indicaram que os resultados estavam sendo diretamente afetados devido ao desbalanceamento das classes. Por esse motivo foram utilizados diversos métodos específicos para realizar o balanceamento das amostras a fim de que todas as classes possuíssem a mesma quantidade de amostras. Após realizar o balanceamento das amostras novos experimentos foram realizados. Durante a análise dos resultados foi observado que com as medidas padrões de avaliação de aprendizado de máquina não estava sendo possível identificar qual método havia obtido o melhor resultado. Em função disso um método de qualidade de ranking foi utilizado juntamente com a medida Recall para avaliar os resultados. / In the current Brazilian Government there is a Social Assistance policy that is highly concerned about helping families who might be at social risk and vulnerability. The process of identification of these families is known as “active search”. The task of active search is defined in a document by the Brazilian Ministry of Social Development and Fight Against Hunger. This document provides the main guidelines about how to perform the active search. However, despite the task’s importance, there are still no tool to help the social assistants with this task. This work aim to investigate the use of data mining techniques to identify the families in vulnerability and social risk situations. The results obtained in preliminary experiments showed that the classification models created always predict the majority class. After balancing manually the datasets by removing some examples the experiments were repeated and showed that the results were being directly influenced by the imbalanced data. Because of it was used a bunch of sampling methods to produce the same amount of examples in each class. After proceed with the sampling of the examples new experiments were proceeded. During the result’s evaluation it was realized that the standard metrics used in machine learn were not being able to identify wich method obtained the best result. Due to this situation a ranking quality method was used combined with the Recall metric to evaluate the results.
|
54 |
Estudo sobre a aplicação de estatística bayesiana e método de máxima entropia em análise de dados / Study on application of bayesian statistics and method of maximun entropy in data analysisPerassa, Eder Arnedo, 1982- 19 April 2007 (has links)
Orientador: Jose Augusto Chinellato / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-09T22:35:29Z (GMT). No. of bitstreams: 1
Perassa_EderArnedo_M.pdf: 7742499 bytes, checksum: 5f8e2630e2b11b5f5965e6b95c19be9b (MD5)
Previous issue date: 2007 / Resumo: Neste trabalho são estudados os métodos de estatística bayesiana e máxima entropia na análise de dados. É feita uma revisão dos conceitos básicos e procedimentos que podem ser usados para in-ferência de distribuições de probabilidade. Os métodos são aplicados em algumas áreas de interesse, com especial atenção para os casos em que há pouca informação sobre o conjunto de dados. São apresentados algoritmos para a aplicação de tais métodos, bem como alguns exemplos detalhados em que espera-se servirem de auxílio aos interessados em aplicações em casos mais comuns de análise de dados / Abstract: In this work, we study the methods of Bayesian Statistics and Maximum Entropy in data analysis. We present a review of basic concepts and procedures that can be used for inference of probability distributions. The methods are applied in some interesting fields, with special attention to the cases where there¿s few information on set of data, which can be found in physics experiments such as high energies physics, astrophysics, among others. Algorithms are presented for the implementation of such methods, as well as some detailed examples where it is expected to help interested in applications in most common cases of data analysis / Mestrado / Física das Particulas Elementares e Campos / Mestre em Física
|
55 |
Resolução do problema de alinhamento estrutural entre proteínas via técnicas de otimização global / Resolution of the problem of structural protein alignment by means of global optimization techniquesGouveia, Paulo Sergio da Silva 17 August 2018 (has links)
Orientadores: Ana Friedlander de Martinez Perez, Roberto Andreani / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T18:28:36Z (GMT). No. of bitstreams: 1
