41 |
Biodiversity Monitoring Using Machine Learning for Animal Detection and Tracking / Övervakning av biologisk mångfald med hjälp av maskininlärning för upptäckt och spårning av djurZhou, Qian January 2023 (has links)
As an important indicator of biodiversity and ecological environment in a region, the number and distribution of animals has been given more and more attention by agencies such as nature reserves, wetland parks, and animal protection supervision departments. To protect biodiversity, we need to be able to detect and track the movement of animals to understand which animals are visiting the space. This thesis uses the improved You Only Look Once Version 5 (YOLOv5) target detection algorithm and Simple online and real-time tracking with a deep association metric (DeepSORT) tracking algorithm to provide technical support for bird monitoring, identification and tracking. Specifically, the thesis tries different improvement methods based on YOLOv5 to solve the problem that small targets in images are difficult to detect. In the backbone network, different attention modules are added to enhance the network feature extraction ability; in the neck network part, the Bi-Directional Feature Pyramid Network (BiFPN) structure is used to replace the Path Aggregation Network (PAN) structure to strengthen the utilization of underlying features; in the detection head part, a high-resolution detection head is added to improve the detection ability of tiny targets. In addition, a better loss function has been used to improve the algorithm’s performance on small birds. The improved algorithms in this paper have been used in multiple comparative experiments on the VisDrone data set and a data set of bird flight images, and the results show that compared with the baseline using YOLOv5, for VisDrone data set, Spatial-to-Depth (SPD)-Convolutional stride-free (Conv) gets the highest training mean Average Precision (mAP) of all methods with an increase from 0.325 to 0.419; for the bird data set, the best result of training mAP that could be achieved is adding a P2 layer, which reaches an improvement from 0.701 to 0.724. After combining the You Only Look Once (YOLO) with DeepSORT to implement the tracking function, the improved method makes the final tracking effect better. / Som en viktig indikator på biologisk mångfald och ekologisk miljö i en region har antal och utbredning av djur uppmärksammats mer och mer av organisationer som som naturreservat, våtmarksparker och djurskyddsmyndigheter. För att skydda den biologiska mångfalden måste vi kunna upptäcka och spåra djurs rörelser för att förstå vilka djur som besöker ett område. Uppsatsen använder den förbättrade YOLOv5-måldetektionsalgoritmen och DeepSORT-spårningsalgoritmen för fågelövervakning, identifiering och spårning. Specifikt undersöks olika förbättringsmetoder baserade på YOLOv5 för att lösa problemet med att små mål i bilder är svåra att upptäcka. I den första delen av nätverket läggs olika uppmärksamhetsmoduler till; i nästa används BiFPN-strukturen för att ersätta PAN-strukturen; i detektionsdelen läggs ett högupplöst detektionshuvud till för att förbättra detekteringsförmågan för små föremål. Dessutom har en bättre förlustfunktion använts för att förbättra algoritmens prestanda för små fåglar och andra djur. De förbättrade algoritmerna har testats flera jämförande experiment på VisDronedatamängden och en datamängd av bilder av flygande fåglar. Resultaten visar att jämfört med baslinjen med YOLOv5s, för VisDrone-datamängden får SPD-Conv det högsta tränings-mAP med en ökning från 0,325 till 0,419; för fågeldatamängden nås det bästa resultatet genom att lägga till ett P2-lager, vilket ger en förbättring från 0,701 till 0,724 av mAP. Efter att ha kombinerat YOLO med DeepSORT för att implementera spårningsfunktionen, blir den slutliga spårningseffekten bättre.
