141 |
Existência e unicidade de solução para equações semilineares elípticasFabris, Lucinéia January 2008 (has links)
Neste trabalho estudamos a Existência e a Unicidade de Solução não nula do problema de Dirichlet onde ΩCRN e um domínio aberto limitado, com fronteira suave. Mostramos que se f(x; t)/ t e decrescente em t e satisfaz algumas condições de regularidade, então a solução do problema e única. / In this work we study the existence and uniqueness of nontrivial solution of the Dirichlet problem. Where ΩCRN is a bounded domain with smooth boundary. We show that if f(x; t)/t is decreasing and satisfies some regularity conditions, then the solution of the problem is unique.
|
142 |
Problema de Dirichlet : soluções fracas e formulação variacionalSantos, Hugo Henrique Kegler dos January 2008 (has links)
No presente trabalho procurou-se estudar o Problema de Dirichlet, enxergando-o através de sua formulação variacional. Para tal, introduzimos os espaços de Sobolev e uma série de suas propriedades. Após, estudamos a formulação fraca do problema, onde, na busca pela existência e uni cidade de sua solução, estudamos o funcional que surge naturalmente. Finalmente, usando esses resultados, apresentamos a formulação variacional do referido problema, para fecharmos o trabalho com um estudo de caso, onde a solução existe e é única. / In the present work sought to study the Problem of Dirichlet, in a variational formulation view. To this end, we introduced the spaces of Sobolev, and a number of its properties. After we studied the weak formulation of the problem, where in the search for the existence and uniqueness of its solution, we studied the way that comes naturally. Finally, using these results, we present the variational formulation of the problem, to dose the work with a case study where the solution exists and is unique.
|
143 |
Hipersuperfícies com curvatura média prescrita em variedades riemannianas / Hypersurfaces with prescribed mean curvature in Riemannian manifoldsAlcantara, Priscila Rodrigues de January 2010 (has links)
ALCANTARA, Priscila Rodrigues de; LIRA, Jorge Herbert Soares de. Hipersuperfícies com curvatura média prescrita em variedades riemannianas. 2010. 40 f. : Dissertação (mestrado)- Universidade Federal do Ceará, Pós-Graduação em Matemática, Fortaleza-CE, 2010. / Submitted by Rocilda Sales (rocilda@ufc.br) on 2011-10-28T14:09:28Z
No. of bitstreams: 1
2010_dis_pralcantara.pdf: 270562 bytes, checksum: 44a873a1a64578e2f5e5d1d10eb75dc7 (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2011-10-28T14:10:19Z (GMT) No. of bitstreams: 1
2010_dis_pralcantara.pdf: 270562 bytes, checksum: 44a873a1a64578e2f5e5d1d10eb75dc7 (MD5) / Made available in DSpace on 2011-10-28T14:10:19Z (GMT). No. of bitstreams: 1
2010_dis_pralcantara.pdf: 270562 bytes, checksum: 44a873a1a64578e2f5e5d1d10eb75dc7 (MD5)
Previous issue date: 2010 / This work shows results existence and uniqueness of graphs with prescribed mean curvature. We demonstrate that a natural fixation Dirichlet problem for graphs of average curvature is required to consider those graphs like leaves on a Riemannian submersion Killing transversal cylinder, the cylinder given by flow lines of a Killing vector field. Using this approach, we are able to solve the problem in a way more comprehensive, giving a unified proof and existence results. / O objetivo deste trabalho é exibir resultados de existência e unicidade de gráficos com curvatura média prescrita. Demonstraremos que uma fixacão¸ natural do problema de Dirichlet para gráficos de curvatura média prescrita é considerar esses gráficos como folhas em uma submersão Riemanniana transversal ao cilindro de Killing, isto é, ao cilindro dado pelas linhasde fluxo de um campo de vetores de Killing. Usando essa aproximação, somos capazes de resolver o problema em um modo mais compreensivo, dando uma prova unificada e resultados de existência para uma ampla gama do ambiente de variedades Riemannianas.
|
144 |
O problema de Dirichlet para a equação das superfícies mínimas em domínios não limitados no planoBellincanta, Leandro Sebben January 1994 (has links)
Esta dissertação trata do problema de Dirichlet para a equação das superfícies minimas em domínios não limitados do plano. Estabelecemos um teorema, devido a Collin-Krust, que fornece uma estimativa para a diferença de duas soluções distintas em uma vizinhança do inftnito. Estudamos também a questão da existência e da unicidade de soluções em conjuntos convexos não limitados do plano. Entre tais conjuntos estão a faixa e o semi-plano. No apêndice apresentamos um exemplo de uma situação onde o problema de Dirichlet para a equação das superfícies mfnimas não possui solução. / This work deals with the Dirichlet problem for the minimal surface equation in non-lirnited domains of the plane. A theorem based on Collin-Krust was stated. It provides an estimate for the difference between two distinct solutions in an inímite neighborhood. The solution unicity and existence in non-limited convex domains of the plane is also studied. Among these domains are the band and the half-plane. In the appendix an example where the DiricWet problem for the minimal surface equation does not have a solution is presented.
