• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 65
  • 20
  • 1
  • Tagged with
  • 205
  • 93
  • 62
  • 61
  • 54
  • 52
  • 42
  • 39
  • 33
  • 28
  • 27
  • 26
  • 24
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Linéarisation du flux visqueux des équations de navier-stokes et de modèles de turbulence pour l'optimisation aérodynamique en turbomachines

Pham, Chi-Tuân 09 1900 (has links) (PDF)
Le calcul de gradients de fonctions aérodynamiques par rapport à des paramètres géométriques de la forme solide est une sous-discipline de la simulation numérique en mécanique des fluides. Cette dérivation par rapport à deux variables dépendantes, le champ aérodynamique et le maillage, liés par les équations discrètes de la mécanique des fluides, nécessite l'inversion d'un système linéaire dont la matrice est la matrice jacobienne des équations de la mécanique des fluides discrétisées par rapport au champ aérodynamique (méthode de l'équation linéarisée) ou la transposée de cette matrice jacobienne (méthode adjointe). La précision du calcul de cette matrice jacobienne fait débat lorsque les équations de la mécanique des fluides sont modélisées avec l'approche RANS. L'objectif de cette thèse est de déterminer le degré d'exactitude de la linéarisation d'un flux visqueux discret et des équations discrètes de certains modèles de turbulence, nécessaire à l'obtention de gradients précis de fonctions métiers des concepteurs de turbomachines par rapport à des paramètres géométriques d'une aube. L'écriture de linéarisations approchées du flux visqueux (avec ou sans approche dite de "couche mince") et de deux modèles de turbulence (modèle algébrique de Michel et al. et modèle à deux équations de transport k-e de Launder-Sharma) est détaillée. Pour le modèle de Michel et al., plusieurs approximations pour la linéarisation des équations du modèle ont été testées et comparées. Des résultats (valeurs de gradients de fonctions aérodynamiques, sensibilités d'écoulement pour la méthode linéarisée) sont présentés pour la tuyère de Déléry dite C, l'aile ONERA M6 et deux configurations d'aube isolée de turbine. Des recommandations sont formulées pour le calcul de gradients pour des configurations de machine tournante avec modélisation RANS.
22

Algorithmes d'extraction de modèles géométriques discrets pour la représentation robuste des formes / Recognition algorithms of digital geometric patterns for robust shape representation