|
42 |
Detection of Sparse and Weak Effects in High-Dimensional Supervised Learning Problems, Applied to Human Microbiome Data / Detektering av glesa och svaga effekter i högdimensionella övervakade inlärningsproblem, tillämpat på mikrobiomdata från människorLindahl, Fred January 2020 (has links)
This project studies the signal detection and identification problem in high-dimensional noisy data and the possibility of using it on microbiome data. An extensive simulation study was performed on generated data using as well as a microbiome dataset collected on patients with Parkinson's disease, using Donoho and Jin's Higher criticism, Jager and Wellner's phi-divergence-based goodness-of-fit-test and Stepanova and Pavlenko's CsCsHM statistic . We present some novel approaches based on established theory that perform better than existing methods and show that it is possible to use the signal identification framework to detect differentially abundant features in microbiome data. Although the novel approaches produce good results, they lack substantial mathematical foundations and should be avoided if theoretical rigour is needed. We also conclude that while we have found that it is possible to use signal identification methods to find abundant features in microbiome data, further refinement is necessary before it can be properly used in research. / Detta projekt studerar signaldetekterings- och identifieringsproblemet i högdimensionell brusig data och möjligheten att använda det på mikrobiomdata från människor. En omfattande simuleringsstudie utfördes på genererad data samt ett mikrobiomdataset som samlats in på patienter med Parkinsons sjukdom, med hjälp av ett antal goodness-of-fit-metoder: Donoho och Jins Higher criticis , Jager och Wellners phi-divergenser och Stepanova och Pavelenkos CsCsHM. Vi presenterar några nya tillvägagångssätt baserade på vedertagen teori som visar sig fungera bättre än befintliga metoder och visar att det är möjligt att använda signalidentifiering för att upptäcka olika funktioner i mikrobiomdata. Även om de nya metoderna ger goda resultat saknar de betydande matematiska grunder och bör undvikas om teoretisk formalism är nödvändigt. Vi drar också slutsatsen att medan vi har funnit att det är möjligt att använda signalidentifieringsmetoder för att hitta information i mikrobiomdata, är ytterligare experiment nödvändiga innan de kan användas på ett korrekt sätt i forskning.
|
43 |
Privacy-preserving Building Occupancy Estimation via Low-Resolution Infrared Thermal CamerasZhu, Shuai January 2021 (has links)
Building occupancy estimation has become an important topic for sustainable buildings that has attracted more attention during the pandemics. Estimating building occupancy is a considerable problem in computer vision, while computer vision has achieved breakthroughs in recent years. But, machine learning algorithms for computer vision demand large datasets that may contain users’ private information to train reliable models. As privacy issues pose a severe challenge in the field of machine learning, this work aims to develop a privacypreserved machine learningbased method for people counting using a lowresolution thermal camera with 32 × 24 pixels. The method is applicable for counting people in different scenarios, concretely, counting people in spaces smaller than the field of view (FoV) of the camera, as well as large spaces over the FoV of the camera. In the first scenario, counting people in small spaces, we directly count people within the FoV of the camera by Multiple Object Detection (MOD) techniques. Our MOD method achieves up to 56.8% mean average precision (mAP). In the second scenario, we use Multiple Object Tracking (MOT) techniques to track people entering and exiting the space. We record the number of people who entered and exited, and then calculate the number of people based on the tracking results. The MOT method reaches 47.4% multiple object tracking accuracy (MOTA), 78.2% multiple object tracking precision (MOTP), and 59.6% identification F-Score (IDF1). Apart from the method, we create a novel thermal images dataset containing 1770 thermal images with proper annotation. / Uppskattning av hur många personer som vistas i en byggnad har blivit ett viktigt ämne för hållbara byggnader och har fått mer uppmärksamhet under pandemierna. Uppskattningen av byggnaders beläggning är ett stort problem inom datorseende, samtidigt som datorseende har fått ett genombrott under de senaste åren. Algoritmer för maskininlärning för datorseende kräver dock stora datamängder som kan innehålla användarnas privata information för att träna tillförlitliga modeller. Eftersom integritetsfrågor utgör en allvarlig utmaning inom maskininlärning syftar detta arbete till att utveckla en integritetsbevarande maskininlärningsbaserad metod för personräkning med hjälp av en värmekamera med låg upplösning med 32 x 24 pixlar. Metoden kan användas för att räkna människor i olika scenarier, dvs. att räkna människor i utrymmen som är mindre än kamerans FoV och i stora utrymmen som är större än kamerans FoV. I det första scenariot, att räkna människor i små utrymmen, räknar vi direkt människor inom kamerans FoV med MOD teknik. Vår MOD-metod uppnår upp till 56,8% av den totala procentuella fördelningen. I det andra scenariot använder vi MOT-teknik för att spåra personer som går in i och ut ur rummet. Vi registrerar antalet personer som går in och ut och beräknar sedan antalet personer utifrån spårningsresultaten. MOT-metoden ger 47,4% MOTA, 78,2% MOTP och 59,6% IDF1. Förutom metoden skapar vi ett nytt dataset för värmebilder som innehåller 1770 värmebilder med korrekt annotering.
