• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 35
  • 14
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 148
  • 148
  • 43
  • 35
  • 35
  • 31
  • 22
  • 22
  • 22
  • 22
  • 19
  • 19
  • 19
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Mathematical and computational modeling of contamination of aquifers with the use of numerical methods without mesh / Modelagem matemÃtica e computacional da contaminaÃÃo de aquÃferos com uso de mÃtodos numÃricos sem malha

Francisco das Chagas Azevedo dos Reis 29 March 2014 (has links)
Em muitos problemas da natureza e em uma diversidade enorme de Ãreas do conhecimento, existe a necessidade real de modelarmos fenÃmenos existentes. Em CiÃncias como MatemÃtica, FÃsica, QuÃmica, Biologia, Economia e nas Engenharias, de uma maneira geral, à comum por parte dos pesquisadores, o uso de modelos e simulaÃÃes, Ãs quais, quase sempre, envolvem taxas, princÃpios e leis, regidos por EquaÃÃes Diferenciais. Problemas envolvendo movimento de fluidos, intensidade de corrente elÃtrica, propagaÃÃo de calor, crescimento populacional, entre muitos outros, sÃo exemplos clÃssicos de aplicaÃÃes de modelos regidos por EquaÃÃes Diferencias, Ãs quais, podem ser diferenciadas quanto ao tipo em EquaÃÃes Diferenciais OrdinÃrias (EDO) e EquaÃÃes Diferenciais Parciais (EDP). Nas primeiras, a funÃÃo a ser determinada depende de uma Ãnica variÃvel independente, enquanto nas segundas, ocorre a dependÃncia de duas ou mais variÃveis independentes. Acontece à que em uma grande variedade de problemas da natureza, as equaÃÃes nÃo possuem soluÃÃes bem comportadas, analÃticas e, dessa maneira, faz-se necessÃrio o conhecimento de mÃtodos numÃricos, tais como, DiferenÃas Finitas, Elementos Finitos, Elementos de Contorno, entre outros, os quais necessitam da discretizaÃÃo do domÃnio e, portanto da criaÃÃo de uma malha (MESH), com fÃrmulas interativas para se estimar uma soluÃÃo e minimizar o erro da aproximaÃÃo. Nesse sentido, a proposta desse trabalho à utilizar um mÃtodo numÃrico bastante eficaz e independente de malha, denominado mÃtodo sem malhas (MESHLESS), mas especificamente o mÃtodo de Kansas, o qual lanÃa mÃo de FunÃÃes de Base Radial (Radial Basis Functions â RBF), ou simetria radial, da distÃncia entre um ponto central do domÃnio da funÃÃo e um ponto genÃrico do domÃnio. A funÃÃo interpoladora de base radial, tambÃm depende de um parÃmetro de forma âcâ a ser encontrado. Mas a questÃo preponderante Ã: como determinar um parÃmetro de forma âcâ Ãtimo, que possa oferecer uma soluÃÃo consistente, reduzindo o resÃduo e, portanto o erro existente? Para tanto, modelou-se um problema de contaminaÃÃo de aquÃfero fazendo uso da equaÃÃo de difusÃo, comparando o resultado de sua soluÃÃo analÃtica, com a soluÃÃo numÃrica obtida atravÃs do mÃtodo numÃrico sem malhas e com o parÃmetro de forma simulado e otimizado por meio da plataforma SCILAB / In many problems of nature and a huge diversity of knowledge areas , there is a real need we model existing phenomena . Sciences like Mathematics , Physics , Chemistry, Biology , Economics and in Engineering , in general , is common among the researchers , the use of models and simulations , whi ch almost always involve fees , principles and laws , governed by Differential Equations . Problems involving fluid motion , intensity of electric current , heat propagation , population growth , among many others , are classic examples of applications of models g overned by Differential Equations , which can be differentiated as to type in Ordinary Differential Equations (ODE ) and Partial Differential Equations ( PDE). In the first , the function to be determined depends on a single variable, while in the second , the dependence of two or more independent variables occurs . Happens is that in a wide variety of problems of nature , the equations do not have well - behaved, analytic and thus solutions , it is necessary the knowledge of numerical methods such as Finite Differen ces , Finite Elements , Boundary Elements , among others, which require the discretization of the domain and therefore the creation of a mesh ( M ESH), with interactive formulas for estimating a solution and minimize the error of approximation . In this sense , t he purpose of this work is to use a very efficient and independent of mesh numerical method , called method without mesh ( MESHLESS), but specifically the method of Kansas , which makes use of Radial Basis Function ( Radial Basis Functions - RBF ) or radial sym metry , the distance between central point of the domain of the function and a generic point of the domain. The interpolating radial basis function also depends on a shape parameter " c" to be found . But the overriding question is how to determine a shape pa rameter " c" great, we can provide a consistent solution , reducing waste and therefore the existing error ? For both , modeled itself a problem of contamination of the aquifer by making use of the diffusion equation , comparing the results of its analytical so lution with the numerical solution obtained by numerical method without mesh and parameter simulated shape and optimized by SCILAB platform (version 5. 4 . 1 )
72

