• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 7
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 25
  • 12
  • 12
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Spin-orbit coupling effects in diatomic molecules

Cooper, D. L. January 1981 (has links)
Spin-orbit coupling and the related effects of A-doubling and spin-splitting have been well known to spectroscopists for some considerable time. The importance of these phenomena stems from the advent of radioastronomy and the study of the interstellar medium. Identification of the molecules, and the molecular transitions, in the interstellar dust clouds is necessary for an understanding of the cooling process by which these clouds can contract to form new stars.
22

Coherent control over strong-field dissociation of heteronuclear diatomic molecules

Rigsbee, Brandon January 1900 (has links)
Master of Science / Department of Physics / Brett D. Esry / In the last 20 years, advancements in laser technology have allowed for the production of intense laser pulses with durations in the femtosecond (10⁻¹⁵ second) regime, giving scientists the ability to probe nuclear dynamics on their natural time scale. Study of the dissociated fragments created by these intense fields can be used to learn about the molecular structure and dynamics. The work presented in this thesis focuses on controlling this light–molecule interaction in such a way that we can preferentially dissociate the molecule to a desired final product. The hydrogen molecular ion, HD⁺, as well as LiF serve as simple systems that can be studied theoretically for a broad range of laser parameters. Our goal in using these relatively simple systems is to capture the essential physics of the light–molecule interaction and develop general methods to describe these interactions in more complex systems.
23

Photoassociation experiments on ultracold and quantum gases in optical lattices

Ryu, Changhyun 28 August 2008 (has links)
Not available / text
24

Photoassociation experiments on ultracold and quantum gases in optical lattices

Ryu, Changhyun, Heinzen, Daniel J., January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: Daniel J. Heinzen. Vita. Includes bibliographical references. Also available from UMI.
25

Pressure broadening and pressure shift of diatomic iodine at 675 nm

Wolf, Erich N. 06 1900 (has links)
xvi, 280 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Doppler-limited, steady-state, linear absorption spectra of 127 I 2 (diatomic iodine) near 675 nm were recorded with an internally-referenced wavelength modulation spectrometer, built around a free-running diode laser using phase-sensitive detection, and capable of exceeding the signal-to-noise limit imposed by the 12-bit data acquisition system. Observed I 2 lines were accounted for by published spectroscopic constants. Pressure broadening and pressure shift coefficients were determined respectively from the line-widths and line-center shifts as a function of buffer gas pressure, which were determined from nonlinear regression analysis of observed line shapes against a Gaussian-Lorentzian convolution line shape model. This model included a linear superposition of the I 2 hyperfine structure based on changes in the nuclear electric quadrupole coupling constant. Room temperature (292 K) values of these coefficients were determined for six unblended I 2 lines in the region 14,817.95 to 14,819.45 cm -1 for each of the following buffer gases: the atoms He, Ne, Ar, Kr, and Xe; and the molecules H 2 , D 2 , N 2 , CO 2 , N 2 O, air, and H 2 O. These coefficients were also determined at one additional temperature (388 K) for He and CO 2 , and at two additional temperatures (348 and 388 K) for Ar. Elastic collision cross-sections were determined for all pressure broadening coefficients in this region. Room temperature values of these coefficients were also determined for several low- J I 2 lines in the region 14,946.17 to 14,850.29 cm -1 for Ar. A line shape model, obtained from a first-order perturbation solution of the time-dependent Schrödinger equation for randomly occurring interactions between a two-level system and a buffer gas treated as step-function potentials, reveals a relationship between the ratio of pressure broadening to pressure shift coefficients and a change in the wave function phase-factor, interpreted as reflecting the "cause and effect" of state-changing events in the microscopic domain. Collision cross-sections determined from this model are interpreted as reflecting the inelastic nature of collision-induced state-changing events. A steady-state kinetic model for the two-level system compatible with the Beer-Lambert law reveals thermodynamic constraints on the ensemble-average state-changing rates and collision cross-sections, and leads to the proposal of a relationship between observed asymmetric line shapes and irreversibility in the microscopic domain. / Committee in charge: David Herrick, Chairperson, Chemistry; John Hardwick, Advisor, Chemistry; Jeffrey Cina, Member, Chemistry; David Tyler, Member, Chemistry; Michael Raymer, Outside Member, Physics
26