|
44 |
Modified train wheel wear calculation for fast calculation / Modifierad tåghjulsförslitning för snabb beräkningChen, Shaoyao January 2021 (has links)
In this thesis, a modified wear calculation method is developed to calculate the train wheel wear, which can give less precise but faster results compared to the classic wear calculation method. This modified method is developed based on the classic wear calculation method developed by Jendel, which uses Hertz theory and Kalker’s simplified theory to calculate the contact variables and uses Achard theory to calculate the wear volume in an iterative manner. Compared with the classic method, this modified wear calculation method does not execute the multibody simulation (MBS) at each wear step, instead, it executes MBS by different strategies, for example, does MBS only at the first wear step or does it at every several wear steps. This way, a look-up table is utilised to store the contact variables from MBS and when no MBS is executed, the variables stored in the look-up table would be used to calculate the wear.In order to make the implementation of the modified wear calculation method possible, a contact point detection program is developed in this research. Significantly, this contact point detection program considers the material flexibility and can detect multiple contact points, which makes it very precise. It uses the pressure distribution calculated by Winkler theory as a weighting function to consider the material flexibility. In terms of multiple contact points detection, the gap between wheel and rail is regarded as a function, and the derivative relationship of the function is used to detect multiple contact points. Results from the modified wear calculation method are compared with results from the classic wear calculation method. The effects of different strategies are discussed, and the analysis of the error source is carried out in this work.This modified wear calculation method could be used for predicting the wear condition of the wheel when a quick result with only moderate precision is needed. / I den här avhandlingen utvecklas en modifierad beräkningsmetod för slitage av spårfordons hjul, som ger mindre exakta men snabbare resultat jämfört med den klassiska beräkningsmetoden för hjulslitage. Den modifierade beräkningsmetoden är utvecklad baserat på den klassiska beräkningsmetoden för slitage som utvecklats av Tomas Jendel, som använder Hertz-teorin och Kalkers förenklade teori för att beräkna kontaktvariablerna och använder Achard-teorin för att beräkna volymen av materialet som har slitits bort med en iterativ metod. Jämfört med den klassiska metoden utför inte denna modifierade beräkningsmetod flerkroppssimulering (MBS) vid varje steg där normal hjulprofilen uppdateras, utan använder sig av olika strategier. Till exempel genomförs gör MBS bara vid första slitagesteget eller vid några av slitagestegen. Därför används en uppslagstabell för att lagra kontaktvariablerna från MBS och när ingen MBS exekveras, användas variablerna lagrade i uppslagstabellen för att beräkna slitage.För att möjliggöra implementeringen av den modifierade beräkningsmetoden för slitage utvecklas ett kontaktpunktdetekteringsprogram i denna examensarbete.. Det är viktigt att detekteringsprogrammet tar hänsyn till materialflexibiliteten och att det kan detektera flera kontaktpunkter, med hög precision. Programmet använder Winkler-metoden och den tryckfördelning som beräknas enligt Winkler-teorin som en viktning för att beakta materialets flexibilitet. När det gäller detektering av flera kontaktpunkter betraktas gapet mellan hjul och räls som en funktion, och derivatan av den funktionen används används för att detektera flera kontaktpunkter.Resultat från den modifierade beräkningsmetoden för slitage jämförs med resultaten från den klassiska beräkningsmetoden. Effekterna av olika strategier diskuteras och felkällor analyseras.Denna modifierade beräkningsmetod för slitage kan användas för att förutsäga hjulets slitagetillstånd när ett snabbt resultat med endast måttlig precision behövs.
