• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 37
  • 37
  • 16
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Design of Pipelined Analog-to-Digital Converter with SI Technique in 65 nm CMOS Technology

Rajendran, Dinesh Babu January 2011 (has links)
Analog-to-digital converter (ADC) plays an important role in mixed signal processingsystems. It serves as an interface between analog and digital signal processingsystems. In the last two decades, circuits implemented in current-modetechnique have drawn lots of interest for sensory systems and integrated circuits.Current-mode circuits have a few vital advantages such as low voltage operation,high speed and wide dynamic ranges. These circuits have wide applications in lowvoltage, high speed-mixed signal processing systems. In this thesis work, a 9-bitpipelined ADC with switch-current (SI) technique is designed and implemented in65 nm CMOS technology. The main focus of the thesis work is to implement thepipelined ADC in SI technique and to optimize the pipelined ADC for low power.The ADC has a stage resolution of 3 bits. The proposed architectures combine adifferential sample-and-hold amplifier, current comparator, binary-to-thermometerdecoder, a differential current-steering digital-to-analog converter, delay logic anddigital error correction block. The circuits are implemented at transistor level in 65nm CMOS technology. The static and dynamic performance metrics of pipelinedADC are evaluated. The simulations are carried out by Cadence Virtuoso SpectreCircuit Simulator 5.10. Matlab is used to determine the performance metrics ofADC.
22

High Performance Analog Circuit Design Using Floating-Gate Techniques

Serrano, Guillermo J. 30 July 2007 (has links)
The programmability property of floating-gate transistors is exploited in this work to compensate for mismatch and device parameter variations in various high performance analog circuits. A careful look is taken at the characteristics and behavior of floating-gate transistors; issues such as programming, precision, accuracy, and charge retention are addressed. An alternate approach to reduce the offset voltage of the amplifier is presented. The proposed approach uses floating-gate transistors as programmable current sources that provide offset compensation while being a part of the amplifier of interest during normal operation. This results in an offset voltage cancelation that is independent of other amplifier parameters and does not dissipate additional power. Two compact programmable architectures that implement a voltage reference based on the charge difference between two floating-gate transistors are introduced. The references exhibit a low temperature coefficient (TC) as all the transistors temperature dependencies are canceled. Programming the charge on the floating-gate transistors provides the flexibility of an arbitrary accurate voltage reference with a single design and allows for a high initial accuracy of the reference. Also, this work presents a novel programmable temperature compensated current reference. The proposed circuit achieves a first order temperature compensation by canceling the negative TC of an on-chip poly resistor with the positive TC of a MOS transistor operating in the ohmic region. Programmability of the ohmic resistor enables optimal temperature compensation while programmability of the reference voltage allows for an accurate current reference for a wide range of values. Finally, this work combines the already established DAC design techniques with floating-gate circuits to obtain a high precision converter. This approach enables higher accuracy along with a substantial decrease of the die size.
23

Implementation Of A Digital Signal Synthesizer With High Spurious Free Dynamic Range

Kilic, Argun 01 July 2006 (has links) (PDF)
Today&amp / #8217 / s analog modulators and upconverters are inadequate to synthesize and modulate signals with high &amp / #8216 / Spurious Free Dynamic Range&amp / #8217 / (SFDR). Thus, the main objective of this thesis is to design and implement a &amp / #8216 / Digital Signal Synthesizer&amp / #8217 / (DSS) that is capable of synthesizing signals between 50-100 MHz with 60dB SFDR and to modulate them variable symbol rates and modulation techniques with very high phase/frequency resolution and switching speed while keeping the amplitude modulation occurring during a modulated symbol duration as small as possible. In this thesis, digital words of the desired signals are first synthesized in a &amp / #8216 / Field Programmable Gate Array&amp / #8217 / (FPGA) using &amp / #8216 / Direct Digital Synthesizer&amp / #8217 / (DDS) fundamentals and then converted to analog signals with a high speed &amp / #8216 / Digital to Analog Converter&amp / #8217 / (DAC). In order to attain the analog requirements, the system variables such as DAC analog performance, nonlinearities, sample and hold affects, DDS parameters, system clock, bandwidth requirements of analog filters and how they effect the output performance are studied. FPGA blocks that are capable of modulating and synthesizing desired signals are designed and programmed on a FPGA. Finally, single tone and modulated signals are synthesized with this DSS implementation and measured in order to verify this system&amp / #8217 / s performance and capabilities.
24

A Successive Approximation Register Analog-to-digital Converter For Low Cost Microbolometers

