• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 13
  • 4
  • 1
  • 1
  • Tagged with
  • 33
  • 13
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Comportamento genérico de difeomorfismos do círculo / Generic behavior of circle diffeomorphisms

Leandro Antunes 23 February 2012 (has links)
Nós estudaremos o comportamento de difeomorfismos do círculo, tanto do ponto de vista combinatório quanto do ponto de vista topológico e da teoria da medida, seguindo os trabalhos de Michael Herman. A cada homeomorfismo do círculo podemos associar um número real positivo, denominado número de rotação. Mostraremos que existe um conjunto de números irracionais de medida de Lebesgue total na reta tal que, se f é um difeomorfismo do círculo de classe \'C POT. r \' que preserva a orientação, com r maior ou igual a 3 e com número de rotação nesse conjunto, então f é pelo menos \'C POT. r - 2\' -conjugada a uma translação irracional. Além disso, mostraremos que dado um caminho \'f IND. t\' de classe \'C POT. 1\' definido em um intervalo [a;b] no conjunto dos difeomorfismos do círculo de classe \'C POT. r\' que preservam a orientação, com r maior ou igual a 3, o conjunto dos parâmetros em que \'f IND. t\' é \'C POT. r - 2\' -conjugada a uma translação irracional tem medida de Lebesgue positiva, desde que os números de rotação em \'f IND. a\' e \'f IND. b\' sejam distintos / We will study the generic behavior of circle diffeomorphisms, in the combinatorial, topological and measure-theoretical sense, following the work of Michael Herman. To each order preserving homeomorphism of the circle we can associate a positive real number, called rotation number, which is invariant under conjugacy. We will show that there is a set of irrational numbers with full Lebesgue measure on R such that, if f is a circle diffeomorphism of class \'C POT. r\', with r greater or equal 3 and with rotation number in that set, then f is at least \'C POT. r - 2\' -conjugated to an irrational translation. Moreover, we will show that if ft is a \'C POT. 1\' -path defined on a interval [a;b] over the set of the circle diffeomorphisms orientation preserving, with r \'> or =\' 3, then the set of parameters where \'f IND. t\' is \'C POT. r - 2\' -conjugated to a irrational translation has positive Lebesgue measure, since the rotation numbers of \'f IND. a\' and \'f IND. b\' are distinct
22

A teoria do índice de Conley discreta para conjuntos básicos zero-dimensionais / Discrete Conley's index theory for zero-dimensional basic sets

Villapouca, Mariana Gesualdi, 1984- 06 July 2013 (has links)
Orientador: Ketty Abaroa de Rezende / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T01:07:46Z (GMT). No. of bitstreams: 1 Villapouca_MarianaGesualdi_D.pdf: 1687322 bytes, checksum: 9557d400e3eadbf12a6a305e0219b2cb (MD5) Previous issue date: 2013 / Resumo: Este trabalho tem como foco o estudo do índice de Conley discreto e do par de matrizes de conexão para difeomorfismos fitted Smale em variedades compactas. Foi estabelecido um teorema que apresenta o cálculo do índice de Conley de conjuntos básicos zero - dimensionais usando a informação dinâmica contida nas matrizes de estrutura associadas. A classificação do índice de Conley homológico reduzido de conjuntos básicos zero - dimensionais, utilizando a sua forma de Jordan real foi apresentada. Estabelecemos uma caracterização de pares de matrizes de conexão para decomposições de Morse em conjuntos básicos zero - dimensionais para uma classe de difeomorfismos fitted Smale / Abstract: Our focus in this thesis was on the further development of the discrete Conley index theory with the aim of addressing questions on the pair of connection matrices for fitted Smale diffeomorphisms on compact manifolds. A theorem was established where the computation of the discrete Conley index for zero dimensional basic sets was given with respect to the dynamical information contained in the associated structure matrices. A classification of the reduced homology Conley index of a zero dimensional basic set in terms of its Jordan real form is presented. A characterization of a pair of connection matrices for a Morse decomposition of zero dimensional basic sets of a class of fitted Smale diffeomorphisms is established / Doutorado / Matematica / Doutora em Matemática
23