|
45 |
Speaker Diarization System for Call-center dataLi, Yi January 2020 (has links)
To answer the question who spoke when, speaker diarization (SD) is a critical step for many speech applications in practice. The task of our project is building a MFCC-vector based speaker diarization system on top of a speaker verification system (SV), which is an existing Call-centers application to check the customer’s identity from a phone call. Our speaker diarization system uses 13-Dimensional MFCCs as Features, performs Voice Active Detection (VAD), segmentation, Linear Clustering and the Hierarchical Clustering based on GMM and the BIC score. By applying it, we decrease the Equal Error Rate (EER) of the SV from 18.1% in the baseline experiment to 3.26% on the general call-center conversations. To better analyze and evaluate the system, we also simulated a set of call-center data based on the public audio databases ICSI corpus. / För att svara på frågan vem som talade när är högtalardarisering (SD) ett kritiskt steg för många talapplikationer i praktiken. Uppdraget med vårt projekt är att bygga ett MFCC-vektorbaserat högtalar-diariseringssystem ovanpå ett högtalarverifieringssystem (SV), som är ett befintligt Call-center-program för att kontrollera kundens identitet från ett telefonsamtal. Vårt högtalarsystem använder 13-dimensionella MFCC: er som funktioner, utför Voice Active Detection (VAD), segmentering, linjär gruppering och hierarkisk gruppering baserat på GMM och BIC-poäng. Genom att tillämpa den minskar vi EER (Equal Error Rate) från 18,1 % i baslinjeexperimentet till 3,26 % för de allmänna samtalscentret. För att bättre analysera och utvärdera systemet simulerade vi också en uppsättning callcenter-data baserat på de offentliga ljuddatabaserna ICSI corpus.
|
46 |
Combining Trajectory with Temporal Appearance Features for Joint Detection and Tracking of Drones / Kombinering av trajektoria med utseende över tid för att upptäcka och spåra drönarePuranen Åhfeldt, Theo January 2024 (has links)
As drones are becoming ubiquitous, robust detection and tracking of potentially hostile drones is becoming a necessity. Among the many approaches being investigated in this relatively new research area, one cost effective option is the use of optical cameras equipped with computer vision algorithms. With the use of deep learning, it becomes possible to achieve high accuracy by generalizing from large datasets. However, drones are small and visually similar to birds, which has proven to be a major difficulty for purely vision based systems. This thesis investigates the utility of trajectory information (velocity and acceleration) in addition to temporal appearance features for detection and tracking of drones. While both kinds of information has been used in a variation of ways, work combining the two is largely lacking. Our approach uses background subtraction to generate candidate objects that initialize an LSTM which in turn combines trajectory and appearance information over multiple frames for joint detection and tracking of drones. While our specific implementation fails to outperform a traditional object detector in the form of YOLOv8, this could change with the solution of two problems identified with our approach. First problem being how to effectively incorporate large amounts of background data into the training of our network. Second being how to avoid repeatedly proposing the same non-drone candidates, while still being able to quickly resume tracking of a lost drone. / I takt med att drönare blir allt vanligare stiger kraven på robusta system som kan upptäcka och spåra hotfulla drönare. Bland de flertal tillvägagångssätt som undersöks i detta relativt nya forskningsområde är användandet av optiska kameror utrustade med datorseende-algoritmer ett kostnadseffektivt val. Genom användningen av djupinlärning har det blivit möjligt att uppnå hög pricksäkerhet genom att generalisera utifrån stora dataset. Men, drönare är små och utseendemässigt sett lika fåglar vilket är ett svåröverkomligt problem för system som endast förlitar sig på datorseende. I detta examensarbete undersöks vilken nytta som kan fås om man även tar hänsyn till information om drönarens trajektoria i form av hastighet och acceleration. Trots att både visuellt utseende och trajektoria är välstuderat när det kommer till drönardetektering, saknas det till stor del forskning som behandlar båda tillsammans. Vi använder bakgrundssubtraktion för att generera kandidater som startpunkt för en LSTM för att sedan kombinera trajektoria med utseende för förenad detektering och spårning av drönare. Fastän vår specifika implementation inte lyckas överträffa en traditionell objektdetekterare i form av YOLOv8, skulle detta kunna ändras givet en lösning på två identifierade problem med vårt tillvägagångssätt. Det första problemet är att hitta ett effektivt sätt att inkorporera stora mängder bakgrundsdata i träningen av vårt nätverk. Det andra är att undvika att gång på gång föreslå samma kandidater och samtidigt kunna snabbt återuppta spårningen av en förlorad drönare.
