Spelling suggestions: "subject:"diatom""
31 |
Stark Spectroscopy, Lifetimes and Coherence Effects in Diatomic Molecular SystemsHansson, Annie January 2005 (has links)
In this dissertation is exemplified how different laser based methods are applied in high-resolution spectroscopic studies of internal properties of diatomic molecules. A molecular beam apparatus assembly is described, where a laser ablation source is combined with a time-of-flight mass spectrometer. Compounds investigated with this equipment are hafnium sulfide and hafnium oxide. The molecules are excited and ionized applying the resonant two-photon ionization (R2PI) scheme, which is a sensitive absorption and detection technique for probing the population of an excited state. By means of the DC Stark effect, permanent electric dipole moments of HfS in the D 1Π state and HfO in the b 3Π1 state are determined while the molecules are exposed to a static electric field. Under field-free conditions low temperature rotationally resolved spectra are recorded, generating line positions from which molecular parameters are derived. The R2PI method, modified with an adjustable delay time, is also used in lifetime measurements of individual rotational levels of the HfS D 1Π and HfO b 3Π1 states. Oscillator strengths for transitions from the ground state are calculated, and in this connection basic concepts like Einstein coefficients, line strengths and Hönl-London factors, are surveyed. Theoretical calculation of lifetimes is discussed in view of the fact that a commonly available computer program (LEVEL 7.5 by Le Roy) gives erroneous output. Some coherence and quantum interference related phenomena, such as electromagnetically induced transparency (EIT) and Autler-Townes (AT) splitting, are presented in the latter part of this thesis. Fundamental concepts and relations are introduced and explained. The driven three-level cascade system is elucidated, including some of its experimental applications to alkali metal dimers, Na2 and Li2. A triple resonance spectroscopy experiment is described in terms of a three-laser, four-level inverted-Y excitation scheme, implemented in Na2. The accompanying density matrix formalism, providing the basis for theoretical simulations, is accounted for. From analysis of the results an absolute value of the electric dipole moment matrix element (transition moment) is extracted, using the AC Stark effect. Some recently reported unexpected experimental results and unforeseen features, occurring in Doppler broadened samples and related to the open character of molecular systems, are briefly commented.
|
32 |
COLLISIONAL AND RADIATIVE RELAXATION IN SODIUM DIMER AND ARGON ATOM COLLISIONSHorton, Timothy Scott 02 December 2016 (has links)
No description available.
|
33 |
Fourier Transform Spectroscopy of Selected Transient SpeciesLi, Gang January 2003 (has links)
The procedures and results of experimental and/or theoretical studies of four transient molecules, GeO, WO, BeH, and MgH are reported in the thesis. Two of them, GeO and WO, are diatomic molecules composed of relatively heavy atoms, and the other two are diatomic molecules with hydrogen as one of their component atoms.
The GeO species was generated using a high temperature furnace. The rovibrational spectrum of five isotopomers were detected in emission using a Bruker IFS 120 HR Fourier transform spectrometer. Combined-isotopomer Dunham-type molecular constants have been derived for GeO using the DSParFit computer program. Analysis shows that the Born-Oppenheimer approximation is valid, as expected, for a molecule containing heavy atoms.
The WO molecule was generated using a microwave discharge cell, and the spectra of electronic transitions of various systems were detected in emission using both the Bruker IFS 120 HR Fourier transform spectrometer at Waterloo and the McMath Pierce One-Meter Fourier transform spectrometer at the National Solar Observatory in Arizona. The ground electronic state has been confirmed to be X??Σ<sup>-</sup> based on the analysis of seven 0-0 bands.
BeH and MgH are typical molecules with hydrogen as one of their component atoms, and the effects of Born-Oppenheimer breakdown were expected. Both of these molecules have rotational perturbations in their excited electronic states. A 'new' method of data processing was used, i. e. , treating the electronic data as if they were from fluorescence series. Thus the harmful influence of the perturbed upper electronic states on the ground electronic state molecular constants is eliminated. By using the DSParFit computer program, accurate sets of combined-isotopomer Dunham-type molecular constants have been derived for the ground electronic states of the two molecules, and Born-Oppenheimer breakdown correction terms have been obtained.