Roussillon, Tristan 19 November 2009 (has links)
Cette thèse se situe à l'interface entre l'analyse d'images, dont l'objectif est la description automatique du contenu visuel, et la géométrie discrète, qui est l'un des domaines dédiés au traitement des images numériques. Pour être stocké et manipulé sur un ordinateur, un signal observé est régulièrement échantillonné. L'image numérique, qui est le résultat de ce processus d'acquisition, est donc constituée d'un ensemble fini d'éléments distincts. La géométrie discrète se propose d'étudier les propriétés géométriques d'un tel espace dépourvu de continuité. Dans ce cadre, nous avons considéré les régions homogènes et porteuses de sens d'une image, avec l'objectif de représenter leur contour au moyen de modèles géométriques ou de les décrire à l'aide de mesures. L'étendue des applications de ce travail en analyse d'images est vaste, que ce soit au cours du processus de segmentation, ou en vue de la reconnaissance d'un objet. Nous nous sommes concentrés sur trois modèles géométriques discrets définis par la discrétisation de Gauss : la partie convexe ou concave, l'arc de cercle discret et le segment de droite discrète. Nous avons élaboré des algorithmes dynamiques (mise à jour à la volée de la décision et du paramétrage), exacts (calculs en nombres entiers sans erreur d'approximation) et rapides (calculs simplifiés par l'exploitation de propriétés arithmétiques et complexité en temps linéaire) qui détectent ces modèles sur un contour. L'exécution de ces algorithmes le long d'un contour aboutit à des décompositions ou à des polygonalisations réversibles. De plus, nous avons défini des mesures de convexité, linéarité et circularité, qui vérifient un ensemble de propriétés fondamentales : elles sont robustes aux transformations rigides, elles s'appliquent à des parties de contour et leur valeur maximale est atteinte pour le modèle de forme qui sert de comparaison et uniquement sur celui-ci. Ces mesures servent à l'introduction de nouveaux modèles dotés d'un paramètre variant entre 0 et 1. Le paramètre est fixé à 1 quand on est sûr de la position du contour, mais fixé à une valeur inférieure quand le contour est susceptible d'avoir été déplacé par un bruit d'acquisition. Cette approche pragmatique permet de décomposer de manière robuste un contour en segments de droite ou en parties convexes et concaves. / The work presented in this thesis concerns the fields of image analysis and discrete geometry. Image analysis aims at automatically describing the visual content of a digital image and discrete geometry provides tools devoted to digital image processing. A two-dimensional analog signal is regularly sampled in order to be handled on computers. This acquisition process results in a digital image, which is made up of a finite set of discrete elements. The topic of discrete geometry is to study the geometric properties of such kind of discrete spaces. In this work, we consider homogeneous regions of an image having a meaning for a user. The objective is to represent their digital contour by means of geometric patterns and compute measures. The scope of applications is wide in image analysis. For instance, our results would be of great interest for segmentation or object recognition. We focus on three discrete geometric patterns defined by Gauss digitization: the convex or concave part, the digital straight segment and the digital circular arc. We present several algorithms that detect or recognize these patterns on a digital contour. These algorithms are on-line, exact (integer-only computations without any approximation error) and fast (simplified computations thanks to arithmetic properties and linear-time complexity). They provide a way for segmenting a digital contour or for representing a digital contour by a reversible polygon. Moreover, we define a measure of convexity, a measure of straightness and a measure of circularity. These measures fulfil the following important properties: they are robust to rigid transformations, they may be applied on any part of a digital contour, they reach their maximal value for the template with which the data are compared to. From these measures, we introduce new patterns having a parameter that ranges from 0 to 1. The parameter is set to 1 when the localisation of the digital contour is reliable, but is set to a lower value when the digital contour is expected to have been shifted because of some acquisition noise. This measure-based approach provides a way for robustly decomposing a digital contour into convex, concave or straight parts.
23

Rigid transformations on 2D digital images : combinatorial and topological analysis / Transformations rigides sur les images numériques 2D : analyse combinatoire et topologique

Ngo, Hoai Diem Phuc 18 October 2013 (has links)
Dans cette thèse, nous étudions les transformations rigides dans le contexte de l'imagerie numérique. En particulier, nous développons un cadre purement discret pour traiter ces transformations. Les transformations rigides, initialement définies dans le domaine continu, sont impliquées dans de nombreuses applications de traitement d'images numériques. Dans ce contexte, les transformations rigides digitales induites présentent des propriétés géométriques et topologiques différentes par rapport à leurs analogues continues. Afin de s'affranchir des problèmes inhérents à ces différences, nous proposons de formuler ces transformations rigides dans un cadre purement discret. Dans ce cadre, les transformations rigides sont regroupées en classes correspondant chacune à une transformation digitale donnée. De plus, les relations entre ces classes de transformations peuvent être modélisées par une structure de graphe. Nous prouvons que ce graphe présente une complexité spatiale polynômiale par rapport à la taille de l'image. Il présente également des propriétés structurelles intéressantes. En particulier, il permet de générer de manière progressive toute transformation rigide digitale, et ce sans approximation numérique. Cette structure constitue un outil théorique pour l'étude des relations entre la géométrie et la topologie dans le contexte de l'imagerie numérique. Elle présente aussi un intérêt méthodologique, comme l'illustre son utilisation pour l'évaluation du comportement topologique des images sous des transformations rigides / In this thesis, we study rigid transformations in the context of computer imagery. In particular, we develop a fully discrete framework for handling such transformations. Rigid transformations, initially defined in the continuous domain, are involved in a wide range of digital image processing applications. In this context, the induced digital rigid transformations present different geometrical and topological properties with respect to their continuous analogues. In order to overcome the issues raised by these differences, we propose to formulate rigid transformations on digital images in a fully discrete framework. In this framework, Euclidean rigid transformations producing the same digital rigid transformation are put in the same equivalence class. Moreover, the relationship between these classes can be modeled as a graph structure. We prove that this graph has a polynomial space complexity with respect to the size of the considered image, and presents useful structural properties. In particular, it allows us to generate incrementally all digital rigid transformations without numerical approximation. This structure constitutes a theoretical tool to investigate the relationships between geometry and topology in the context of digital images. It is also interesting from the methodological point of view, as we illustrate by its use for assessing the topological behavior of images under rigid transformations
24