Studies of Singly and Multiply Charged Secondary Ion Emission And The Effects Of Oxygen On Ionization And Sputter Erosion

January 2012 (has links)
abstract: Mass spectrometric analysis requires that atoms from the sample be ionized in the gas phase. Secondary ion mass spectrometry achieves this by sputtering samples with an energetic primary ion beam. Several investigations of the sputtering and ionization process have been conducted. Oxygen is commonly used in secondary ion mass spectrometry (SIMS) to increase ion yields, but also can complicate the interpretation of SIMS analyses. An 18O implant in silicon has been used to quantify the oxygen concentration at the surface of sputtered silicon in order to study the dependence on oxygen of several sputtering and depth profile phenomena. The ion yield dependence of trace elements in silicon on the surface oxygen concentration is a function of the ionization potential of the element. The ion yield is high and unaffected by oxygen for elements with low ionization potential and ranges over several orders of magnitude for elements with high ionization potential. Depth resolution in sputter profiles has been shown to be degraded by the presence of oxygen, the mechanism of this effect has been investigated using an 18O implant to quantify oxygen levels and it is shown that the process does not appear to be a consequence of surface oxide formation. Molecular ions are a source of mass interference in SIMS analysis, and multiply charged atomic ion signals might be interference-free due to the possible instability of multiply-charged molecular ions. Sputtered SiH2+, AlH2+, BeH2+, Mo22+ and Mg22+ ions have been observed and appear surprisingly stable. The formation mechanism of some of these species has been explored. / Dissertation/Thesis / Ph.D. Chemistry 2012
27

Desenvolvimento teorico e computacional do modelo de matriz densidade aplicado ao metodo da coordenada geradora em calculos "ab initio" relativisticos / Theoretical and computational development of the relation between the generator coordinate method and density matrix theory applied to relativistic "ab initio" calculations

Gomes, Andre Severo Pereira 25 February 2005 (has links)
Orientador: Rogerio Custodio / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-04T13:27:31Z (GMT). No. of bitstreams: 1 Gomes_AndreSeveroPereira_D.pdf: 6795963 bytes, checksum: 0bb142805378a7e0eb2bddfd8984c643 (MD5) Previous issue date: 2005 / Doutorado / Físico-Química / Doutor em Quimica
28

The Pure Rotational Spectra of Diatomics and Halogen-Addition Benzene Measured by Microwave and Radio Frequency Spectrometers

Etchison, Kerry C. 08 1900 (has links)
Two aluminum spherical mirrors with radii of 203.2 mm and radii of curvature also of 203.2 mm have been used to construct a tunable Fabry-Perót type resonator operational at frequencies as low as 500 MHz. The resonator has been incorporated into a pulsed nozzle, Fourier transform, Balle-Flygare spectrometer. The spectrometer is of use in recording low J transitions of large asymmetric molecules where the spectra are often greatly simplified compared to higher frequency regions. The resonators use is illustrated by recording the rotational spectra of bromobenzene and iodobenzene. In related experiments, using similar equipment, the pure rotational spectra of four isotopomers of SrS and all three naturally occurring isotopomers of the actinide-containing compound thorium monoxide have been recorded between 6 and 26 GHz. The data have been thoroughly analyzed to produce information pertaining to bond lengths and electronic structures.
29