Mahsereci, Yigit Uygar 01 February 2012 (has links) (PDF)
Commercialization of infrared (IR) vision is of vital importance for many applications, such as automobile and health care. The main obstacle in front of the further spread of this technology is the high price. The cost reduction is achieved by placing on-chip electronics and diminishing the camera size, where one of the important components is the analog-to-digital converter (ADC). This thesis reports the design of a successive approximation register (SAR) ADC for low-cost microbolometers and its test electronics. Imaging ADCs are optimized only for the specific application in order to achieve the lowest power, yet the highest performance. The successive approximation architecture is chosen, due to its low-power, small-area nature, high resolution potential, and the achievable speed, as the ADC needs to support a 160x120 imager at a frame rate of 25 frames/sec (fps). The resolution of the ADC is 14 bit at a sampling rate of 700 Ksample/sec (Ksps). The noise level is at the order of 1.3 LSBs. The true resolution of the ADC is set to be higher than the need of the current low-cost microbolometers, so that it is not the limiting factor for the overall noise specifications. The design is made using a 0.18&micro / m CMOS process, for easy porting of design to the next generation low-cost microbolometers. An optional dual buffer approach is used for improved linearity, a modified, resistive digital-to-analog converter (DAC) is used for enhanced digital correction, and a highly configurable digital controller is designed for on-silicon modification of the device. Also, a secondary 16-bit high performance ADC with the same topology is designed in this thesis. The target of the high resolution ADC is low speed sensors, such as temperature sensors or very small array sizes of infrared sensors. Both of the SAR ADCs are designed without switched capacitor circuits, the operation speed can be minimized as low as DC if an extremely low power operation is required. A compact test setup is designed and implemented for the ADC. It consists of a custom designed proximity card, an FPGA card, and a PC. The proximity card is designed for high resolution ADC testing and includes all analog utilities such as voltage references, voltage regulators, digital buffers, high resolution DACs for reference generation, voltage buffers, and a very high resolution &Delta / -&Sigma / DAC for input voltage generation. The proximity card is fabricated and supports automated tests, because many components surrounding the ADC are digitally controllable. The FPGA card is selected as a commercially available card with USB control. The full chip functionalities and performances of both ADCs are simulated. The complete layouts of both versions are finished and submitted to the foundry. The ADC prototypes consist of more than 7500 transistors including the digital circuitry. The power dissipation of the 16-bit ADC is around 10mW, where the 14-bit device consumes 30mW. Each of the dies is 1mm x 5mm, whereas the active circuits occupy around 0.5mm x 1.5mm silicon area. These chips are the first steps in METU for the realization of the digital-in digital-out low cost microbolometers and low cost sensors.
25

Μελέτη και σχεδίαση γραμμικού digital to analog converter

Χρίστου, Χρίστος, Τιμοθέου, Τιμόθεος 31 May 2010 (has links)
Στην παρούσα Διπλωματική Εργασία μελετάται η δομή και τα χαρακτηριστικά ενός νέου μετατροπέα ψηφιακού σήματος σε αναλογικό (Digital to Analog Converter DAC). Η δομή του DAC βασίζεται στη γνωστή δομή του συμβατικού R2R Ladder και θα μπορούσε να θεωρηθεί σαν μία δισδιάστατη ανάπτυξη του Ladder. Αυτό σημαίνει ότι η νέα μορφή του DAC χρησιμοποιεί σαφώς περισσότερες αντιστάσεις από τον συμβατικό Ladder, όμως δίνεται η δυνατότητα της ρύθμισης του ρεύματος εξόδου του κάθε κλάδου. Αυτό έχει ως συνέπεια τη δραματική βελτίωση της γραμμικότητας του DAC. Επιπλέον στην Εργασία αυτή μελετήθηκαν με χρήση της θεωρίας των πιθανοτήτων τα χαρακτηριστικά του απλού Ladder και χρησιμοποιήθηκαν για την εξαγωγή συμπερασμάτων που αφορούν στη γραμμικότητα της νέας δομής Ladder. Τα θεωρητικά αποτελέσματα επιβεβαιώθηκαν με εξομοιώσεις. Τέλος, μία σχεδίαση σε φυσικό επίπεδο με την χρήση μόνο MOSFETS και CMOS τεχνολογίας (χωρίς την χρήση αντιστάσεων) σχεδιάσθηκε και εξομοιώθηκε στο Cadence ένας Ladder της νέας δομής. / This Diploma Thesis studies on a new Digital to Analog Converter (DAC) structure developed in the Applied Electronics Laboratory of the University of Patras. The new DAC structure is based on the simple R2R ladder combining several of them in a 2-dimentional grid. As result a high linearity DAC is derived after a simple calibration procedure. The Diploma Thesis presents results on probability of the simple R2R Ladder, employs these results so as to forecast the linearity of the 2-dimentional Ladder, whereas confirms theoretical results with simulations. Finally, a DAC based on the 2-dimentional topology has been designed and simulated using Cadence, in the framework of this Diploma Thesis.
26