|
34 |
Étude théorique de la structure électronique de AlBr, AlI, LuF et LuCl par les méthodes ab-initio / Theoretical study of electronic structure of AlBr, AlI, LuF and LuCl by ab-initio methodsHamade, Yaman 13 October 2009 (has links)
Notre travail de recherche concerne l’étude théorique de la structure électronique des molécules diatomiques telles que les mono-halogénures d’Aluminium AlX(X=Br,I) et les mono-halogénures de Lutécium LuX(X=F,Cl). Les méthodes ab-initio sont utilisées pour réaliser notre étude. Il s’agit des méthodes Hartree-Fock SCF, CASSCF (Complete Active-Space Self-Consistent Field) et les méthodes d’interaction de configuration multi-référence MRCI avec et sans la correction de Davidson. Ces calculs sont effectués à l’aide du progiciel en chimie quantique MOLPRO, en bénéficiant de l’usage de l’interface graphique GABEDIT. Nos résultats ont regroupé les courbes d’énergie potentielle CEPs, les constantes spectroscopiques, y compris la fréquence harmonique ωe (cm-1), la distance internucléaire à l’équilibre Re (Å) et la valeur énergétique Te(cm-1) pour un ensemble des états électroniques singulets et triplets de représentation 2s+1Λ(+/-) (L’effet de spin-orbite est négligeable) pour ces quatre molécules. Par comparaison entre nos résultats obtenus et ceux apportés de la littérature, on a trouvé un bon accord avec un faible pourcentage d’erreur ne dépassent pas le 3% par rapport à la valeur expérimentale considérée comme valeur exacte / Our research concerns the theoretical study of the electronic structure of diatomic molecules such as Aluminum mono-halides AlX (X = Br,I) and Lutetium mono-halides LuX (X = F, Cl). The ab-initio methods are used for our study. These methods SCF, CASSCF (Complete Active-Space Self-Consistent Field) and interaction of configuration multi-reference MRCI with and without Davidson correction. These calculations are performed using the quantum chemistry software package MOLPRO, benefiting from the use of graphic interface GABEDIT. Our findings have consolidated the potential energy curves PECs, spectroscopic constants, including harmonic frequency ωe(cm-1), the internuclear distance at equilibrium Re(Å) and energy Te(cm-1) for a set of singlet and triplet electronic states in the representation 2s +1 Λ (+/-) (neglecting spin-orbit effects) for these four molecules. By comparison between our results and those contributed to the literature, we found a good agreement with a low percentage of error does not exceed 3% from the experimental value was considered as exact
|
35 |
Dissociation dynamics of diatomic molecules in intense fieldsMagrakvelidze, Maia January 1900 (has links)
Doctor of Philosophy / Department of Physics / Uwe Thumm / We study the dynamics of diatomic molecules (dimers) in intense IR and XUV laser fields theoretically and compare the results with measured data in collaboration with different experimental groups worldwide. The first three chapters of the thesis cover the introduction and the background on solving time-independent and time-dependent Schrödinger equation. The numerical results in this thesis are presented in four chapters, three of which are focused on diatomic molecules in IR fields. The last one concentrates on diatomic molecules in XUV pulses.
The study of nuclear dynamics of H[subscript]2 or D[subscript]2 molecules in IR pulses is given in Chapter 4. First, we investigate the optimal laser parameters for observing field-induced bond softening and bond hardening in D[subscript]2[superscript]+. Next, the nuclear dynamics of H[subscript]2[superscript]+ molecular ions in intense laser fields are investigated by analyzing their fragment kinetic-energy release (KER) spectra as a function of the pump-probe delay τ. Lastly, the electron localization is studied for long circularly polarized laser pulses.
Chapter 5 covers the dissociation dynamics of O[subscript]2[superscript]+ in an IR laser field. The fragment KER spectra are analyzed as a function of the pump-probe delay τ. Within the Born-Oppenheimer approximation, we calculate ab-initio adiabatic potential-energy curves and their electric dipole couplings, using the quantum chemistry code GAMESS.
In Chapter 6, the dissociation dynamics of the noble gas dimer ions He[subscript]2[superscript]+, Ne[subscript]2[superscript]+, Ar[subscript]2[superscript]+, Kr[subscript]2[superscript]+, and Xe[subscript]2[superscript]+ is investigated in ultrashort pump and probe laser pulses of different wavelengths. We observe a striking ‘‘delay gap’’ in the pump-probe-delay-dependent KER spectrum only if the probe-pulse wavelength exceeds the pump-pulse wavelength. Comparing pump-probe-pulse-delay dependent KER spectra for different noble gas dimer cations, we quantitatively discuss quantum-mechanical versus classical aspects of the nuclear vibrational motion as a function of the nuclear mass.