Gouveia_PauloSergiodaSilva_D.pdf: 2266379 bytes, checksum: 85bb53a412744c3d168ac6fed4b701e0 (MD5)
Previous issue date: 2011 / Resumo: A comparação estrutural entre proteínas é um problema fundamental na Biologia Molecular, pois estruturas similares entre proteínas, frequentemente refletem uma funcionalidade ou origem em comum entre as mesmas. No Problema de Alinhamento Estrutural entre Proteínas, buscamos encontrar o melhor alinhamento estrutural entre duas proteínas, ou seja, a melhor sobreposição entre duas estruturas proteicas, uma vez que alinhamentos locais podem levar a conclusões distorcidas sobre as características c funcionalidades das proteínas em estudo. A maioria dos métodos atuais para abordar este problema ou tem um custo computacional muito elevado ou não tem nenhuma garantia de convergência para o melhor alinhamento entre duas proteínas. Neste trabalho, propomos métodos computacionais para o Problema de Alinhamento Estrutural entre Proteínas que tenham boas garantias de encontrar o melhor alinhamento, mas em um tempo computacional razoável, utilizando as mais variadas técnicas de Otimização Global. A análise sobre os desempenhos de cada método tanto em termos quantitativos quanto qualitativos, além de um gráfico de Pareto, são apresentados de forma a facilitar a comparação entre os métodos com respeito à qualidade da solução e ao tempo computacional / Abstract: The structural comparison of proteins is a fundamental problem in Molecular Biology because similar structures often reflect a comrnon origin or funcionality. In the Protein Alignment problem onc seeks the best structural alignment between two proteins, i.e. the best overlap between two protein structures. Merely local alignments can lead to distorted conclusions on the problem features and functions. Most methods addressing this problem have a very high computational cost or are not supported with guarantecs of convergence to the best alignment. In this work we des-cribe computational methods for Protein Structural Alignment with good certificatea of optimality and reasonable computational execution time. We employ several Global Op-timization techniques. The performance is visualized by means of profile graphics and Pareto curves in order to take into account simultaneously emeiency and robustness of the methods / Doutorado / Otimização / Doutor em Matemática Aplicada
|
56 |
Um estudo sobre alocação de ativos clássica e bayesiana no mercado acionário brasileiroRêgo, Hugo Leonardo Freitas de Moraes 19 April 2012 (has links)
Submitted by Hugo Rego (hl_freitas@yahoo.com.br) on 2012-05-20T18:47:32Z
No. of bitstreams: 1
Dissertação de Mestrado_Hugo L F de Moraes Rêgo.pdf: 699903 bytes, checksum: 7d039f1507408214660b09b7998f05b3 (MD5) / Approved for entry into archive by Gisele Isaura Hannickel (gisele.hannickel@fgv.br) on 2012-05-21T12:11:12Z (GMT) No. of bitstreams: 1
Dissertação de Mestrado_Hugo L F de Moraes Rêgo.pdf: 699903 bytes, checksum: 7d039f1507408214660b09b7998f05b3 (MD5) / Made available in DSpace on 2012-05-21T12:30:46Z (GMT). No. of bitstreams: 1
Dissertação de Mestrado_Hugo L F de Moraes Rêgo.pdf: 699903 bytes, checksum: 7d039f1507408214660b09b7998f05b3 (MD5)
Previous issue date: 2012-04-19 / The goal of this work was to compare two different asset allocation methodologies, the classic and the Bayesian one. The utilized model was that of Meucci (2005). In order to reach this goal, empirical exercises were performed, utilizing data from the Brazilian financial market. The results found indicate that the Bayesian asset portfolio outperformed the classic one in terms of return and volatility, whereas the classic portfolio outperformed the market index. Moreover, this work also comprises modifications in the prior utilized in the Bayesian estimation. / Este trabalho teve como objetivo comparar duas metodologias de alocação ótima de ativos, a metodologia clássica e a metodologia bayesiana. O modelo utilizado foi o de Meucci (2005). Foram realizados diversos exercícios empíricos de montagem de carteiras de ativos seguindo essas metodologias, utilizando para isso dados do mercado acionário brasileiro. Os resultados encontrados indicam uma superioridade de desempenho, tanto em termos de retorno quanto de volatilidade, da carteira bayesiana em relação à clássica e desta em relação ao índice de mercado. Ademais, o trabalho também compreende modificações na prior utilizada na estimação bayesiana.