Geometria e topologia de cobordos / Geometry and topology of cobondaries

Sperança, Llohann Dallagnol, 1986- 20 August 2018 (has links)
Orientadores: Alcibiades Rigas, Carlos Eduardo Duran Fernandez / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T13:56:12Z (GMT). No. of bitstreams: 1 Speranca_LlohamDallagnol_D.pdf: 994466 bytes, checksum: 472919d7eec0f563b673a0307450dc49 (MD5) Previous issue date: 2012 / Resumo: Nesse trabalho estudaremos a geometria e a topologia de algumas variedades homeomorfas, porém não difeomorfas, à esfera padrão Sn, chamadas esferas exóticas. Realizaremos duas dessas variedades como quocientes isométricos de fibrados principais com métricas de conexão sobre esferas de curvatura constante. Através disso, apresentaremos simetrias desses espaços e exemplos explícitos de difeomorfismos não isotópicos a identidade, usando-os para o cálculo de grupos de homotopia equivariante. Como mais uma aplicação dessa construção, provaremos que, se uma esfera homotópica de dimensão 15 é realizável como um fibrado linear sobre S8, então a mesma esfera é realizável como um fibrado linear sobre a esfera exótica de dimensão 8 com as mesmas funções de transição. No ultimo capítulo lidaremos com a geometria de fibrados induzidos, deduzindo uma condição necessária sobre a função indutora para que a métrica da conexão induzida tenha curvatura seccional não-negativa / Abstract: In this work we study the geometry and topology of manifolds homemorphic, but not diffeomorphic, to the standard sphere Sn, the so called exotic spheres. We realize two of these manifolds as isometric quotients of principal bundles with connection metrics over the constant curved sphere. Through this, we present symmetries in these spaces and explicit examples of diffeomorphisms not isotopic to the identity, using them for the calculation of equivariant homotopy groups. As another application, we prove that, if a homotopy 15-sphere is realizeble as the total space of a linear bundle over the standard 8-sphere, then, it is realizeble as the total space of a linear bundle over the exotic 8-sphere with the same transition maps. In the last chapter we deal with the geometry of pull-back bundles, deducing a necessary condition on the pull-back map for nonnegative curvature of the induced connection metric / Doutorado / Matematica / Doutor em Matemática
24

Avanços em dinâmica parcialmente hiperbólica e entropia para sistema iterado de funções / Advances in partially hyperbolic dynamics and entropy for iterated function systems

Micena, Fernando Pereira 15 February 2011 (has links)
Neste trabalho estudamos relações entre expoente de Lyapunov e continuidade absoluta da folheação central para difeomorfismos parcialmente hiperbólicos conservativos de \'T POT. 3\'. Sobre tal tema, provamos que tipicamente (\'C POT. 1\' aberto e \'C POT. 2\' denso) os difeomorfismos parcialmente hiperbólicos, conservativos de classe \'C POT. 2\' , do toro \'T POT. 3\', apresentam folheação central não absolutamente contínua. Desta maneira, respondemos positivamente uma pergunta proposta em [20]. Também neste trabalho, estudamos entropia topológica para Sistema Iterado de Funções. Neste contexto, damos uma nova demonstração para uma conjectura proposta em [14] e provada primeiramente em [15]. Apresentamos um método geométrico que nos permite calcular entropia para transformações de \'S POT. 1\', como em [15]. Além de disso o método apresentado se verifica para casos mais gerais, como por exemplo: transformações não comutativas / In this work we study relations between Lyapunov exponents, absolute continuity of center foliation for conservative partially hyperbolic diffeomorphisms of \'T POT. 3\'. About this theme, (on a \'C POT. 1\' open and \'C POT. 2\'dense set) of conservative partially hyperbolic \'C POT. 2\' diffeomorphisms of the 3-torus presents non absolutely continuous center foliation. So, we answer positively a question proposed in [20]. Also in this work, we study topological entropy for Iterated Functions Systems. In this setting, we give a proof for a conjecture proposed in [14] and firstly proved in [15]. We present a geometrical method that allows us to calcule the entropy for transformations of \'S POT. 1\', like in [15]. Furthermore this method holds for more general cases, for example: non commutative transformations
25