On High-Speed Digital-to-Analog Converters and Semi-Digital FIR Filters

Sadeghifar, Mohammad Reza January 2014 (has links)
High-speed and high-resolution digital-to-analog converters (DACs) are vital components in all telecommunication systems. Radio-frequency digital-to-analog converter (RFDAC) provides high-speed and high-resolution conversion from digital domain to an analog signal. RFDACs can be employed in direct-conversion radio transmitter architectures. The idea of RFDAC is to utilize an oscillatory pulse-amplitude modulation instead of the conventional zero-order hold pulse amplitude modulation, which results in DAC output spectrum to have high energy high-frequency lobe, other than the Nyquist main lobe. The frequency of the oscillatory pulse can be chosen, with respect to the sample frequency, such that the aliasing images of the signal at integer multiples of the sample frequency are landed in the high-energy high-frequency lobes of the DAC frequency response. Therefore the high-frequency images of the signal can be used as the output of the DAC, i.e., no need to the mixing stage for frequency up-conversion after the DAC in the radio transmitter. The mixing stage however is not eliminated but it is rather moved into the DAC elements and therefore the local oscillator (LO) signal with high frequency should be delivered to each individual DAC element. In direct-conversion architecture of IQ modulators which utilize the RFDAC technique, however, there is a problem of finite image rejection. The origin of this problem is the different polarity of the spectral response of the oscillatory pulse-amplitude modulation in I and Q branches. The conditions where this problem can be alleviated in IQ modulator employing RFDACs is also discussed in this work. ΣΔ modulators are used preceding the DAC in the transmitter chain to reduce the digital signal’s number of bits, still maintain the same resolution. By utilizing the ΣΔ modulator now the total number of DAC elements has decreased and therefore the delivery of the high-frequency LO signal to each DAC element is practical. One of the costs of employing ΣΔ modulator, however, is a higher quantization noise power at the output of the DAC. The quantization noise is ideally spectrally shaped to out-of-band frequencies by the ΣΔ modulator. The shaped noise which usually has comparatively high power must be filtered out to fulfill the radio transmission spectral mask requirement. Semi-digital FIR filter can be used in the context of digital-to-analog conversion, cascaded with ΣΔ modulator to filter the out-of-band noise by the modulator. In the same time it converts the signal from digital domain to an analog quantity. In general case, we can have a multi-bit, semi-digital FIR filter where each tap of the filter is realized with a sub-DAC of M bits. The delay elements are also realized with M-bit shift registers. If the output of the modulator is given by a single bit, the semi-digital FIR filter taps are simply controlled by a single switch assuming a current-steering architecture DAC. One of the major advantages is that the static linearity of the DAC is optimum. Since there are only two output levels available in the DAC, the static transfer function, regardless of the mismatch errors, is always given by a straight line. In this work, the design of SDFIR filter is done through an optimization procedure where the ΣΔ noise transfer function is also taken into account. Different constraints are defined for different applications in formulation of the SDFIR optimization problem. For a given radio transmitter application the objective function can be defined as, e.g., the hardware cost for SDFIR implementation while the constraint can be set to fulfill the radio transmitter spectral emission mask.
27

Programovatelný generátor signálu připojitelný přes USB / Programmable signal generator connected via USB

Patočka, Lukáš January 2016 (has links)
The subject of this thesis is design and construction of a periodic signal generator prototype. The generator will use Atmel XMEGA128A4U microcontroller with computer control managed via USB interface. The thesis contains general solutions to the problem of generating signals with a special focus on utilization of DA converter – digital synthesis and reconstruction of the signal from DA converter output to continuous signal. The thesis further deals with implementation of the USB layer using two libraries (LUFA library on microcontroller side and LubUsbDotNet library on computer side). The final solution will include DC step-up converter for signal peak amplitude assessment and summing amplifier for adding the DC voltage to the output signal. The application will allow for generating signals of various shapes including user-defined ones. These signals will be displayed in the actual application window. There, users will be allowed to create user-defined signal in easy-to-use GUI or load it directly from a file.
28

Design of a 16 GSps RF Sampling Resistive DAC with on-chip Voltage Regulator / Konstruktion av en 16 GSps resistiv digital-analogomvandlare med integrerad spänningsregulator

Thomsson, Pontus, Seyed Aghamiri, Cyrus January 2021 (has links)
Wireless communication technologies continue to evolve to meet the demand for increased data throughput. To achieve higher data throughput one approach is to increase the bandwidth. One problem related to very large bandwidths is the implementation of digital-to-analog converters with sampling rates roughly in the 5 to 20 GHz range. Traditionally, current-steering data converters have been the go-to choice but their linearity suffers at higher frequencies. An alternative to the current-steering digital-to-analog converter is the voltage-mode digital-to-analog converter, which is an attractive option for integration into digital intensive application-specific integrated circuits due to its digital-in-nature architecture. In this thesis, a resistive voltage-mode digital-to-analog converter with an integrated low-dropout voltage regulator is proposed for a sampling rate of 16 GSps. The proposed resistive voltage-mode digital-to-analog converter with an output impedance matched to a 100 Ω load, achieves a spurious-free dynamic range of 64 dBc and intermodulation distortion of 66 dBc for output frequencies up to 5.5 GHz in the worst process corner.
29

A 10-Bit Dual Plate Sampling Capacitive DAC with Auto-Zero On-Chip Reference Voltage Generation

Gaddam, Ravi Shankar 01 November 2012 (has links)
No description available.
30

Multi-Attribute Design for Authentication and Reliability (MADAR)

Casto, Matthew James 24 May 2018 (has links)
No description available.

Page generated in 0.0899 seconds