|
47 |
Vision based control and landing of Micro aerial vehicles / Visionsbaserad styrning och landning av drönareKarlsson, Christoffer January 2019 (has links)
This bachelors thesis presents a vision based control system for the quadrotor aerial vehicle,Crazy ie 2.0, developed by Bitcraze AB. The main goal of this thesis is to design andimplement an o-board control system based on visual input, in order to control the positionand orientation of the vehicle with respect to a single ducial marker. By integrating a cameraand wireless video transmitter onto the MAV platform, we are able to achieve autonomousnavigation and landing in relatively close proximity to the dedicated target location.The control system was developed in the programming language Python and all processing ofthe vision-data take place on an o-board computer. This thesis describes the methods usedfor developing and implementing the control system and a number of experiments have beencarried out in order to determine the performance of the overall vision control system. Withthe proposed method of using ducial markers for calculating the control demands for thequadrotor, we are able to achieve autonomous targeted landing within a radius of 10centimetres away from the target location. / I detta examensarbete presenteras ett visionsbaserat kontrollsystem for dronaren Crazy ie 2.0som har utvecklats av Bitcraze AB. Malet med detta arbete ar att utforma och implementeraett externt kontrollsystem baserat pa data som inhamtas av en kamera for att reglera fordonetsposition och riktning med avseende pa en markor placerad i synfaltet av kameran. Genom attintegrera kameran tillsammans med en tradlos videosandare pa plattformen, visar vi i dennaavhandling att det ar mojligt att astadkomma autonom navigering och landning i narheten avmarkoren.Kontrollsystemet utvecklades i programmeringsspraket Python och all processering avvisions-datan sker pa en extern dator. Metoderna som anvands for att utvecklakontrollsystemet och som beskrivs i denna rapport har testats under ett ertal experiment somvisar pa hur val systemet kan detektera markoren och hur val de olika ingaendekomponenterna samspelar for att kunna utfora den autonoma styrningen. Genom den metodsom presenteras i den har rapporten for att berakna styrsignalerna till dronaren med hjalp avvisuell data, visar vi att det ar mojligt att astadkomma autonom styrning och landning motmalet inom en radie av 10 centimeter.
|
48 |
Outlier detection with ensembled LSTM auto-encoders on PCA transformed financial data / Avvikelse-detektering med ensemble LSTM auto-encoders på PCA-transformerad finansiell dataStark, Love January 2021 (has links)
Financial institutions today generate a large amount of data, data that can contain interesting information to investigate to further the economic growth of said institution. There exists an interest in analyzing these points of information, especially if they are anomalous from the normal day-to-day work. However, to find these outliers is not an easy task and not possible to do manually due to the massive amounts of data being generated daily. Previous work to solve this has explored the usage of machine learning to find outliers in these financial datasets. Previous studies have shown that the pre-processing of data usually stands for a big part in information loss. This work aims to study if there is a proper balance in how the pre-processing is carried out to retain the highest amount of information while simultaneously not letting the data remain too complex for the machine learning models. The dataset used consisted of Foreign exchange transactions supplied by the host company and was pre-processed through the use of Principal Component Analysis (PCA). The main purpose of this work is to test if an ensemble of Long Short-Term Memory Recurrent Neural Networks (LSTM), configured as autoencoders, can be used to detect outliers in the data and if the ensemble is more accurate than a single LSTM autoencoder. Previous studies have shown that Ensemble autoencoders can prove more accurate than a single autoencoder, especially when SkipCells have been implemented (a configuration that skips over LSTM cells to make the model perform with more variation). A datapoint will be considered an outlier if the LSTM model has trouble properly recreating it, i.e. a pattern that is hard to classify, making it available for further investigations done manually. The results show that the ensembled LSTM model proved to be more accurate than that of a single LSTM model in regards to reconstructing the dataset, and by our definition of an outlier, more accurate in outlier detection. The results from the pre-processing experiments reveal different methods of obtaining an optimal number of components for your data. One of those is by studying retained variance and accuracy of PCA transformation compared to model performance for a certain number of components. One of the conclusions from the work is that ensembled LSTM networks can prove very powerful, but that alternatives to pre-processing should be explored such as categorical embedding instead of PCA. / Finansinstitut genererar idag en stor mängd data, data som