Equilibrium states and their local product structure for partially hyperbolic diffeomorphisms. / Estados de equilíbrio e sua estrutura de produto local para difeomorfismos parcialmente hiperbólicos.

Jorge Luis Crisostomo Parejas 26 September 2016 (has links)
We address the problem of existence and uniqueness (or finiteness) of ergodic equilibrium states for a natural class of partially hyperbolic diffeomorphisms homotopic to Anosov. We propose to study the disintegration of equilibrium states along the central foliation as a tool to develop the theory of equilibrium states for partially hyperbolic dynamics. For a large class of low variational potentials we obtain existence and uniqueness of the equilibrium state and we also obtain a dichotomy between finiteness of ergodic equilibrium states and hyperbolicity of such measures. We also prove that the measure of maximal entropy for accessible partially hyperbolic diffeomorphisms of 3-manifold having compact center leaves can be written locally as the product of three measures defined on the local stable, central and unstable foliations provided that such measure is unique. We verify that the local product structure does not hold when the number of measures of maximal entropy is larger than one. / Abordamos o problema de existência e unicidade (ou finitude) dos estados de equilíbrio ergódicos para uma classe natural de difeomorfismos parcialmente hiperbólicos homotópicos a um Anosov. Propomos estudar a desintegração dos estados de equilíbrio ao longo da folheação central como uma ferramenta para desenvolver a teoria de estados de equilíbrio para sistemas parcialmente hiperbólicos. Para uma classe de potenciais com variação pequena obtemos existência e unicidade de estados de equilíbrio e também obtemos uma dicotomia entre finitude dos estados de equilíbrio ergódicos e hiperbolicidade de tais medidas. Obtemos também que as medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos acessíveis definidos numa 3-variedade tendo folhas centrais compactas podem ser escritas localmente como o produto de três medidas definidas nas folheações stável, central e instável locais sempre que tal medida é única. Verificamos que a estrutura de produto local não é valida quando o número de medidas de máxima entropia é maior que um.
26

Equilibrium states and their local product structure for partially hyperbolic diffeomorphisms. / Estados de equilíbrio e sua estrutura de produto local para difeomorfismos parcialmente hiperbólicos.

Parejas, Jorge Luis Crisostomo 26 September 2016 (has links)
We address the problem of existence and uniqueness (or finiteness) of ergodic equilibrium states for a natural class of partially hyperbolic diffeomorphisms homotopic to Anosov. We propose to study the disintegration of equilibrium states along the central foliation as a tool to develop the theory of equilibrium states for partially hyperbolic dynamics. For a large class of low variational potentials we obtain existence and uniqueness of the equilibrium state and we also obtain a dichotomy between finiteness of ergodic equilibrium states and hyperbolicity of such measures. We also prove that the measure of maximal entropy for accessible partially hyperbolic diffeomorphisms of 3-manifold having compact center leaves can be written locally as the product of three measures defined on the local stable, central and unstable foliations provided that such measure is unique. We verify that the local product structure does not hold when the number of measures of maximal entropy is larger than one. / Abordamos o problema de existência e unicidade (ou finitude) dos estados de equilíbrio ergódicos para uma classe natural de difeomorfismos parcialmente hiperbólicos homotópicos a um Anosov. Propomos estudar a desintegração dos estados de equilíbrio ao longo da folheação central como uma ferramenta para desenvolver a teoria de estados de equilíbrio para sistemas parcialmente hiperbólicos. Para uma classe de potenciais com variação pequena obtemos existência e unicidade de estados de equilíbrio e também obtemos uma dicotomia entre finitude dos estados de equilíbrio ergódicos e hiperbolicidade de tais medidas. Obtemos também que as medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos acessíveis definidos numa 3-variedade tendo folhas centrais compactas podem ser escritas localmente como o produto de três medidas definidas nas folheações stável, central e instável locais sempre que tal medida é única. Verificamos que a estrutura de produto local não é valida quando o número de medidas de máxima entropia é maior que um.
27