Solução analítica das equações da cinética pontual e espacial da teoria de difusão de nêutrons pelas técnicas da GITT e decomposição

Petersen, Claudio Zen January 2011 (has links)
Neste trabalho, relatam-se soluções analíticas para as equações da cinética da teoria de difusão de nêutrons. Para a solução das equações da cinética pontual consideram-se seis grupos de precursores de nêutrons atrasados e assume-se reatividade variável como uma função arbitrária do tempo. A ideia principal consiste inicialmente na determinação da solução das equações da cinética pontual com reatividade constante apenas usando os resultados bem conhecidos para a solução de sistemas de equações diferenciais matriciais lineares de primeira ordem com entradas constantes. Com a aplicação do método de Decomposição, é possível transformar as equações da cinética pontual com reatividade variável com o tempo em um conjunto de problemas recursivos semelhantes às equações da cinética pontual com reatividade constante, o que pode ser resolvido diretamente com a técnica mencionada anteriormente. Para ilustração, apresentam-se simulações para as funções com reatividade constante, linear e senoidal, bem como comparações com resultados na literatura. Já com relação às equações da cinética espacial, consideram-se um e seis grupos de precursores de nêutrons atrasados, modelo multigrupo de energia, meio homogêneo e dimensões espaciais bi e tridimensionais. O formalismo do procedimento da solução é geral em relação ao número de grupos de energia, famílias de precursores de nêutrons atrasados e regiões com diferentes composições químicas. O fluxo rápido e térmico e as concentrações de nêutrons atrasados são expandidos em uma série de termos de autofunções que, pela aplicação da técnica da GITT, resulta em uma equação diferencial matricial de primeira ordem semelhante às equações de cinética pontual. Por esse motivo, a solução deste problema transformado segue o formalismo do método da Decomposição aplicado às equações da cinética pontual. Por fim, apresentam-se simulações numéricas e comparações com resultados disponíveis na literatura. / In this work we report analytical solutions for the neutron kinetics diffusion equations. For the solution of the point kinetics equations we consider six groups of delayed neutron precursors and assume that the reactivity is an arbitrary function of time. The main idea initially consists in the determination of the solution of the point kinetics equations with constant reactivity by just using the well-known results of the solution of systems of first-order linear ordinary differential equations in matrix form with constant matrix entries. Applying the decomposition method, we are able to transform the point kinetics equations with time dependent reactivity into a set of recursive problems similar to the point kinetics equations with constant reactivity, which can be directly solved by the above mentioned technique. For illustration, we also report simulations for constant, linear and sinusoidal reactivity time functions of time as well as comparisons with results published in the literature. As for the space kinetics equations we consider six groups of delayed neutron precursors, energy multigroup model, homogeneous media and two and three-dimensional geometries. The solution procedure formalism is general with respect to the number of energy groups, neutron precursor families and regions with different chemical compositions. The fast and thermal flux and the delayed neutron precursors concentrations are expanded in a series in terms of eigenfunctions that, upon insertion into the kinetics equation and upon taking moments, result in a first order linear differential matrix equation with source terms similar to the point kinetics equations. The solution of this transformed problem follows the formalism of the decomposition method applied to the point kinetics equations. We present numerical simulations and comparisons with available results in the literature.
73