|
145 |
Superfície mínima discretaMoreira, Nadia Cardoso 27 February 2014 (has links)
Submitted by Maykon Nascimento (maykon.albani@hotmail.com) on 2016-06-06T21:04:44Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
´Dissertacao Nadia Cardoso Moreira.pdf: 10364157 bytes, checksum: 89c12de504caaa9949b31836792cad54 (MD5) / Approved for entry into archive by Patricia Barros (patricia.barros@ufes.br) on 2017-05-10T12:27:55Z (GMT) No. of bitstreams: 2
´Dissertacao Nadia Cardoso Moreira.pdf: 10364157 bytes, checksum: 89c12de504caaa9949b31836792cad54 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2017-05-10T12:27:55Z (GMT). No. of bitstreams: 2
´Dissertacao Nadia Cardoso Moreira.pdf: 10364157 bytes, checksum: 89c12de504caaa9949b31836792cad54 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / CAPES / O problema de Superfícies Mínimas surgiu a partir do estudo do Cálculo de Variações com o significado de ser a superfície regular de menor área dentre aquelas que definem um bordo específico. Este problema foi proposto por Lagrange em 1760 e é chamado de Problema de Plateau devido aos estudos experimentais do físico Joseph Antoine Ferdinand Plateau. Esta dissertação propõe uma solução numérica para uma versão discreta do Problema de Plateau a partir do método proposto por Pinkall e Polthier. Do ponto de
vista discreto, as superfícies são complexos simpliciais com certas restrições e usaremos os conceitos de Energia de Dirichlet sobre aplicações que possuem superfícies trianguladas como domínio a fim de obter um algoritmo matematicamente consistente para obter uma superfície mínima dado um determinado bordo. / The Minimal Surfaces problem emerged from the study of the Calculus of Variations with the meaning of being a regular surface of smallest area among those that set a specific boundary. This problem was proposed by Lagrange in 1760 and is called the Plateau Problem due to experimental studies of the physicist Joseph Antoine Ferdinand Plateau. This work proposes a numerical solution to a discrete version of the Plateau Problem from the proposed method by Pinkall and Polthier. Of the discrete viewpoint case, surfaces
are simplicial complexes with certain restrictions and we use the concepts of Dirichlet Energy over applications that have triangulated surfaces as domain in order to developed a mathematically consistent algorithm to obtain a minimum surface given a boundary.
|
146 |
Métodos elementares no estudo da distribuição dos primosKagoiki, Franco Yukio January 2004 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas. Programa de Pós-Graduação em Matemática e Computação Científica. / Made available in DSpace on 2012-10-21T12:20:40Z (GMT). No. of bitstreams: 0 / Este trabalho apresenta aspectos básicos da teoria da distribuição de primos. A ênfase é em aspectos "elementares", onde este termo técnico deve significar que é evitado o uso de cálculo complexo. O uso de cálculo complexo começou com Riemann e permanece a técnica mais importante no estudo da distribuição dos primos. Técnicas elementares (no sentido acima) foram refinadas a ponto de permitir uma prova (Erdos e Selberg - 1949) do Teorema dos Números Primos. Uma prova assim foi durante muito tempo considerada impossível (Hardy e Ingham). A prova que apresentamos incorpora melhoramentos de Levinson cuja referência seguimos de perto. As provas elementares também evitam o uso da função zeta, mesmo com variável real. Parece-nos que um estudo desta função é crucial na distribuição dos primos. Os capítulos 3 e 4 deste trabalho fornecem os fundamentos de um tal estudo.
|
147 |
Existência e unicidade de solução para equações semilineares elípticasFabris, Lucinéia January 2008 (has links)
Neste trabalho estudamos a Existência e a Unicidade de Solução não nula do problema de Dirichlet onde ΩCRN e um domínio aberto limitado, com fronteira suave. Mostramos que se f(x; t)/ t e decrescente em t e satisfaz algumas condições de regularidade, então a solução do problema e única. / In this work we study the existence and uniqueness of nontrivial solution of the Dirichlet problem. Where ΩCRN is a bounded domain with smooth boundary. We show that if f(x; t)/t is decreasing and satisfies some regularity conditions, then the solution of the problem is unique.