Dynamique lorentzienne et groupes de difféomorphismes du cercle / Lorentzian dynamics and groups of circle diffeomorphisms

Monclair, Daniel 30 June 2014 (has links)
Cette thèse comporte deux parties, axées sur des aspects différents de la géométrie lorentzienne. La première partie porte sur les groupes d’isométries de surfaces lorentziennes globalement hyperboliques spatialement compactes, particulièrement lorsque le groupe exhibe une dynamique non triviale (action non propre). Le groupe d'isométries agit naturellement sur le cercle par difféomorphismes, et les résultats principaux portent sur la classification de ces représentations. Sous une hypothèse sur le bord conforme, on obtient une conjugaison par homéomorphisme avec l'action projective d'un sous-groupe de PSL(2,R) ou de l'un de ses revêtements finis. La différentiabilité de la conjuguante est étudiée, avec des résultats qui garantissent une conjugaison dans le groupe de difféomorphismes du cercle dans certains cas. On donne également des contre-exemples à l'existence d'une conjugaison différentiable, y compris pour des groupes ayant une dynamique riche. Ces constructions s'appuient sur l'étude de flots hyperboliques en dimension trois. Sans l'hypothèse sur le bord conforme, on obtient une semi conjugaison et un isomorphisme de groupes. On construit également des exemples pour lesquels il n'existe pas de conjugaison topologique. La seconde partie de cette thèse étudie un espace-temps vu comme un système dynamique multi-valuée : à un point on associe sont futur causal. Cette approche, déjà présente dans les travaux de Fathi et Siconolfi, permet de concrétiser le lien entre fonctions de Lyapunov en systèmes dynamiques et fonctions temps. Le résultat principal est une version lorentzienne du Théorème de Conley : on peut définir l'ensemble récurrent par chaînes d'un espace-temps, et il existe une fonction continue croissante le long de toute courbe causale orientée vers le futur, strictement croissante si le point de départ de la courbe n'est pas dans l'ensemble récurrent par chaînes. Ces techniques s'adaptent aussi dans un espace-temps stablement causal, ce qui permet de donner une nouvelle preuve d'une partie du Théorème d'Hawking. / This thesis is divided into two parts, dealing with two different aspects of Lorentzian geometry. The first part deals with isometry groups of globally hyperbolic spatially compact Lorentz surfaces, especially when it has a non trivial dynamical behavior (non proper action). The isometry group acts on circle by diffeomorphisms, and the main results of this part concern the classification of these actions. Under a hypothesis on the conformal boundary, we show that they are topologically conjugate to the projective action of a subgroup of PSL(2,R), or one of its finite covers. The differentiability of the conjugacy is studied, with some results giving a differentiable conjugacy under additional hypotheses. We also give counter examples to such a differentiable conjugacy, even for groups with rich dynamics. These constructions use hyperbolic flows on three manifolds. Without the hypothesis on the conformal boundary, we obtain a semi conjugacy and a group isomorphism. We also give examples where a topological conjugacy cannot exist. In the second part of this thesis, we see a spacetime as a multi valued dynamical system: we map a point to its causal future. This point of view was already adopted by Fathi and Siconolfi, and it gives a concrete meaning to the link between Lyapunov functions in dynamical systems and time functions. The main result is a Lorentzian version of Conley's Theorem: we define the chain recurrent set of a spacetime, and construct a continuous function that increases along future directed causal curves outside the chain recurrent set, and that is non decreasing along other future curves. These techniques also apply to the stably causal setting, and we obtain a new proof of a part of Hawking's Theorem.
28