|
57 |
ChronicPrediction: um modelo para prognóstico ubíquo de fatores de risco de doenças crônicas não transmissíveisPittoli, Fábio 27 March 2015 (has links)
Submitted by Maicon Juliano Schmidt (maicons) on 2015-06-11T18:12:05Z
No. of bitstreams: 1
Fábio Pittoli_.pdf: 14844169 bytes, checksum: eced950e683430e4d8c741f0429ded20 (MD5) / Made available in DSpace on 2015-06-11T18:12:05Z (GMT). No. of bitstreams: 1
Fábio Pittoli_.pdf: 14844169 bytes, checksum: eced950e683430e4d8c741f0429ded20 (MD5)
Previous issue date: 2015-03-27 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / PROSUP - Programa de Suporte à Pós-Gradução de Instituições de Ensino Particulares / A computação ubíqua quando na forma de sistemas ubíquos e utilizados no suporte e cuidado de Doenças Crônicas priorizam o monitoramento do paciente e a geração de diversos tipos de alerta, porém, o suporte à tomada de decisões por parte dos sistemas ubíquos existentes é ainda pouco utilizado em sistemas específicos para o gerenciamento e controle de Doenças Crônicas Não Transmissíveis. Como o cuidado de doença crônica deve ser feito de forma contínua, torna-se importante para o paciente ter um conhecimento prévio sobre o andamento do seu tratamento e se as ações por ele feitas no dia a dia estão lhe ajudando com o tratamento ou não. Como mecanismo de predição, uma das principais técnicas utilizadas atualmente são as Redes Bayesianas. Sendo assim, esta dissertação propõe um modelo computacional ubíquo de prognóstico de fatores de risco de Doenças Crônicas Não Transmissíveis, denominado ChronicPrediction. O modelo ChronicPrediction utiliza Redes Bayesianas criadas a partir do mapeamento de relações de causalidade existentes entre cada um dos fatores de risco da DCNT a qual se deseja observar. Essas relações são definidas a partir de opinião de especialistas ou geradas automaticamente através de dados históricos e com base em dados fornecidos pelos próprios pacientes sobre seus hábitos alimentares diários, rotina de exercícios físicos e a medição de suas taxas. São discutidas também características pertencentes a trabalhos relacionados, além de descrever o modelo em detalhes e apresentar os aspectos considerados no desenvolvimento e avaliação por meio de um protótipo desenvolvido. O processo de avaliação se apresenta na forma de experimentos descritos através de cenários, os quais possuem como objetivo avaliar as hipóteses relacionadas a cada um deles. O ponto inicial para a formulação de cada uma das hipóteses é o fato de que se tem uma ideia de uma causa e o efeito relacionado a ela. Cada um dos cenários visa descrever situações comuns que possam ocorrer durante o dia a dia de pacientes (causas e efeitos) com algum tipo de Doença Crônica Não Transmissível. Além disso, a diversidade entre os cenários torna-se importante para aperfeiçoar a abrangência da avaliação do modelo. Ao efetuar as avaliações conclui-se que o modelo ChronicPrediction amplia as funcionalidades do Modelo UDuctor e do assistente pessoal ChronicDuctor, passando a oferecer suporte a ao monitoramento de múltiplas DCNT simultaneamente, fornecendo feedbacks e recomendações ao paciente com o intuito de ajudá-lo a acompanhar seu tratamento de forma contínua e podendo readequá-lo de forma a promover seu bem-estar e aprimorando sua qualidade de vida. / The ubiquitous computing in the form os ubiquitous systems and used in the support and care of Chronic Diseases prioritize the patient monitoring and the generation of differents alert types, however, the support decision making by the existing ubiquitous systems is still little used on specific systems for the management and control of Chronic Non-Communicable Diseases. As the care of chronic disease should be done continuosly, becomes important for the patient has a prior knowledge about the progress of your treatment and if the actions taken by him in his daily life are helping you with treatment or not. As a predictive mechanism one of the main techniques used nowadays are the Bayesian Networks. Thus, this thesis proposes an ubiquitous computing prognostic model of risk factors of Chronic Noncommunicable Diseases, called ChronicPrediction. The ChronicPrediction model uses Bayesian Networks created from mapping of existing causal relationships between each of the risk factors of NCDs which you wish to observe. These reationships are defined from expert opinion or automatically generated by historical data and based on data provided by patients themselves about their dayli eating habits, exercise routine and the measuring of their rates. Are also discussed characteristics belonging to related work, addition to describing the model in detail and present the aspects considered in developing and evaluating through a prototype. The evaluation process is presented in the form of experiments described through scenarios, which have to evaluate hypotheses realted to each. The starting point for the formulation of each of the hypotheses is the fact that we have an idea of a cause and effect related to it. Each scenario aims to describe common situations that may occur during the daily lives of patients (causes and effects) with some kind of Chronic Non-Communicable Disease. Furthermore, the diversity between the scenarios is important to improve the coverage of the model evaluation. Making the evaluationsit was concluded that the ChronicPrediction model expands the functionality of UDuctor model and the ChronicDuctor personal assistant, offering support to the monitoring of multiple NCDs simultaneously, providing feedbacks and recommendations to the patients in order to help them to monitor their treatment continuously, to modify them in order to promote their well-being and improving their quality of life.