Approche non-paramétrique par noyaux associés discrets des données de dénombrement

Senga Kiessé, Tristan 15 October 2008 (has links) (PDF)
Nous introduisons une nouvelle approche non-paramétrique, par noyaux associés discrets, pour les données de dénombrement. Pour cela, nous définissons la notion de noyaux associés discrets à partir d'une loi de probabilité discrète donnée et nous étudions leurs propriétés. De là, nous construisons l'estimateur à noyau discret lequel est l'analogue de certains estimateurs à noyau continu de cette dernière décennie. Nous examinons ses propriétés fondamentales ; en particulier, nous montrons la convergence ponctuelle en moyenne quadratique de l'estimateur. Le choix de fenêtre du lissage discret s'effectue essentiellement par validation croisée et excès de zéros. Nous étudions également le comportement des lois classiques de dénombrement comme noyau associé, par exemple, Poisson, binomiale et binomiale négative. Ainsi, il s'est révélé nécessaire de construire une nouvelle famille de lois discrètes dites triangulaires pour servir de noyaux associés symétriques. Cette méthode des noyaux associés discrets est utilisée dans l'estimation semi-paramétrique des distributions de données de dénombrement, ainsi que pour la régression non-paramétrique sur une variable explicative de dénombrement. Tout au long de ce travail, nous illustrons les résultats à travers des simulations et des jeux de données réelles. Dans le cas d'échantillons de tailles petites et modérées, l'importance et les très bonnes performances des noyaux associés discrets sont mises en évidence, en comparaison avec le noyau du type Dirac et parfois les noyaux continus.
25

Construction de définitions / construction de concept : vers une situation fondamentale pour la construction de définitions en mathématiques

Ouvrier-Buffet, Cécile 18 December 2003 (has links) (PDF)
Construire des définitions est essentiel dans l'activité de recherche mathématique et interagit dialectiquement avec la formation de concepts. La recherche présentée dans cette thèse s'est intéressée à la double question : est-il possible de faire émerger un concept, auprès d'étudiants, par des problèmes de construction de définitions, et quels sont les apprentissages en jeu ? La complexité des SCD et l'absence de l'étude de telles situations jusqu'alors nous a conduit au développement d'outils théoriques (du triple point de vue : mathématique, épistémologique et didactique) en vue de les construire, de les réaliser en classe et de les analyser. Ces outils théoriques nous ont permis d'établir une typologie des SCD, d'étudier les conceptions sur la définition chez des philosophes et des mathématiciens, d'analyser la place et le rôle des définitions dans les institutions didactiques, et d'extraire de possibles SCD de quelques travaux didactiques existants relatifs au concept de définition. Nous avons ainsi pu mener une étude des conditions pour la dévolution de telles situations, fondée sur des résultats d'expérimentations menées avec des étudiants de 1ère année d'université. Le choix des situations expérimentées relève de la typologie des SCD établie. Les concepts mathématiques en jeu ont été choisis pour leur accessibilité et leur position institutionnelle particulière : le concept d'arbre (qui vient d'entrer dans les programmes de lycée), les concepts de "générateur" et "libre" dans le plan discret (qui peuvent être considérés comme étant "en amont" des ceux des espaces vectoriels), et l'objet géométrique "droite discrète" (que l'on peut référer à la droite réelle). La variété des situations et concepts mathématiques étudiés nous permet, d'une part, de mieux cerner les conceptions sur la définition les plus répandues chez les enseignants et les étudiants et, d'autre part, d'attester la mise en oeuvre de processus de construction de définitions et de concepts. L'ensemble des résultats développés dans cette thèse devrait permettre d'élaborer des SCD, pour l'enseignement secondaire ou supérieur.
26