Chapter 7 focuses on diatomic molecules in XUV laser pulses. We trace the femtosecond nuclear-wave-packet dynamics in ionic states of oxygen and nitrogen diatomic molecules by comparing measured kinetic-energy-release spectra with classical and quantum-mechanical simulations. Experiments were done at the free-electron laser in Hamburg (FLASH) using 38-eV XUV-pump–XUV-probe.
The summary and outlook of the work is discussed in Chapter 8.
|
36 |
Transport in Oxides Studied by Gas Phase AnalysisDong, Qian January 2007 (has links)
The transport in oxides is studied by the use of gas phase analysis (GPA). An experimental method to identify transported species of gases and their contribution to the overall transport of gases in oxides and an experimental method to evaluate the parameters diffusivity, concentration, permeability of gases in oxides and effective pore size in oxides are developed, respectively. Pt has two effects on the thermal oxidation of metals. One is to enhance the oxidation of metals which takes place at the oxide-metal interface by promoting a high concentration gradient of dissociated oxygen across the oxide layer. The other effect is to suppress the oxidation of metals by decreasing the contact area between metal and oxygen. The overall effect of Pt on the oxidation of metals depends on the mechanism of oxide growth in the absence of Pt. It is suggested that an appropriate amount of Pt coating induces a balanced oxide growth resulting from stoichimetrical inward oxygen flux to outward metal flux, which leads to a reduced oxidation rate. The diffusion of diatomic gases in oxides such as vitreous silica and yttria stabilized zirconia (YSZ) takes place in both molecular and dissociated (atomic or/and ionic) form. The fraction of transport of molecular species decreases with temperatures, and the fraction of transport of dissociated species increases with temperatures. Measured permeabilities of diatomic gases in vitreous silica are higher than the expected permeabilities of their molecules, which are explained by diffusion of molecules combined with a retardation of dissociated species in reversible traps. The diffusion of hydrogen in vitreous silica is concentration dependent and increases with local concentration. Transport paths are shared among transported species and gases at all temperatures in YSZ. Helium shares transport path with molecular oxygen and nitrogen at low temperatures; whereas helium shares transport path with dissociated oxygen and also dissociated nitrogen at high temperatures. / QC 20100705
|
37 |
Fourier Transform Spectroscopy of Selected Transient SpeciesLi, Gang January 2003 (has links)
The procedures and results of experimental and/or theoretical studies of four transient molecules, GeO, WO, BeH, and MgH are reported in the thesis. Two of them, GeO and WO, are diatomic molecules composed of relatively heavy atoms, and the other two are diatomic molecules with hydrogen as one of their component atoms.
The GeO species was generated using a high temperature furnace. The rovibrational spectrum of five isotopomers were detected in emission using a Bruker IFS 120 HR Fourier transform spectrometer. Combined-isotopomer Dunham-type molecular constants have been derived for GeO using the DSParFit computer program. Analysis shows that the Born-Oppenheimer approximation is valid, as expected, for a molecule containing heavy atoms.
The WO molecule was generated using a microwave discharge cell, and the spectra of electronic transitions of various systems were detected in emission using both the Bruker IFS 120 HR Fourier transform spectrometer at Waterloo and the McMath Pierce One-Meter Fourier transform spectrometer at the National Solar Observatory in Arizona. The ground electronic state has been confirmed to be X³Σ<sup>-</sup> based on the analysis of seven 0-0 bands.
BeH and MgH are typical molecules with hydrogen as one of their component atoms, and the effects of Born-Oppenheimer breakdown were expected. Both of these molecules have rotational perturbations in their excited electronic states. A 'new' method of data processing was used, i. e. , treating the electronic data as if they were from fluorescence series. Thus the harmful influence of the perturbed upper electronic states on the ground electronic state molecular constants is eliminated. By using the DSParFit computer program, accurate sets of combined-isotopomer Dunham-type molecular constants have been derived for the ground electronic states of the two molecules, and Born-Oppenheimer breakdown correction terms have been obtained.
|
38 |
Study of Non-Equilibrium Flow Behind Normal ShockMalik, Bijoy Kumar January 2014 (has links)
Normal shock problems in high enthalpy flows are of special interests to aerodynamicists and fluid dynamicists. When the shock Mach number become hypersonic and increasing further, the gas passing through the shock is compressed resulting in increase in temperature and pressure.