kan innehålla intressant information värd att undersöka för att främja den ekonomiska tillväxten för nämnda institution. Det finns ett intresse för att analysera dessa informationspunkter, särskilt om de är avvikande från det normala dagliga arbetet. Att upptäcka dessa avvikelser är dock inte en lätt uppgift och ej möjligt att göra manuellt på grund av de stora mängderna data som genereras dagligen. Tidigare arbete för att lösa detta har undersökt användningen av maskininlärning för att upptäcka avvikelser i finansiell data. Tidigare studier har visat på att förbehandlingen av datan vanligtvis står för en stor del i förlust av emphinformation från datan. Detta arbete syftar till att studera om det finns en korrekt balans i hur förbehandlingen utförs för att behålla den högsta mängden information samtidigt som datan inte förblir för komplex för maskininlärnings-modellerna. Det emphdataset som användes bestod av valutatransaktioner som tillhandahölls av värdföretaget och förbehandlades genom användning av Principal Component Analysis (PCA). Huvudsyftet med detta arbete är att undersöka om en ensemble av Long Short-Term Memory Recurrent Neural Networks (LSTM), konfigurerad som autoenkodare, kan användas för att upptäcka avvikelser i data och om ensemblen är mer precis i sina predikteringar än en ensam LSTM-autoenkodare. Tidigare studier har visat att en ensembel avautoenkodare kan visa sig vara mer precisa än en singel autokodare, särskilt när SkipCells har implementerats (en konfiguration som hoppar över vissa av LSTM-cellerna för att göra modellerna mer varierade). En datapunkt kommer att betraktas som en avvikelse om LSTM-modellen har problem med att återskapa den väl, dvs ett mönster som nätverket har svårt att återskapa, vilket gör datapunkten tillgänglig för vidare undersökningar. Resultaten visar att en ensemble av LSTM-modeller predikterade mer precist än en singel LSTM-modell när det gäller att återskapa datasetet, och då enligt vår definition av avvikelser, mer precis avvikelse detektering. Resultaten från förbehandlingen visar olika metoder för att uppnå ett optimalt antal komponenter för dina data genom att studera bibehållen varians och precision för PCA-transformation jämfört med modellprestanda. En av slutsatserna från arbetet är att en ensembel av LSTM-nätverk kan visa sig vara mycket kraftfulla, men att alternativ till förbehandling bör undersökas, såsom categorical embedding istället för PCA.
|
49 |
Quantification of DNA Microballs Using Image Processing Techniques / Kvantifiering av DNA-mikrobollar med hjälp av bildbehandlingsteknikerTedros, Yosef Werede January 2023 (has links)
I detta examensarbete användes olika bildbehandlingstekniker för detektion och kvantifiering av DNA-mikrobollar, mer specifikt rolling circle amplification-produkter, på mikroskopibilder. Avsikten med detta arbete var att hjälpa Countagen AB utforska pipelines för bildbehandling för sin produkt där de analyserar utfallet av genredigeringsförsök på ett billigare och snabbare sätt än dagens konventionella sekvenseringsmetoder. Två olika metoder för objektdetektion användes i detta arbete. Big-FISH, som bygger på Laplacian of Gaussian och detektion av lokala maxima, samt LodeSTAR, en single-shot, self-supervised djupinlärningsmodell. Förbehandling av bilder var också en central del av detta projekt. DeepSpot, en djupinlärningsmodell för framhävning av punkter, användes för att framhäva mikrobollarna så att de lätt kunde upptäckas, och en top-hat-transform användes för att filtrera bort bakgrunden från bilderna. De olika metoderna utvärderades på ett dataset med manuellt annoterade bilder, en spädningsserie av prover samt prover med samma koncentration. Detta för att få värden på precision, recall och F1-score samt mäta hur robust modellen är när det gäller att detektera punkter. Den modell som presterade bäst var LodeSTAR, med en F1-score på 83% på det annoterade datasetet. / In this thesis project, different image processing techniques were utilized for the detection and quantification of DNA microballs on fluorescence microscopy images. These microballs consisted of rolling circle amplification products, of regions of interest. This was done to aid Countagen AB in exploring image processing pipelines for their product where they analyze gene editing efficiency in a cheaper and faster manner than today's conventional sequencing methods. Two different object detection methods: Big-FISH, which builds on Laplacian of Gaussian and local maxima detection, and LodeSTAR, a single-shot, self-supervised deep learning model, were evaluated for this task of detection and quantification. Image preprocessing was a central part of this project. DeepSpot, a deep learning model for spot enhancement was used to highlight the microballs, and a white top-hat transform was applied to the images for background subtraction. The different methods were evaluated on a test set of manually annotated images, a dilution series of samples, and samples with the same concentration to obtain precision, recall, and F1 scores, as well as gauge the robustness of the model in detecting spots. The best-performing model was LodeSTAR, with an F1-score of 83% on the test set.