|
148 |
Problema de Dirichlet : soluções fracas e formulação variacionalSantos, Hugo Henrique Kegler dos January 2008 (has links)
No presente trabalho procurou-se estudar o Problema de Dirichlet, enxergando-o através de sua formulação variacional. Para tal, introduzimos os espaços de Sobolev e uma série de suas propriedades. Após, estudamos a formulação fraca do problema, onde, na busca pela existência e uni cidade de sua solução, estudamos o funcional que surge naturalmente. Finalmente, usando esses resultados, apresentamos a formulação variacional do referido problema, para fecharmos o trabalho com um estudo de caso, onde a solução existe e é única. / In the present work sought to study the Problem of Dirichlet, in a variational formulation view. To this end, we introduced the spaces of Sobolev, and a number of its properties. After we studied the weak formulation of the problem, where in the search for the existence and uniqueness of its solution, we studied the way that comes naturally. Finally, using these results, we present the variational formulation of the problem, to dose the work with a case study where the solution exists and is unique.
|
149 |
Um estudo sobre as raízes da unidade e suas aplicações em matemática /Rezende, Josiane de Carvalho. January 2017 (has links)
Orientador: Carina Alves / Banca: Marta Cilene Gadotti / Banca: Cristiano Torezzan / Resumo: A procura pela solução de alguns problemas relevantes, ou ainda, de equações, têm sido uma fonte de inspiração para ampliar os conjuntos numéricos. Quanto ao conjunto dos números complexos, um importante resultado é que todo polinômio de grau n (maior ou igual a 1) e com coeficientes complexos tem n raízes complexas. De modo geral, o presente trabalho tem o objetivo de contextualizar algumas aplicações das raízes da unidade na matemática. Apresentamos sua aplicação em um caso particular do Teorema de Dirichlet, na construção de reticulados, cuja utilidade está ligada a problemas de transmissão de sinal, e na história da resolução do Último Teorema de Fermat / Abstract: The search for the solution of some relevant problems, or even of equations, has been a source of inspiration to extend the numerical sets. As for the set of complex numbers, an important result is that every polynomial of degree n (bigger or equal 1) and with complex coefficients has n complex roots. In general, the present work aims to contextualize some applications of the roots of unit in mathematics. We present its application in a particular case of the Dirichlet Theorem, in the construction of lattices, whose utility is linked to signal transmission problems, and in the history of the resolution of the Fermat's Last Theorem / Mestre
|
150 |
Zeros de séries de Dirichlet e de funções na classe de Laguerre-Pólya / Zeros of Dirichlet series and of functions in the Laguerre-Pólya classOliveira, Willian Diego [UNESP] 11 May 2017 (has links)
Submitted by WILLIAN DIEGO OLIVEIRA null (willian@ibilce.unesp.br) on 2017-09-18T03:59:17Z
No. of bitstreams: 1
Tese Final.pdf: 21063949 bytes, checksum: 766c3ca9aab9ca1a33dd27bf06043b1d (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T19:05:58Z (GMT) No. of bitstreams: 1
oliveira_wd_dr_sjrp.pdf: 21063949 bytes, checksum: 766c3ca9aab9ca1a33dd27bf06043b1d (MD5) / Made available in DSpace on 2017-09-19T19:05:58Z (GMT). No. of bitstreams: 1
oliveira_wd_dr_sjrp.pdf: 21063949 bytes, checksum: 766c3ca9aab9ca1a33dd27bf06043b1d (MD5)
Previous issue date: 2017-05-11 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Estudamos tópicos relacionados a zeros de séries de Dirichlet e de funções inteiras. Boa parte da tese é voltada à localização de zeros de séries de Dirichlet via critérios de densidade. Estabelecemos o critério de Nyman-Beurling para uma ampla classe de séries de Dirichlet e o critério de Báez-Duarte para L-funções de Dirichlet em semi-planos R(s)>1/2, para p ∈ (1,2], bem como para polinômios de Dirichlet em qualquer semi-plano R(s)>r. Um análogo de uma cota inferior de Burnol relativa ao critério de Báez-Duarte foi estabelecido para polinômios de Dirichlet. Uma das ferramentas principais na prova deste último resultado é a solução de um problema extremo natural para polinômios de Dirichlet inspirado no resultado de Báez-Duarte. Provamos que os sinais dos coeficientes de Maclaurin de uma vasta subclasse de funções inteiras da classe de Laguerre-Pólya possuem um comportamento regular. / We study topics related to zeros of Dirichlet series and entire functions. A large part of the thesis is devoted to the location of zeros of Dirichlet series via density criteria. We establish the Nyman-Beruling criterion for a wide class of Dirichlet series and the Báez-Duarte criterion for Dirichlet L-functions in the semi-plane R(s)>1/p, for p ∈ (1,2], as well as for zeros of Dirichlet polynomials in any semi-plane R(s)>r. An analog for the case of Dirichlet polynomials of a result of Burnol which is closely related to Báez-Duarte’s one is also established. A principal tool in the proof of the latter result is the solution of a natural extremal problem for Dirichlet polynomials inspired by Báez-Duarte’s result. We prove that the signs of the Maclaurin coefficients of a wide class of entire functions that belong to the Laguerre-Pólya class posses a regular behavior. / FAPESP: 2013/14881-9
|
Page generated in 0.0349 seconds