Discrete topology and geometry algorithms for quantitative human airway trees analysis based on computed tomography images / Topologie discrète et algorithmes géométriques pour l’analyse quantitative de l’arbre bronchique humain, basée sur des images de tomodensitométrie

Postolski, Michal 18 December 2013 (has links)
La tomodensitométrie est une technique très utile qui permet de mener avec succès des analyses non-invasives dans plusieurs types d'applications, par exemple médicales ou industrielles. L'analyse manuelle des structures d'intérêt présentes dans une image peut prendre beaucoup de temps, être laborieuse et parfois même impossible à faire en raison de sa complexité. C'est pour cela que dans cette thèse, nous proposons et développons des algorithmes nécessaires à cette analyse, basés sur la géométrie discrète et la topologie. Ces algorithmes peuvent servir dans de nombreuses applications, et en particulier au niveau de l'analyse quantitative automatique de l'arbre bronchique humain, sur la base d'images de tomodensitométrie. La première partie introduit les notions fondamentales de la topologie et de la géométrie discrètes utiles dans cette thèse. Ensuite, nous présentons le principe de méthodes utilisées dans de nombreuses applications : les algorithmes de squelettisation, de calcul de l'axe médian, les algorithmes de fermeture de tunnels et les estimateurs de tangentes. La deuxième partie présente les nouvelles méthodes que nous proposons et qui permettent de résoudre des problèmes particuliers. Nous avons introduit deux méthodes nouvelles de filtrage d'axe médian. La première, que nous appelons "hierarchical scale medial axis", est inspirée du "scale axis transform", sans les inconvénients qui sont propres à la méthode originale. La deuxième est une méthode nommée "discrete adaptive medial axis", où le paramètre de filtrage est adapté dynamiquement aux dimensions locales de l'objet. Dans cette partie, nous introduisons également des estimateurs de tangente nouveaux et efficaces, agissant sur des courbes discrètes tridimensionnelles, et que nous appelons "3Dlambda maximal segment tangent direction". Enfin, nous avons montré que la géométrie discrète et les algorithmes topologiques pouvaient être utiles dans le problème de l'analyse quantitative de l'arbre bronchique humain à partir d'images tomodensitométriques. Dans une chaîne de traitements de structure classique par rapport à l'état de l'art, nous avons appliqué des méthodes de topologie et de géométrie discrète afin de résoudre des problèmes particuliers dans chaque étape du processus de l'analyse quantitative. Nous proposons une méthode robuste pour segmenter l'arbre bronchique à partir d'un ensemble de données tomographiques (CT). La méthode est basée sur un algorithme de fermeture de tunnels qui est utilisé comme outil pour réparer des images CT abîmées par les erreurs d'acquisition. Nous avons aussi proposé un algorithme qui sert à créer un modèle artificiel d'arbre bronchique. Ce modèle est utilisé pour la validation des algorithmes présentés dans cette thèse. Ensuite nous comparons la qualité des différents algorithmes en utilisant un ensemble de test constitué de fantômes (informatiques) et d'un ensemble de données CT réelles. Nous montrons que les méthodes récemment présentées dans le cadre des complexes cubiques, combinées avec les méthodes présentées dans cette thèse, permettent de surmonter des problèmes indiqués par la littérature et peuvent être un bon fondement pour l'implémentation future des systèmes de quantification automatique des particularités de l'arbre bronchique / Computed tomography is a very useful technic which allow non-invasive diagnosis in many applications for example is used with success in industry and medicine. However, manual analysis of the interesting structures can be tedious and extremely time consuming, or even impossible due its complexity. Therefore in this thesis we study and develop discrete geometry and topology algorithms suitable for use in many practical applications, especially, in the problem of automatic quantitative analysis of the human airway trees based on computed tomography images. In the first part, we define basic notions used in discrete topology and geometry then we showed that several class of discrete methods like skeletonisation algorithms, medial axes, tunnels closing algorithms and tangent estimators, are widely used in several different practical application. The second part consist of a proposition and theory of a new methods for solving particular problems. We introduced two new medial axis filtering method. The hierarchical scale medial axis which is based on previously proposed scale axis transform, however, is free of drawbacks introduced in the previously proposed method and the discrete adaptive medial axis where the filtering parameter is dynamically adapted to the local size of the object. In this part we also introduced an efficient and parameter less new tangent estimators along three-dimensional discrete curves, called 3D maximal segment tangent direction. Finally, we showed that discrete geometry and topology algorithms can be useful in the problem of quantitative analysis of the human airway trees based on computed tomography images. According to proposed in the literature design of such system we applied discrete topology and geometry algorithms to solve particular problems at each step of the quantitative analysis process. First, we propose a robust method for segmenting airway tree from CT datasets. The method is based on the tunnel closing algorithm and is used as a tool to repair, damaged by acquisition errors, CT images. We also proposed an algorithm for creation of an artificial model of the bronchial tree and we used such model to validate algorithms presented in this work. Then, we compare the quality of different algorithms using set of experiments conducted on computer phantoms and real CT dataset. We show that recently proposed methods which works in cubical complex framework, together with methods introduced in this work can overcome problems reported in the literature and can be a good basis for the further implementation of the system for automatic quantification of bronchial tree properties
27