As the Mach number increases the internal degrees of freedom of the diatomic molecules are activated to an increasing extent when it crosses the shock resulting dissociation especially for high enthalpy flows. Hence dissociation of diatomic molecules must be taken into account in the determination of some of the aerodynamic parameters. This thermal and chemical process can
be divided into three types such as nearly frozen, non-equilibrium and nearly non-equilibrium depending on the rates of reaction and excitation. For typical re-entry conditions of spacecrafts
into a planets atmosphere, dissociation reactions of the molecules is dominant in the stagnation
flow. Further in the stagnation region of the flow field one of the most important parameter that characterizes the flow field is the shock stand-off distance. This parameter is often employed for validation purposes of numerical methods as well as for non-reactive and reactive gases. For
high Mach number flows the shock is very close to the body hence experimental determination of shock stand-off distance is very difficult and there would be relatively large errors. Therefore the theoretical determination of this parameter is of great significance in the discussion of this
physical phenomenon. There are some works which presents how the dissociation behind shock affects the shock stand-off distance. Thus the dissociation behind the shock is a very important process which has great impact in aerodynamic flight and design. In this present work we studied how dissociation of diatoms occur behind a normal shock.
Treanor and Marrone (1962) proposed CVD(coupled vibration-dissociation) model for diatoms by assuming diatom as a harmonic oscillator with a cut-off level. But actually diatoms are not harmonic oscillator, because spectroscopic data of energy level spacing is not like harmonic oscillator. For this reason, Treanor, Rich, and Rehm(1968) used anharmonic oscillator model for diatoms to study vibrational relaxation. Taking the anharmonicity of diatom, Philip
Morse(1929) gave a formula for potential energy levels for diatoms, which is known to express the experimental values quite accurately. Unlike the energy levels of the harmonic oscillator potential, which are evenly spaced , the Morse potential level spacing decreases as the energy approaches the dissociation energy and then it is continuous. So it is quite accurate to take
Morse oscillator theory for diatomic dissociation instead of harmonic oscillator with a cut-off level.
We have used Morse oscillator theory to derive a dissociation-recombination reaction rate equation for diatom. To derive the rate equation we have used the transition probability between different vibrational energy levels . The rate equation is numerically solved to get the different
flow variables behind the shock. The result of the present work has been compared with some of the previous work. Some of the flow variables are well matching with the previous work and some has discrepancy near the shock but well matching after few distance from the shock.
We have also studied under what conditions the post shock flow shows self-similar behavior in its scaling relations. It is shown that as far as there is no dissociation, we could expect to
obtain self-similar solutions. However, when there is dissociation, the non-equillibrium nature of the phenomenon disrupts the self-similar nature of the flow.
|
39 |
The Nature of the Binding in Hydride MoleculesKeaveny, Ian Terence 10 1900 (has links)
<p> In Part I the one-electron charge distribution in the water molecule is obtained by demanding that this distribution balance the nuclear forces of repulsion and reproduce the observed dipole moment. Parameters contained in the molecular orbital description are then related to such concepts as hybridisation and bond polarities. </p> <p> In Part II the electronic forces of attraction and the one-electron charge distribution, calculated from near Hartree-Fock wave functions, are used to interpret the binding in the first-row diatomic hydrides. </p> / Thesis / Doctor of Philosophy (PhD)
|
40 |
Étude théorique des molécules diatomiques BN, SiN et LaH, structure électronique et spectroscopie / Theoretical study of diatomic molecules BN, SiN and LaH, electronic structure and spectroscopyMahmoud, Salman 05 December 2014 (has links)