Contribuições para analise, calculo e modelagem de sistemas de vacuo / Contributions to analysis, calculation and modeling of vacuum systems

Degasperi, Francisco Tadeu 13 July 2006 (has links)
Orientador: Vitor Baranauskas / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-08T22:24:59Z (GMT). No. of bitstreams: 1 Degasperi_FranciscoTadeu_D.pdf: 5413263 bytes, checksum: 7251a00fbc05d996c38d70e8417d16ae (MD5) Previous issue date: 2006 / Resumo: O principal objetivo deste trabalho foi contribuir para o cálculo, análise e modelagem de sistemas de vácuo de uso geral. As contribuições ocorreram na criação, desenvolvimento e aprimoramento de ferramentas matemáticas tanto analíticas como numéricas para modelar e analisar detalhadamente sistemas de vácuo. Foram consideradas duas maneiras de modelar sistemas de vácuo, denominadas de formulação discreta e contínua. Na formulação discreta os sistemas de vácuo são tratados de modo que a pressão em função do tempo na câmara de vácuo pode ser obtida a partir de especificações das fontes de gases e vapores, das dimensões da linha de bombeamento e das bombas de vácuo. Foram considerados nos cálculos e nas modelagens os quatro regimes de escoamento presentes nos sistemas de vácuo em geral. Foram também consideradas em detalhe as condutâncias e as fontes gasosas importantes para processos em vácuo em geral, além de obtidas as expressões matemáticas para as curvas de velocidade de bombeamento das bombas de vácuo comumente utilizadas em circuitos de vácuo. Foram utilizados nas análises numéricas os métodos de Euler-Heun e Runge-Kutta de segunda e quarta ordens. Na formulação contínua os sistemas de vácuo foram modelados de forma que a pressão possa ser determinada em todas as suas partes e em função do tempo. Foram obtidas as equações de difusão para sistemas de vácuo unidimensionais, bidimensionais e tridimensionais estacionários e transientes. Foram estudados em detalhe e exemplificados sistemas de vácuo por meio das formulações discreta e contínua. Sistemas de vácuo com geometrias tubulares e planares foram modelados com o estabelecimento preciso das definições das grandezas condutância específica e throughput específico para as fontes de gases e condições de contorno pertinentes à descrição a partir de equações diferenciais parciais. Para exemplificar os conceitos e abordagens desenvolvidas, foram tratados de casos realísticos encontrados em laboratórios e na indústria / Abstract: The main propose of this work is to toward in modeling of general vacuum systems. In addition, the aims of this work are to create, develop and improve analytic and numerical mathematical tools in order to model and to analyze vacuum systems in detail. Two different modeling ways to vacuum systems have been considered, denoted discrete and continuum formulations. In the discrete formulation the vacuum systems are treated in a way such that inside the vacuum chamber the pressure as a function of time can be obtained from the specification of the gas and vapor sources, from the pumping line dimensions and from the choice of the vacuum pumps. The conductance and the gas sources were considered important to vacuum processes in general besides the mathematical expressions obtained to pumping speed curves of the vacuum pumps. The numerical analysis was done through the Euler-Heun and the Runge-Kutta of second and fourth order methods. In the continuum formulation the vacuum systems were modeled in a way such that the pressure can be determined in all parts and as a function of the time. To perform this modeling were defined specific conductance and specific throughput to general gas sources. Vacuum systems with one-dimension or tubular forms and two-dimensions or planar forms were studied in detail and exemplified with the definitions of the quantities and the appropriate partial differential equations boundary conditions. The concepts, definitions and approach were applied in realistic cases, with typical laboratory and industry dimensions / Doutorado / Eletrônica, Microeletrônica e Optoeletrônica / Doutor em Engenharia Elétrica
74