|
58 |
Estratégia de otimização para a melhoria da interpretabilidade de redes bayesianas: aplicações em sistemas elétricos de potênciaROCHA, Cláudio Alex Jorge da 12 October 2009 (has links)
Submitted by Irvana Coutinho (irvana@ufpa.br) on 2011-03-30T16:23:46Z
No. of bitstreams: 2
ROCHA, Claúdio Alex Jorge daPPGEngenhara Elétrica tese.pdf: 1672175 bytes, checksum: 8c818fe77f66c2ba2126a0888e1abe85 (MD5)
license_rdf: 22876 bytes, checksum: 0a4e855daae7a181424315bc63e71991 (MD5) / Made available in DSpace on 2011-03-30T16:23:46Z (GMT). No. of bitstreams: 2
ROCHA, Claúdio Alex Jorge daPPGEngenhara Elétrica tese.pdf: 1672175 bytes, checksum: 8c818fe77f66c2ba2126a0888e1abe85 (MD5)
license_rdf: 22876 bytes, checksum: 0a4e855daae7a181424315bc63e71991 (MD5)
Previous issue date: 2009 / A investigação de métodos, técnicas e ferramentas que possam apoiar os processos decisórios em sistemas elétricos de potência, em seus vários setores, é um tema que tem despertado grande interesse. Esse suporte à decisão pode ser efetivado mediante o emprego de vários tipos de técnicas, com destaque para aquelas baseadas em inteligência computacional, face à grande aderência das mesmas a domínios com incerteza. Nesta tese, são utilizadas as redes Bayesianas para a extração de modelos de conhecimento a partir dos dados oriundos de sistemas elétricos de potência. Além disso, em virtude das demandas destes sistemas e de algumas limitações impostas às inferências em redes bayesianas, é desenvolvido um método original, utilizando algoritmos genéticos, capaz de estender o poder de compreensibilidade dos padrões descobertos por essas redes, por meio de um conjunto de procedimentos de inferência em redes bayesianas para a descoberta de cenários que propiciem a obtenção de um valor meta, considerando a incorporação do conhecimento a priori do especialista, a identificação das variáveis mais influentes para obtenção desses cenários e a busca de cenários ótimos que estabeleçam valores, definidos e ponderados pelo usuário/especialista, para mais de uma variável meta. / The study of methods, techniques and tools that can aid the decision processes in power systems, in its many sections, is a subject of great interest. This decision support can be accomplished through many different techniques, particularly those based on computational intelligence, given their applicability on domains with uncertainty. In this proposal, Bayesian networks are used for the extraction of knowledge models from the available data on power systems. Moreover, given the demands of these systems and some limitations imposed to the inferences in Bayesian networks, a method is proposed, using genetic algorithms, capable of extending the power of comprehensibility of the patterns discovered; it aims at finding the optimal scenario in order to attain a given target, considering the incorporation of a priori knowledge from domain specialists, identifying the most influent variables in the domain for the maximization of the target variable.