CONTRIBUTIONS À LA THÉORIE DE MORSE DISCRÈTE ET À L'HOMOLOGIE DE HEEGAARD-FLOER COMBINATOIRE

Gallais, Étienne 03 December 2007 (has links) (PDF)
Cette thèse porte sur deux aspects de la théorie de Morse: théorie de Morse discrète de Forman (cas de la dimension finie) et homologie de Heegaard-Floer (cas de la dimension infinie).<br />Dans une première partie, on s'intéresse au problème de relèvement de signe pour l'homologie de Heegaard-Floer combinatoire. On montre que la construction originale faite par Manolescu, Ozsváth, Szabó et D. Thurston peut être refaite de manière plus conceptuelle. On donne ensuite le lien entre ces deux constructions puis finalement on décrit un algorithme qui permet de calculer les signes.<br />La seconde partie porte sur la théorie de Morse discrète définie par Forman. Après avoir fait le lien entre l'algèbre sur les complexes de chaînes et la théorie de Morse discrète, on montre que le complexe de Thom-Smale donné par une fonction de Morse lisse sur variété lisse close peut être réalisé par une triangulation et une fonction de Morse discrète sur celle-ci. On utilise cela pour obtenir une représentation particulière sous forme de couplage complet de toute structure d'Euler sur une variété de dimension 3 close orientée.
28

Formalismes non classiques pour le traitement informatique de la topologie et de la géométrie discrète / Non classical formalisms for the computing treatment of the topoligy and the discrete geometry