Avanços em dinâmica parcialmente hiperbólica e entropia para sistema iterado de funções / Advances in partially hyperbolic dynamics and entropy for iterated function systems

Fernando Pereira Micena 15 February 2011 (has links)
Neste trabalho estudamos relações entre expoente de Lyapunov e continuidade absoluta da folheação central para difeomorfismos parcialmente hiperbólicos conservativos de \'T POT. 3\'. Sobre tal tema, provamos que tipicamente (\'C POT. 1\' aberto e \'C POT. 2\' denso) os difeomorfismos parcialmente hiperbólicos, conservativos de classe \'C POT. 2\' , do toro \'T POT. 3\', apresentam folheação central não absolutamente contínua. Desta maneira, respondemos positivamente uma pergunta proposta em [20]. Também neste trabalho, estudamos entropia topológica para Sistema Iterado de Funções. Neste contexto, damos uma nova demonstração para uma conjectura proposta em [14] e provada primeiramente em [15]. Apresentamos um método geométrico que nos permite calcular entropia para transformações de \'S POT. 1\', como em [15]. Além de disso o método apresentado se verifica para casos mais gerais, como por exemplo: transformações não comutativas / In this work we study relations between Lyapunov exponents, absolute continuity of center foliation for conservative partially hyperbolic diffeomorphisms of \'T POT. 3\'. About this theme, (on a \'C POT. 1\' open and \'C POT. 2\'dense set) of conservative partially hyperbolic \'C POT. 2\' diffeomorphisms of the 3-torus presents non absolutely continuous center foliation. So, we answer positively a question proposed in [20]. Also in this work, we study topological entropy for Iterated Functions Systems. In this setting, we give a proof for a conjecture proposed in [14] and firstly proved in [15]. We present a geometrical method that allows us to calcule the entropy for transformations of \'S POT. 1\', like in [15]. Furthermore this method holds for more general cases, for example: non commutative transformations
29

Modèles de cycles normaux pour l'analyse des déformations / Normal cycle models for deformation analysis

Roussillon, Pierre 24 November 2017 (has links)
Dans cette thèse, nous développons un modèle du second ordre pour la représentation des formes (courbes et surfaces) grâce à la théorie des cycles normaux. Le cycle normal d'une forme est le courant associé à son fibré normal. En introduisant des métriques à noyaux sur les cycles normaux, nous obtenons une mesure de dissimilarité entre formes qui prend en compte leurs courbures. Cette mesure est ensuite utilisée comme terme d'attache aux données dans une optique d'appariement et d'analyse de formes par les déformations. Le chapitre 1 est une revue du domaine de l'analyse de formes par les déformations. Nous insistons plus particulièrement sur la mise en place théorique et numérique du modèle de Large Deformation Diffeomorphic Metric Mapping (LDDMM). Le chapitre 2 se concentre sur la représentation des formes par les cycles normaux dans un cadre unifié qui englobe à la fois les formes continues et discrètes. Nous précisons dans quelle mesure cette représentation contient des informations de courbure. Enfin nous montrons le lien entre le cycle normal d'une forme et son varifold. Dans le chapitre 3, nous introduisons les métriques à noyaux. Ainsi, nous pouvons considérer les cycles normaux dans un espace de Hilbert avec un produit scalaire explicite. Nous détaillons ce produit scalaire dans le cas des courbes et surfaces discrètes avec certains noyaux, ainsi que le gradient associé. Nous montrons enfin que malgré le choix de noyaux simples, nous ne perdons pas toutes les informations de courbures. Le chapitre 4 utilise cette nouvelle métrique comme terme d'attache aux données dans le cadre LDDMM. Nous présentons de nombreux appariements et estimations de formes moyennes avec des courbes ou des surfaces. L'objectif de ce chapitre est d'illustrer les différentes propriétés des cycles normaux pour l'analyse des déformations sur des exemples synthétiques et réels. / In this thesis, we develop a second order model for the representation of shapes (curves or surfaces) using the theory of normal cycles. The normal cycle of a shape is the current associated with its normal bundle. Introducing kernel metrics on normal cycles, we obtain a dissimilarity measure between shapes which takes into account curvature. This measure is used as a data attachment term for a purpose of registration and shape analysis by deformations. Chapter 1 is a review of the field of shape analysis. We focus on the setting of the theoretical and numerical model of the Large Deformation Diffeomorphic Metric Mapping(LDDMM).Chapter 2 focuses on the representation of shapes with normal cycles in a unified framework that encompasses both the continuous and the discrete shapes. We specify to what extend this representation encodes curvature information. Finally, we show the link between the normal cycle of a shape and its varifold. In chapter 3, we introduce the kernel metrics, so that we can consider normal cycles in a Hilbert space with an explicit scalar product. We detail this scalar product for discrete curves and surfaces with some kernels, as well as the associated gradient. We show that even with simple kernels, we do not get rid of all the curvature informations. The chapter 4 introduces this new metric as a data attachment term in the framework of LDDMM. We present numerous registrations and mean shape estimation for curves and surfaces. The aim of this chapter is to illustrate the different properties of normal cycles for the deformations analysis on synthetic and real examples.
30