|
59 |
Métricas de QoE/QoS de vídeo em redes sem fio para auxilio ao planejamento de ambientes indoor utilizando uma abordagem bayesianaCARVALHO, André Augusto Pacheco de 30 March 2015 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2017-01-26T12:52:53Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_MetricasQoeQos.pdf: 29372809 bytes, checksum: ff5e9fc4e17b5ea7d8b929e0eb044e1e (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-01-26T13:07:51Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_MetricasQoeQos.pdf: 29372809 bytes, checksum: ff5e9fc4e17b5ea7d8b929e0eb044e1e (MD5) / Made available in DSpace on 2017-01-26T13:07:51Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_MetricasQoeQos.pdf: 29372809 bytes, checksum: ff5e9fc4e17b5ea7d8b929e0eb044e1e (MD5)
Previous issue date: 2015-03-30 / A evolução das aplicações em redes sem fio tem crescido nos últimos anos,
devido ao aumento do número de usuários de smartphone, tablets e outros. A
disponibilidade de serviços exigentes, como a transmissão de vídeo, afeta a Qualidade
de Experiência (QoE) e Qualidade de Serviço (QoS) provida aos usuários domésticos e
comerciais, isto tem estimulado ao estudo de novas técnicas de gerência de recursos de
redes, tendo como objetivo proporcionar serviços com qualidade a um cliente cada vez
mais exigente. Essa dissertação apresenta uma metodologia de Inteligência Artificial,
utilizando uma Rede Bayesiana, com uma estratégia híbrida de avaliação analisando o
comportamento de métricas de QoE e QoS, no projeto de redes locais sem 50. Para isto
houve a necessidade da realização de campanhas de medições, para a geração de uma
base de medidas reais, e com o artificio da simulação utilizando uma Radial Base
Function (RBF), realizou-se a extensão dos dados, para que tivesse o volume de dados
ideal para inserção na Rede Bayesiana. A diversidade do local de medições escolhido,
composto de materiais como: tijolo, vidros, madeiras e concreto. Foi necessário realizar
previamente um mapeamento de todos os pontos a serem medidos, posicionando
propositalmente antes e depois de cada barreira ultrapassada pelo sinal. As Métricas
como nível de sinal Receiver Signal Strength Intensity (RSSI), Jitter, atraso fim a fim
da rede durante a transmissão do vídeo, PeakSígnal-to-NoíseRatío (PSNR) e Structural
Símz'larízj/ (SSIM) foram coletadas durante as medições realizadas. E utilizando a Rede
Bayesiana foram feitas inferências para cada métrica e foi possível encontrar resultados
satisfatórios para que a solução proposta auxilie o planejamento de redes sem fio em
ambientes indoor. Possibilitando demonstrar que até 10 metros de distância do
transmissor, o sinal tem sua melhor potência, e a métrica de atraso fim a fim tem mais
de 65% de probabilidade de esta na menor faixa de atraso e acompanhando este ótimo
desempenho o Jítter tem mais de 65% de probabilidade de esta na menor faixa. E as
métricas de QoE, PSRN e SSIM possuem um comportamento similar e tem mais de
80% de probabilidade de obter seu maior valor, e consequentemente o vídeo tem a sua
melhor qualidade de recepção. Resultados estes demonstram que não exclui a
possibilidade do uso desta proposta em outras situações. / The evolution of applications on wireless networks has grown in recent years, due to
the increased number of smartphone users, tablets and others. The availability of
demanding services such as video transmission, affects Quality Experience (QoE) and
Quality of Service (QoS) provided to domestic users and trade, this had stimulated the
study of new resource management techniques networks, aiming to provide quality
services to a customer each increasingly demanding. This thesis presents a
methodology Intelligence Artificial using a Bayesian network with a hybrid evaluation
strategy analyzing the behavior metrics QoE and QoS in the LAN network design
wireless. The diversity of the place of Measurements chosen compound materials such
as brick, glass, wood and concrete. It was necessary first to map all the points to be
measured before and after deliberately placing each barrier outdated the signal. Metrics
as level Receiver Signal Strength Intensity signal (RSSI) Jitter, delay end to end
network for the video transmission, PeakSignal-to-NoiseRatio (PSNR) and Structural
Similarity (SSIM) were collected during the Measurements. And using the Bayesian
Network inferences were made for each metric and could not find satisfactory results
for the proposed solution assist the wireless network planning in indoor environments.