Steady States and Stability of the Bistable Reaction-Diffusion Equation on Bounded Intervals

Couture, Chad January 2018 (has links)
Reaction-diffusion equations have been used to study various phenomena across different fields. These equations can be posed on the whole real line, or on a subinterval, depending on the situation being studied. For finite intervals, we also impose diverse boundary conditions on the system. In the present thesis, we solely focus on the bistable reaction-diffusion equation while working on a bounded interval of the form $[0,L]$ ($L>0$). Furthermore, we consider both mixed and no-flux boundary conditions, where we extend the former to Dirichlet boundary conditions once our analysis of that system is complete. We first use phase-plane analysis to set up our initial investigation of both systems. This gives us an integral describing the transit time of orbits within the phase-plane. This allows us to determine the bifurcation diagram of both systems. We then transform the integral to ease numerical calculations. Finally, we determine the stability of the steady states of each system.
75

Estudo numérico da equação da difusão unidimensional / Numerical study of one-dimensional advection-diffusion equation

Pereira, Matheus Fernando, 1987- 26 August 2018 (has links)
Orientadores: Simone Andrea Pozza, Varese Salvador Timóteo / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia / Made available in DSpace on 2018-08-26T20:52:16Z (GMT). No. of bitstreams: 1 Pereira_MatheusFernando_M.pdf: 7089543 bytes, checksum: 5e3fe7245aa3630ebca8dda3ddd08eb3 (MD5) Previous issue date: 2014 / Resumo: Diversas técnicas vêm sendo apresentadas para resolução da equação da difusão, a qual é empregada para estimativas da concentração de poluentes em função do espaço e do tempo, levando-se conta fatores como fonte emissora, condições meteorológicas, características do meio e velocidade em que o poluente é carreado. Neste estudo, foi empregado um algoritmo de passo variável para a resolução da equação da difusão unidimensional e avaliação da influência do parâmetro de heterogeneidade do meio, da velocidade do fluxo e do coeficiente de dispersão na variação da concentração de poluentes em função do espaço e do tempo. As simulações foram realizadas utilizando as mesmas condições iniciais e de contorno adotadas em dois estudos abordados recentemente na literatura, e de acordo com os resultados, verificou-se que características como meios de menor heterogeneidade, baixa velocidade inicial do fluxo e baixo coeficiente de dispersão implicam em menores valores de concentração, facilitando a dispersão de poluentes. O método utilizado é caracterizado pela rápida convergência, simplicidade do código e baixo tempo computacional, podendo ser utilizado como base para resolução da equação da difusão bi e tridimensional / Abstract: Several techniques have been employed for solving advection-diffusion equation, which is used to estimate pollutants concentration as function of time and space, taking account factors such as emission source, meteorological conditions, medium characteristics and the velocity in which pollutant is adduced. In this study, we used an adaptive-step algorithm for solving one-dimensional advection-diffusion equation, and evaluating the influence of medium inhomogeneity parameter, flow velocity and dispersion coefficient in the pollutants concentration variation as function of space and time. Simulations were performed using the same initial and boundary conditions adopted by Kumar et al. (2010) and by Savovic and Djordjevich (2012), and according to the results, it was found that characteristics such as medium of less inhomogeneity, low initial flow velocity and low dispersion coefficient imply in lower concentration and facilitate pollutants dispersion. The method is characterized by rapid convergence, simplicity of the code and low computational time, and it can be used as a basis for solving the two and the three dimensional advection-diffusion equation / Mestrado / Tecnologia e Inovação / Mestre em Tecnologia
76

A note on the energy norm for a singularly perturbed model problem

Kunert, Gerd 16 January 2001 (has links)
A singularly perturbed reaction-diffusion model problem is considered, and the choice of an appropriate norm is discussed. Particular emphasis is given to the energy norm. Certain prejudices against this norm are investigated and disproved. Moreover, an adaptive finite element algorithm is presented which exhibits an optimal error decrease in the energy norm in some simple numerical experiments. This underlines the suitability of the energy norm.
77