Extension de l'homomorphisme de Calabi aux cobordismes lagrangiens

Mailhot, Pierre-Alexandre 09 1900 (has links)
Ce mémoire traite de la construction d’un nouvel invariant des cobordismes lagrangiens. Cette construction est inspirée des travaux récents de Solomon dans lesquels une extension de l’homomorphisme de Calabi aux chemins lagrangiens exacts est donnée. Cette extension fut entre autres motivée par le fait que le graphe d’une isotopie hamiltonienne est un chemin lagrangien exact. Nous utilisons la suspension lagrangienne, qui associe à chaque chemin lagrangien exact un cobordisme lagrangien, pour étendre la construction de Solomon aux cobordismes lagrangiens. Au premier chapitre nous donnons une brève exposition des propriétés élémentaires des variétés symplectiques et des sous-variétés lagrangiennes. Le second chapitre traite du groupe des difféomorphismes hamiltoniens et des propriétés fondamentales de l’homomorphisme de Calabi. Le chapitre 3 est dédié aux chemins lagrangiens, l’invariant de Solomon et ses points critiques. Au dernier chapitre nous introduisons la notion de cobordisme lagrangien et construisons le nouvel invariant pour finalement analyser ses points critiques et l’évaluer sur la trace de la chirurgie de deux courbes sur le tore. Dans le cadre de ce calcul, nous serons en mesure de borner la valeur du nouvel invariant en fonction de l’ombre du cobordisme, une notion récemment introduite par Cornea et Shelukhin. / In this master's thesis, we construct a new invariant of Lagrangian cobordisms. This construction is inspired by the recent works of Solomon in which an extension of the Calabi homomorphism to exact Lagrangian paths is given. Solomon's extension was motivated by the fact that the graph of any Hamiltonian isotopy is an exact Lagrangian path. We use the Lagrangian suspension construction, which associates to every exact Lagrangian path a Lagrangian cobordism, to extend Solomon's invariant to Lagrangian cobordisms. In the first chapter, we give a brief introduction to the elementary properties of symplectic manifolds and their Lagrangian submanifolds. In the second chapter, we present an introduction to the group of Hamiltonian diffeomorphisms and discuss the fundamental properties of the Calabi homomorphism. Chapter 3 is dedicated to Lagrangian paths, Solomon's invariant and its critical points. In the last chapter, we introduce the notion of Lagrangian cobordism and we construct the new invariant. We analyze its critical points and evaluate it on the trace of the Lagrangian surgery of two curves on the torus. In this setting we further bound the new invariant in terms of the shadow of the cobordism, a notion recently introduced by Cornea and Shelukhin.

Page generated in 0.0604 seconds