Une étude théorique ab initio des structures électroniques des molécules Diatomiques polaires BN, SiN et LaH dans la représentation 2s+1Λ(+/-)Ont été effectués par la méthode du champ auto-cohérent de l'espace Actif complet (CASSCF), suivie par l'interaction de la configuration multiréférence (MRSDCI). La correction de Davidson, notée (MRSDCI+ Q), a ensuite été appliquée pour rendre compte de clusters ou agrégats quadruples non liés. L'ensemble de l'espace de configuration de CASSCF a été utilisé comme référence dans le calcul MRCI, qui a été effectués en utilisant le programme de calcul de chimie physique MOLPRO et en tirant parti de l'interface graphique Gabedit. Quarante-deux de plus bas états électroniques dans la représentation 2s+1Λ(+/-)au-dessous de 95000 cm-1 ont été étudiés de la molécule BN. Alors que vingt-huit états électroniques dans les représentations 2s+1Λ(+/-) jusqu'à 70000 cm-1 de la molécule de SiN ont été étudiés. D'autre part, les vingt-quatre bas états électroniques de LaH dans les représentations 2s+1Λ(+/-) au-dessous de 70000 cm-1 ont été étudiées par deux méthodes différentes et en prenant en considération l'effet des spin-orbite de la molécule LaH et nous avons observé la division énergétique des huit états électroniques. Les courbes d'énergie potentielle ont été construites avec la fréquence co-harmonique ωe, la distance internucléaire de l'équilibre re, les constantes de rotation Be. L'énergie électronique par rapport à l'état fondamentale Te a été calculé pour les états électroniques considérés comme des BN, SiN et la molécule LaH respectivement. En utilisant l'approche des fonctions canoniques, les valeurs propres Ev, les constantes rotationnelles Bv, la constante de distorsion centrifuge Dv et les abscisses des points de retournement Rmin and Rmax ont été calculés pour les états électroniques au niveau de vibration v=51 pour LaH molécule. Dix-huit et neuf états électroniques ont été étudiées pour la molécule BN et SiN respectivement. Pour LaH, vingt-trois états électroniques de la molécule LaH et l'effet de spin-orbite de molécule LaH sont donnés ici pour la première fois. La comparaison avec les données expérimentales et théoriques pour la plupart des constantes calculées démontre une très bonne précision. Enfin, ces résultats devraient ainsi mener à des études expérimentales plus poussées pour ces molécules. Nos résultats ont été publiés dans le Canadian Journal of Chemistry, Journal of Quantitative Spectroscopy and Radiative Transfer, nous avons deux autres articles en préparation à soumettre. / In the present work a theoretical investigation of the lowest molecular states of BN, SiN and LaH molecule, in the representation 2s+1Λ(+/-), has been performed via complete active space self-consistent field method (CASSCF) followed by multireference single and double configuration interaction method (MRSDCI). The Davidson correction noted as (MRSDCI+Q) was then invoked in order to account for unlinked quadruple clusters. The entire CASSCF configuration space was used as a reference in the MRCI calculation which has been performed via the computational chemistry program MOLPRO and by taking advantage of the graphical user interface Gabedit. Forty-two singlet, triplet, and quintet lowest electronic states in the 2s+1Λ(+/-) representation below 95000 cm-1 have been investigated of the molecule BN. While twenty-eight electronic states in the representation2s+1Λ(+/-)up to 70000 cm-1 of the SiN molecule have been investigated.On the other hand the Twenty four low-lying electronic states of LaH in the representation 2s+1Λ(+/-) below 35000 cm-1 have been studied by two different methods and by taking into consideration the spin orbit effect of the molecule LaH we give in the energy splitting of the eight electronic states. The potential energy curves (PECs) together with the harmonic frequency ωe, the equilibrium internuclear distance re, the rotational constants Be and the electronic energy with respect to the ground state Te have been calculated for the considered electronic states of BN, SiN and LaH molecule respectively. Using the canonical functions approach, the eigenvalues Ev, the rotational constants Bv ,the centrifugal distortion constants Dv and the abscissas of the turning points Rmin and Rmax have been calculated for electronic states up to the vibrational level v =51 for LaH molecule.Eighteen and Nine electronic states have been investigated here for the first time for the molecules of BN and SiN respectively, while for LaH, news results are performed for twenty three electronic states of LaH molecule and the spin-orbit effect of LaH molecule is given here for the first time. A comparison with experimental and theoretical data for most of the calculated constants demonstrated a very good accuracy. Finally, we expect that the results of our work should invoke further experimental investigations for these molecules. Our results have been published in Canadian journal of chemistry, Journal of Quantitative Spectroscopy and Radiative Transfer and we have two other papers in preparation to submit.
|
Page generated in 0.0504 seconds