A posteriori H^1 error estimation for a singularly perturbed reaction diffusion problem on anisotropic meshes

Kunert, Gerd 24 August 2001 (has links)
The paper deals with a singularly perturbed reaction diffusion model problem. The focus is on reliable a posteriori error estimators for the H^1 seminorm that can be applied to anisotropic finite element meshes. A residual error estimator and a local problem error estimator are proposed and rigorously analysed. They are locally equivalent, and both bound the error reliably. Furthermore three modifications of these estimators are introduced and discussed. Numerical experiments for all estimators complement and confirm the theoretical results.
78

A posteriori error estimation for convection dominated problems on anisotropic meshes

Kunert, Gerd 22 March 2002 (has links)
A singularly perturbed convection-diffusion problem in two and three space dimensions is discretized using the streamline upwind Petrov Galerkin (SUPG) variant of the finite element method. The dominant convection frequently gives rise to solutions with layers; hence anisotropic finite elements can be applied advantageously. The main focus is on a posteriori energy norm error estimation that is robust in the perturbation parameter and with respect to the mesh anisotropy. A residual error estimator and a local problem error estimator are proposed and investigated. The analysis reveals that the upper error bound depends on the alignment of the anisotropies of the mesh and of the solution. Hence reliable error estimation is possible for suitable anisotropic meshes. The lower error bound depends on the problem data via a local mesh Peclet number. Thus efficient error estimation is achieved for small mesh Peclet numbers. Altogether, error estimation approaches for isotropic meshes are successfully extended to anisotropic elements. Several numerical experiments support the analysis.
79

Diffusion in Cauchy Elastic Solid

Danielewski, Marek, Sapa, Lucjan 24 June 2022 (has links)
It is commonly accepted that a starting point of the science of diffusion is the phenomenological diffusion equation postulated by German physiologist Adolf Fick inspired by experiments on diffusion by Thomas Graham and Robert Brown. Fick’s diffusion equation has been interpreted decades later by Albert Einstein and Marian Smoluchowski. Here we will show that the theory of diffusion has its elegant mathematical foundations formulated three decades before Fick by French mathematician Augustin Cauchy (~1822). The diffusion equation is straightforward consequence of his model of the elastic solid - the classical balance equations for isotropic, elastic crystal. Basing on the Cauchy model and using the quaternion algebra we present a rigorous derivation of the quaternion form of the diffusion equation. The fundamental consequences of all derived equations and relations for physics, chemistry and the future prospects are presented.
80

Heat Flux Dynamics and Seasonal Variability in Morro Bay, California

Romanini, Mikaela 01 March 2023 (has links) (PDF)
There is a growing need to better understand the dynamics of small and medium Mediterranean low-inflow estuaries (LIEs), which is addressed here by characterizing a heat budget and associated heat transfer processes. A one-dimensional deterministic model was developed from the advection-diffusion equation and applied to Morro Bay, CA using 15-minute water property (temperature, salinity, pressure) and meteorological (wind speed and direction, air temperature, relative humidity, air pressure, irradiance) data collected over a two-year period (2020 – 2021). Seasonal variability is observed in meteorological components, water temperature, and salinity. There is strong seasonal variability in head-mouth temperature and salinity differences. Temperature differences peak in summer (daily mean 2.52 ºC, June – Sept.). Daily average salinity difference is 0.33 (hyposaline, Sept. – Apr.) with strongest gradients observed during the winter storm season following enhanced freshwater discharge. Inverse salinity develops intermittently May – Aug. Subtidal heat flux is dominated by surface heating, whose daily average is always positive (heat input). The developed model does not quantify adequate heat export from the estuary, however, a sensitivity analysis indicates that diffusive flux may be a significant heat export component. Excess heat appears to be exported to the ocean, allowing ocean-estuary temperatures to remain similar. Characterizing estuarine dynamics like these enables us to predict how Morro Bay, and other similar estuarine systems, may respond to long and short-term environmental changes, and how these responses influence estuarine circulation and environmental health.

Page generated in 0.102 seconds