Numerical simulation of the dynamics of a trapped molecular ion

Hashemloo, Avazeh January 2016 (has links)
This thesis explores the dynamics of a heteronuclear diatomic molecular ion, possessing a permanent electric dipole moment, µ, which is trapped in a linear Paul trap and can interact with an off-resonance laser field. To build our model we use the rigid-rotor approximation, where the dynamics of the molecular ion are limited to its translational and rotational motions of the center-of-mass. These dynamics are investigated by carrying out suitable numerical calculations. To introduce our numerical methods, we divide our research topic into two different subjects. First, we ignore the rotational dynamics of the ion by assuming µ = 0. By this assumption, the system resembles an atomic ion, which mainly exhibits translational motion for its center of the mass when exposed to an external trapping field. To study this translational behavior, we implement full-quantum numerical simulations, in which a wave function is attributed to the ion. Finally, we study the quantum dynamics of the mentioned wave packet and we compare our results with those obtained classically. In the latter case, we keep the permanent dipole moment of the ion and we study the probable effects of the interaction between the dipole moment and the trapping electric field, on both the translational and the rotational dynamics of the trapped molecular ion. In order to study these dynamics, we implement both classical and semi-classical numerical simulations. In the classical method, the rotational and the translational motions of the center of mass of the ion are obtained via classical equations of motion. On the other hand, in the semi-classical method, while the translational motion of the center-of-mass is still obtained classically, the rotation is treated full-quantum mechanically by considering the rotational wave function of the ion. In the semi-classical approach, we mainly study the probable couplings between the rotational states of the molecular ion, due to the interaction of the permanent dipole moment with the trapping electric field. In the end, we also present a semi-classical model, where the trapped molecular ion interacts with an off-resonance laser field.
30

Stark Spectroscopy, Lifetimes and Coherence Effects in Diatomic Molecular Systems

Hansson, Annie January 2005 (has links)
<p>In this dissertation is exemplified how different laser based methods are applied in high-resolution spectroscopic studies of internal properties of diatomic molecules.</p><p>A molecular beam apparatus assembly is described, where a laser ablation source is combined with a time-of-flight mass spectrometer. Compounds investigated with this equipment are hafnium sulfide and hafnium oxide. The molecules are excited and ionized applying the resonant two-photon ionization (R2PI) scheme, which is a sensitive absorption and detection technique for probing the population of an excited state.</p><p>By means of the DC Stark effect, permanent electric dipole moments of HfS in the <i>D</i> <sup>1</sup>Π state and HfO in the <i>b</i> <sup>3</sup>Π<sub>1</sub> state are determined while the molecules are exposed to a static electric field. Under field-free conditions low temperature rotationally resolved spectra are recorded, generating line positions from which molecular parameters are derived.</p><p>The R2PI method, modified with an adjustable delay time, is also used in lifetime measurements of individual rotational levels of the HfS <i>D</i><sup> 1</sup>Π and HfO<i> b</i> <sup>3</sup>Π<sub>1</sub> states. Oscillator strengths for transitions from the ground state are calculated, and in this connection basic concepts like Einstein coefficients, line strengths and Hönl-London factors, are surveyed. Theoretical calculation of lifetimes is discussed in view of the fact that a commonly available computer program (LEVEL 7.5 by Le Roy) gives erroneous output.</p><p>Some coherence and quantum interference related phenomena, such as electromagnetically induced transparency (EIT) and Autler-Townes (AT) splitting, are presented in the latter part of this thesis. Fundamental concepts and relations are introduced and explained. The driven three-level cascade system is elucidated, including some of its experimental applications to alkali metal dimers, Na<sub>2</sub> and Li<sub>2</sub>.</p><p>A triple resonance spectroscopy experiment is described in terms of a three-laser, four-level inverted-Y excitation scheme, implemented in Na<sub>2</sub>. The accompanying density matrix formalism, providing the basis for theoretical simulations, is accounted for. From analysis of the results an absolute value of the electric dipole moment matrix element (transition moment) is extracted, using the AC Stark effect.</p><p>Some recently reported unexpected experimental results and unforeseen features, occurring in Doppler broadened samples and related to the open character of molecular systems, are briefly commented.</p>

Page generated in 0.0807 seconds