Enabling demonstrate that up to 10 meters away from the transmitter, the signal has its
best power, and delay metrics in order to have more than 65% probability that the lower
delay range and following this optimum performance the Jitter has more than 65%
probability in this lower range. And the QE metrics, PSRN and SSIM have a similar
behavior and has more than 80% probability of getting your greater value, and
consequently the video has its best reception. These results show that does not preclude
the use of this proposal in other situations.
|
60 |
A hybrid multi-objective bayesian estimation of distribution algorithm / Um algoritmo de estimação de distribuição híbrido multiobjetivo com modelo probabilístico bayesianoMartins, Marcella Scoczynski Ribeiro 11 December 2017 (has links)
Atualmente, diversas metaheurísticas têm sido desenvolvidas para tratarem problemas de otimização multiobjetivo. Os Algoritmos de Estimação de Distribuição são uma classe específica de metaheurísticas que exploram o espaço de variáveis de decisão para construir modelos de distribuição de probabilidade a partir das soluções promissoras. O modelo probabilístico destes algoritmos captura estatísticas das variáveis de decisão e suas interdependências com o problema de otimização. Além do modelo probabilístico, a incorporação de métodos de busca local em Algoritmos Evolutivos Multiobjetivo pode melhorar consideravelmente os resultados. Estas duas técnicas têm sido aplicadas em conjunto na resolução de problemas de otimização multiobjetivo. Nesta tese, um algoritmo de estimação de distribuição híbrido, denominado HMOBEDA (Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm ), o qual é baseado em redes bayesianas e busca local é proposto no contexto de otimização multi e com muitos objetivos a fim de estruturar, no mesmo modelo probabilístico, as variáveis, objetivos e as configurações dos parâmetros da busca local. Diferentes versões do HMOBEDA foram testadas utilizando instâncias do problema da mochila multiobjetivo com dois a cinco e oito objetivos. O HMOBEDA também é comparado com outros cinco métodos evolucionários (incluindo uma versão modificada do NSGA-III, adaptada para otimização combinatória) nas mesmas instâncias do problema da mochila, bem como, em um conjunto de instâncias do modelo MNK-landscape para dois, três, cinco e oito objetivos. As fronteiras de Pareto aproximadas também foram avaliadas utilizando as probabilidades estimadas pelas estruturas das redes resultantes, bem como, foram analisadas as interações entre variáveis, objetivos e parâmetros de busca local a partir da representação da rede bayesiana. Os resultados mostram que a melhor versão do HMOBEDA apresenta um desempenho superior em relação às abordagens comparadas. O algoritmo não só fornece os melhores valores para os indicadores de hipervolume, capacidade e distância invertida geracional, como também apresenta um conjunto de soluções com alta diversidade próximo à fronteira de Pareto estimada. / Nowadays, a number of metaheuristics have been developed for dealing with multiobjective optimization problems. Estimation of distribution algorithms (EDAs) are a special class of metaheuristics that explore the decision variable space to construct probabilistic models from promising solutions. The probabilistic model used in EDA captures statistics of decision variables and their interdependencies with the optimization problem. Moreover, the aggregation of local search methods can notably improve the results of multi-objective evolutionary algorithms. Therefore, these hybrid approaches have been jointly applied to multi-objective problems. In this work, a Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm (HMOBEDA), which is based on a Bayesian network, is proposed to multi and many objective scenarios by modeling the joint probability of decision variables, objectives, and configuration parameters of an embedded local search (LS). We tested different versions of HMOBEDA using instances of the multi-objective knapsack problem for two to five and eight objectives. HMOBEDA is also compared with five cutting edge evolutionary algorithms (including a modified version of NSGA-III, for combinatorial optimization) applied to the same knapsack instances, as well to a set of MNK-landscape instances for two, three, five and eight objectives. An analysis of the resulting Bayesian network structures and parameters has also been carried to evaluate the approximated Pareto front from a probabilistic point of view, and also to evaluate how the interactions among variables, objectives and local search parameters are captured by the Bayesian networks. Results show that HMOBEDA outperforms the other approaches. It not only provides the best values for hypervolume, capacity and inverted generational distance indicators in most of the experiments, but it also presents a high diversity solution set close to the estimated Pareto front.
|
Page generated in 0.0884 seconds