Chollet, Agathe 07 December 2010 (has links)
L’objet de ce travail est l’utilisation de certains formalismes non classiques (analyses non standard, analyses constructives) afin de proposer des bases théoriques nouvelles autour des problèmes de discrétisations d’objets continus. Ceci est fait en utilisant un modèle discret du système des nombres réels appelé droite d’Harthong-Reeb ainsi que la méthode arithmétisation associée qui est un processus de discrétisation des fonctions continues. Cette étude repose sur un cadre arithmétique non standard. Dans un premier temps, nous utilisons une version axiomatique de l’arithmétique non standard. Puis, dans le but d’améliorer le contenu constructif de notre méthode, nous utilisons une autre approche de l’arithmétique non standard découlant de la théorie des Ω-nombres de Laugwitz et Schmieden. Cette seconde approche amène à une représentation discrète et multi-résolution de fonctions continues.Finalement, nous étudions dans quelles mesures, la droite d’Harthong-Reeb satisfait les axiomes de Bridges décrivant le continu constructif. / The aim of this work is to introduce new theoretical basis for the discretization of continuous objects using non classical formalisms. This is done using a discrete model of the continuum called the Harthong-Reeb line together with the related arithmetization method which is a discretisation process of continuous functions. This study stands on a nonstandard arithmetical framework. Firstly, we use an axiomatic version of nonstandard arithmetic. In order to improve the constructive content of our method, the next step is to use another approach of nonstandard arithmetic deriving from the theory of Ω-numbers by Laugwitzand Schmieden. This second approach leads to a discrete multi-resolution representation of continuous functions. Afterwards, we investigate to what extent the Harthong-Reeb line fits Bridges axioms of the constructive continuum.
29

Applications of digital topology for real-time markerless motion capture / Applications de la topologie discrète pour la captation de mouvement temps réel et sans marqueurs

Raynal, Benjamin 07 December 2010 (has links)
Durant cette thèse, nous nous sommes intéressés à la problématique de la captation de mouvement sans marqueurs. Une approche classique est basée sur l'utilisation d'un modèle prédéfini du sujet, et est divisée en deux phases : celle d'initialisation, où la pose initiale du sujet est estimée, et celle de suivi, où la pose actuelle du sujet est estimée à partir des précédentes. Souvent, la phase d'initialisation est faite manuellement, rendant impossible l'utilisation en direct, ou nécessite des actions spécifiques du sujet. Nous proposons une phase d'initialisation automatique et temps-réel, utilisant l'information topologique extraite par squelettisation d'une reconstruction 3D du sujet. Cette information est représentée sous forme d'arbre (arbre de données), qui est mis en correspondance avec un arbre utilisé comme modèle, afin d'identifier les différentes parties du sujet. Pour obtenir une telle méthode, nous apportons des contributions dans les domaines de la topologie discrète et de la théorie des graphes. Comme notre méthode requiert le temps réel, nous nous intéressons d'abord à l'optimisation du temps de calcul des méthodes de squelettisation, ainsi qu'à l'élaboration de nouveaux algorithmes rapides fournissant de bons résultats. Nous nous intéressons ensuite à la définition d'une mise en correspondance efficace entre l'arbre de données et celui décrivant le modèle. Enfin, nous améliorons la robustesse de notre méthode en ajoutant des contraintes novatrices au modèle. Nous terminons par l'application de notre méthode sur différents jeux de données, démontrantses propriétés : rapidité robustesse et adaptabilité à différents types de sujet / This manuscript deals with the problem of markerless motion capture. An approach to thisproblem is model-based and is divided into two steps : an initialization step in which the initialpose is estimated, and a tracking which computes the current pose of the subject using infor-mation of previous ones. Classically, the initialization step is done manually, for bidding the possibility to be used online, or requires constraining actions of the subject. We propose an automatic real-time markerless initialization step, that relies on topological information provided by skeletonization of a 3D reconstruction of the subject. This topological information is then represented as a tree, which is matched with another tree used as modeldescription, in order to identify the different parts of the subject. In order to provide such a method, we propose some contributions in both digital topology and graph theory researchfields. As our method requires real-time computation, we first focus on the speed optimization of skeletonization methods, and on the design of new fast skeletonization schemes providing good results. In order to efficiently match the tree representing the topological information with the tree describing the model, we propose new matching definitions and associated algorithms. Finally, we study how to improve the robustness of our method by the use of innovative con-straints in the model. This manuscript ends by a study of the application of our method on several data sets, demon-strating its interesting properties : fast computation, robustness, and adaptability to any kindof subjects
30

Modélisation tridimensionnelle des ARN par exploration de l'espace conformationnel et satisfaction de contraintes

Thibault, Philippe January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Page generated in 0.028 seconds