• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling of pesticide exposure in ground and surface waters used for public water supply

Pullan, Stephanie January 2014 (has links)
Diffuse transfers of pesticides from agricultural land to ground and surface waters can lead to significant drinking water quality issues. This thesis describes the development and application of a parameter-efficient, numerical model to predict pesticide concentrations in raw water sources within an integrated hydrological framework. As such, it fills an unoccupied niche that exists in pesticide fate modelling for a computationally undemanding model that contains enough process complexity to be applicable in a wide range of catchments and hydrogeological settings in the UK and beyond. The model represents the key processes involved in pesticide fate (linear sorption and first-order degradation) and transport (surface runoff, lateral throughflow, drain flow, percolation to the unsaturated zone, calculated using a soil water balance) in the soil at a daily time step. Soil properties are derived from the national soil database for England and Wales and are used to define the boundary conditions at the interface between the subsoil and the unsaturated zone. This is the basis of the integrated hydrological framework which enables the application of the model to both surface water catchments and groundwater resources. The unsaturated zone model accounts for solute transport through two flow domains (accounting for fracture flow and intergranular matrix flow) in three hydrogeological settings (considering the presence and permeability of superficial deposits). The model was first applied to a small headwater sub-catchment in the upper Cherwell. Performance was good for drainflow predictions (Nash Sutcliffe Efficiency > 0.61) and performed better than the MACRO model and as well as the modified MACRO model. Surface water model performance was evaluated for eight pesticides in five different catchments. Performance was generally good for flow prediction (Nash Sutcliffe Efficiency > 0.59 and percentage bias below 10 %, in the validation period for all but two catchments). The 90th percentile measured concentration was captured by the model in 62 % of catchment-pesticide combinations. In theremaining cases predictions were within, at most, a factor of four of measured 90th percentile concentrations. The rank order of the frequency of pesticides detected over 0.1 μg L-1 was also predicted reasonably well (Spearman’s rank coefficient > 0.75; p < 0.05 in three catchments). Pesticide transport in the unsaturated zone model was explored at the point scale in three aquifers (chalk, limestone and sandstone). The results demonstrate that representing the unsaturated zone processes can have a major effect on the timing and magnitude of pesticide transfers to the water table. In comparison with the other catchment scale pesticide fate models that predict pesticide exposure at a daily time-step, the model developed stands out requiring only a small number of parameters for calibration and quick simulation times. The benefit of this is that the model can be used to predict pesticide exposure in multiple surface and groundwater resources relatively quickly which makes it a useful tool for water company risk assessment. The broad-scale approach to pesticide fate and transport modelling presented here can help to identify and prioritise pesticide monitoring strategies, to compare catchments in order to target catchment management and to highlight potential problems that could arise under different future scenarios.
2

Tracing Copper from society to the aquatic environment : Model development and case studies in Stockholm

Cui, Qing January 2010 (has links)
Copper remains at elevated levels in the aquatic environment of Stockholm due to diffuse urban sources. Management of these diffuse sources requires their quantification but they cannot be measured directly by field observations. The working hypothesis of this thesis was that Copper levels in the sediments of urban lakes would reflect diffuse emissions within their catchment areas. In order to test this hypothesis, a source – transport – storage conceptual model was developed for tracing the urban diffuse sources of Copper to the sediment in the urbanised catchment. A substance flow analysis (SFA) approach was taken in the source module and a fate, mass-balance model was applied in the lake module. Five separate urban lakes (Judarn, Laduviken, Långsjön, Råcksta Träsk and Trekanten) within the Stockholm area and a main water flow pathway from Lake Mälaren to the inner archipelago of the Baltic Sea, through Stockholm, were selected as case studies.  In comparison to actual source strength data in the literature for the five case study lakes, the SFA approach gave similar results to previous models, but with reduced uncertainty. The SFA approach was also able to indicate the actual sources of urban copper, which was not accomplished by the other approaches and which is a great advantage in managing the sources. For the five lakes in Stockholm, traffic and copper roofs were found to be major contributors of Copper. For the three more polluted lakes, good agreement was obtained between simulated sediment copper contents and independent field observations, thereby supporting the applicability of the model in such cases. Furthermore, simulation results showed sediment copper content to be linearly dependent on the urban load. While this suggests that the urban copper sediment level reflects the urban load, considerable integration of this load over time (decade(s)) was suggested by the simulation results, so time must be allowed in order to detect a change in the urban load by field monitoring of the sediments.  Published data on the main water flow pathway from Lake Mälaren to the archipelago showed a peak in sediment copper content close to the city centre, confirming a considerable urban influence. An approach to quantitatively follow Cu from its urban source through such a complex, aquatic system was developed and applied to Stockholm. The compliance of future quantitative model results with monitoring data may help test the choices made in this conceptual model and the applicability of the model. Data availability proved to be a major obstacle to achieving a quantitative model, particularly as several municipalities with different levels of data availability surround the main water flow pathway studied.  Finally, the applicability of the quantitative, coupled source – transport – storage was demonstrated in a simplified scenario analysis. The ability of the model to estimate the copper load to air and soil and to the urban aquatic environment was also demonstrated. / QC 20110324
3