|
50 |
Enhancing Comfort and Robustness in Hydronic Radiator Systems through Integration of Body Heat Predictions : A Study on a Novel LPV Controller / Förbättring av Komfort och Robusthet i Vattenburna Elementsystem genom Integration av Kroppsvärme beräkningarPirmohamed, Fahim January 2023 (has links)
The quest to balance occupant comfort with energy efficiency is a key challenge in the field of heating systems, particularly for hydronic radiators. This study addresses this issue by investigating the integration of body heat predictions into a gain-scheduling controller for a hydronic radiator system. Although the benefits of gain-scheduling control strategies are acknowledged in HVAC systems, this exploration into the integration of body heat predictions in hydronic radiator systems presents a novel approach. A Linear Parameter-Varying (LPV) controller was employed and its impact on comfort, energy consumption, and robustness in the face of varying parameters such as the number of occupants, inaccuracies in body heat prediction, and set-point temperature changes was examined. This proposed controller was tested in a simulated house heating system made in Simulink. Findings indicated a substantial enhancement in comfort, especially under low-load scenarios. The controller demonstrated notable robustness against disturbances, highlighting the system’s reliability. Although energy consumption did not show significant reduction, the ability to maintain comfort levels without increasing energy use is a valuable contribution to sustainable heating practices. The results of this study extend our understanding of control strategies in hydronic radiator systems, providing a promising approach towards more comfortable, robust, and energy-efficient solutions. Further research should focus on improving the accuracy of body heat prediction algorithms and incorporating renewable energy sources for increased energy efficiency. In sum, this work represents a significant step towards a more balanced and sustainable future in the operation of hydronic radiator systems. / Denna studie utforskar möjligheten att balansera komfort och energieffektivitet i vattenburna elementsystem genom att integrera kroppsvärmeberäkningar i en gain-scheduling regleralgoritm. Vi presenterar en nyanserad metod som använder en Linjär Parameterberoende (LPV) reglerare. Denna reglerare anpassar sig till varierande parametrar som antal personer i rummet, osäkerheter i kroppsvärmeberäkningar och förändringar i inställd temperatur. Den föreslagna regleraren testades i ett simulerat husvärmesystem skapat i Simulink. Resultaten indikerade en betydande förbättring i komfort, särskilt under låglastscenarier. Regleraren uppvisade också anmärkningsvärd robusthet mot störningar, vilket understrykersystemets tillförlitlighet. Även om ingen signifikant minskning i energiförbrukning observerades, är förmågan att bibehålla komfortnivåer utan att öka energianvändningen ett värdefullt bidrag till hållbara uppvärmningsmetoder. Denna studie utökar vår förståelse för reglerstrategier i vattenburna elementsystem och erbjuder en lovande väg framåt mot mer komfortabla, robusta och energieffektiva lösningar. För framtida forskning bör fokus ligga på att förbättra noggrannheten i kroppsvärmeberäkningsalgoritmer och att integrera förnybara energikällor för ökad energieffektivitet. Sammantaget representerar detta arbete ett betydande steg mot en mer balanserad och hållbar framtid i drift av vattenburna elementsystem.
|
Page generated in 0.0915 seconds