Ämnestransport i Tomtaåns avrinningsområde : Inverkan av Hovgårdens avfallsanläggning och diffusa utsläpp / Substance Transport in Tomtaån Catchment Area : Impact of Hovgården Waste Facility and Diffuse Sources

Nyström, Stephanie, Bäckström, Elias January 2016 (has links)
The chemistry of a stream is the result of different transport routes of the precipitation and the processes it undergoes in the catchment area to the stream. The transport route can involve natural processes in the ground, called diffuse sources, or some more anthropogenic sources titled point sources. In the stream, this chemistry is affected by dilution and different sources and sinks of substances. From Hovgårdens waste facility, a point source situated in Tomtaåns water catchment (20 km NE of Uppsala), waste water is released in the nearby Hovgårdsbäcken stream, bringing various metals, salts and nutrient salts. This is then transported to Lissån stream and further on to Tomtaån stream. Before connecting to Lissån, Tomtaån flows through a rural landscape without known larger point sources. This project has two purposes, one is to investigate if substance concentrations in the water changes on its transport along Hovgårdsbäcken, Lissån and Tomtaån streams and why. The other is to determine whether the mass transport from Tomtaån stream is significant for the water chemistry compared to Lissån stream. This project is based on substance concentrations measured by Uppsala Vatten AB from 2009-2014 and the writers’ own measurements from spring of 2016. The substances concerned in this project are N-tot, P-tot, NH4+, PO43-, Fe, SO42-, NO3-. The samplings made by Uppsala Vatten AB does not include Tomtaån upstream the inflow from Lissån. To obtain the size of the mass transport of Tomtaån, modelled substance concentrations along with surface types from GIS have been used. A mass balance was then calculated. The reliability of these values are then discussed. The own measurements included discharge measurements and water sampling to carry out analysis of pH, alkalinity as well as anions Cl-, SO42- and NO3-. The results showed that for Fe, P-tot and PO43-, the values were peaking after the inflow of Lissån to Tomtaån, meaning that these ones come in higher values from Tomtaån than Hovgården. N-tot, NH4+ and SO42- decrease in concentration along the transport which indicates the opposite for Fe, P-tot and PO43-. The mass transport calculated with the modelled values indicates an absurd deficit, which brings the conclusion that these are not reliable. / Ett vattendrags kemi är ett resultat av nederbördens olika transportvägar och dess processer i avrinningsområdet. Transportvägen kan innefatta naturliga processer i mark, så kallade diffusa utsläpp, och mer antropogena källor som har en bestämd utsläppspunkt, vilka benämns som punktkällor. Väl i vattendraget påverkar utspädning, källor och sänkor ämnenas halter. Från Hovgårdens avfallsanläggning, en punktkälla som ligger i Tomtaåns avrinningsområde (2 mil nordost om Uppsala), rinner avfallsvatten ut i den närliggande Hovgårdsbäcken med en rad olika typer av metaller, salter och närsalter. Detta transporteras vidare till Lissån vars flöde går ihop med Tomtaån. Tomtaån rinner innan sammanflöde med Lissån genom ett jordbrukslandskap utan större kända punktkällor men där diffusa utsläppskällor kommer till uttryck. Projektet har två syften, det ena är att undersöka om ämneshalterna i vattnet på sin transport längsmed Hovgårdsbäcken, Lissån och Tomtaån förändras och varför. Det andra är att slå fast om masstransporten från Tomtaån är betydande för vattenkemin jämfört med Lissån. Till grund för projektet ligger ämneshalter tagna vid olika punkter av Uppsala Vatten AB år 2009-2014 respektive prover tagna av författarna våren 2016. Ämnen som ligger i fokus är; N-tot, P-tot, NH4+, PO43-, Fe, SO42-, NO3-. Uppsala Vattens provtagningar innefattar inte Tomtaån uppströms. För att få fram storleken på Tomtaåns masstransport, har istället schablonvärden och markanvändningsareor tagna ur GIS använts. Med dessa schablonvärden och de empiriskt uppmätta halterna från Uppsala Vatten har massbalansberäkningen sedan gjorts. Vi kommer föra en diskussion om denna metod var tillförlitlig eller ej. Av författarna mättes vattenföring och vattenprover togs, vilka analyserades för pH och alkalinitet såväl som anjonerna: Cl-, SO42- and NO3-. Resultatet visade att ämneshalterna för Fe, P-tot and PO43- var högst efter Lissåns inflöde med Tomtaån. Vilken betyder att vattenkemin påverkas mer av Tomtaån än Hovgården. Resterande ämnen minskar i halt längsmed transporten, Hovgården bidrar med högst ämneshalt och Tomtaån påverkar vattenkemin genom utspädning. Masstransporten beräknad med schablonvärden indikerar ett massivt orimligt underskott, bedömningen är att schablonhalter ej är tillförlitliga.

Page generated in 0.0615 seconds